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Abstract: Known upper bounds on the number of required nodes (size) in the ordered binary
and multiple-valued decision diagram (DD) for representation of logic functions are reviewed
and reduced by a small constant factor. New upgpmemds are derived for partial logic
functions containing don't cares and also for complete Boolean functions specified by Boolean
expressions. The evaluation of upper bounds is based on a bottom-up algorithm for
constructing efficient ordered DDs developed by the author.
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1 Introduction

Many "decision" procedures use a branching process which consists of testing some
property, with the branching depending on the test outcome (typical examples are
identification of objects or classification). Concrete applications include simulation or
modelling of combinational or sequential circuits [Akers 1978], [Bryant 1986], test
generation [Abadir and Reghbati 1983], and design of binary and multiple-valued
multiplexer/demultiplexer networks [Davio et al. 1983], [Cerny et al. 1979]. Such
decision procedures can be implemented as programmable controllers [Zsombor-
Murray et al. 1983], as memory-based finite-state machines [Coraor et al. 1987], or
can be directly mapped into silicon [Matos and Oldfield 1983].

We introduce concepts needed in the following sections very informally [see Moret
1982]. Adecision diagram(DD) is a directed acyclic graph in which eacision

nodeis labelled by a variable tested in this nodengrol variablg. The edges coming

out from the decision node leading to the nodes in subsequent levels correspond to the
values of the control variable. So the decision noddvhé&sut-) edges if the variable
takesM values. Beside decision nodes there are terminal nodes (leaves) labelled by
the value of the function that is being evaluated by the diagram.

Important parameters of a given DD are the total number of decision nodes (size) and
the maximun{or average) number of tests between the root and leaves (usually called
its cos). Here we consider only the size of the DD. Methods of optimization of DDs
for digital systems are presented in [Davio et al. 1983] and [Cerny et al. 1979].
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There are several classes of decision diagrams (DDs)sime (alsofree or read-

once only DD, a discrete variable can be tested only once along a path from the root
to a leaf. If there is at least one variable tested more than once along a path, then we
have a so calletepeatedDD. The decision tree is a DD which all decision nodes

have just one in-edge. Finally, a DDaderedif the order of control variables tested
along every path in the DD is the same (control variables not tested along a certain
path are considered to be in the correct order). All the nodes of the ordered DD
labelled by the same variable make up a level of this diagram. The top level consists
of a root node only, out-edges of decision nodes at the bottom level lead only to
terminal nodes.

Binary decision diagrams (BDDs) and particularly ordered binary decision diagrams
(OBDDs) are widely regarded as the most practical Boolean function representation.
They can be considered to be a specialized hardware description language. The
construction of minimum-size BDDs belongs among NP-hard problems and
algorithms of high complexity can design some classes of minimum-size BDDs only
for a small number of variables [Friedman and Supowit 1990]. Generation of a BDD
from the known Boolean circuits is a different matter and has been investigated
elsewhere [Bryant 1986], [Chakravarty 1991].

Upper bounds on the OBDD's size for general Boolean functions are not too
encouraging [Liaw and Li1992], butmanypractical functions do have a reasonable
OBDD size.

2 A Bottom Up Construction of Efficient Ordered Decision
Diagrams

A minimum-sizeordered DD is specified by an optimum variable ordering. This
ordering may not be unique, but for any given ordering the minimum-size DD is
canonical [Bryant 1986], at least for complete functions. An exhaustive search for an
optimum variable ordering would require evaluating sizenbfDDs. The time
complexity of this brute-force method is @(2"), since node counting (based on the
technigue of subfunctions counting [see Wegener 1987] ) requiree®s for each
permutation. By investigating optimum combinationskofariables fork increasing
from 1 ton, [Friedman and Supowit 1990] came wijih a procedure of complexity

O( 3'n?), which is still computationallyoo expensive. Therefore a construction of
suboptimal DDs by heuristic methods is of interest. [Almaini 1990] used a top-down
algorithm based on countirgvariable subfunctionk =n-1,n -2, ... ,1. It requires
pattern matching and its complexity is still prohibitively high.

Our approach to the synthesis of simple ordered DDs is to design a bottom-up
algorithm which works one level at a tinehe control variables, allocated once to

the level k is not reallocated in the following steps, unlike the exact algorithm
[Friedman and Supowit 1990]. Also the complexity is lower than that of the top-down
algorithm [Almaini 1990] since for every level in the DD we count only single-
variable subfunctions. As we show below, the time complexity of our algorithm
applied (but not limited) to complete functions is ®(2).
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Partial functions are defined only in som¢uples of binary values ("vertices" of an
n-cube) and the rest of-tuples (vertices) are so called "don't cares" - unspecified
values denoted in what follows By'. For these functionsvhich aremainly used in
practice, the complexity of our algorithm is much lower than for complete functions
and is not given so much by the number of variabjezs by the number of defined
vertices.

To explain our algorithm we need some definitions concerning decomposition of
functions [Almaini 1990] and their extensions to partial functions. WMillepresent
these definitions in the context of multivalued function®edry variables. The set of

P values 0, 1,..P-1 we denote a3 .

Definition 1.
Let F be the (partial) function

F(Xl,...,Xn) X - ZR, X:Zmn\D,

whereD is a set of don't cares. To define some ordering of variablesx, , we will
use an integer variable so thati = i(k) is an abstract value of index}{1,2,...n}
in thek-th position.

Following [Friedman and Supowit 1990], a restriction of the funck@x, ..., X,
defined as

F |Xi(5+1) :V]. [REEEE X|(n) :Vﬂ-S

is said to be aubfunction (X ,..., Xy ) of F. In what follows we will consider
mainly s = 1, i.e. single-variable subfunctions. The get of all the distinct
subfunctions of single variable ( or i-subfunctions of for short) has a cardinality

of lal =A.

If function F is partial, somay be its subfunctiondnstead of equivalence, we
introduce the relation of compatibility of subfunctions and modify the concept of
subfunction counting [Wegener 1987].

Definition 2.

Two partial subfunctions; andf, of the sames variables areompatibleif they are
identical in every vertex which belongs to the domaify @ well as to the domain of
f, .Two subfunctions are distinct if and only if they are not compatible.

In the construction of an ordered DD for functiérof n variables we proceed from

the bottom level upwards. We relate decision nodes to subfunctions and try to
minimize their count. The technique used ksown as "subfunction counting”
[Wegener 1987]. Thiesubfunctionf(x; )
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f(x)=aifx =0
f(x)=b ifx =1

will be denoted shortly as a pa#;lj] and represented by a binary decision node in the
DD. The following types of subfunctions exist in partial functions:

[a!b] ’ [a!a-] ' ['ra] ' [av'] ’ ['!_] .

All but the first one are constant functionsa(@] ) or compatible with the constant
function ( [-a] , [a,-] ) and do not need a decision node in the DD. Only subfunctions
of the type &,b] , a# b, are mapped 1:1 to decision nodes. Thélybe referred to as
eligible subfunctions. Out of; distinct (i.e. not mutually compatiblé)subfunctions

of F only A' < A are the eligible ones. The differenée— A' is the number of
decision nodes which degenerate to a single edge and thus contribute only to a
communication cost within the DD.

In the bottom-up construction of the DD a natural and important question is a criterion
on the basis of which a decision variaklés chosen. We propose the following. First
we count the numbeX; of distincti-subfunctions for each variabte. Then we choose

a variablex, with the smallest number of eligible subfunctidi’s If there are several
such variables, choose one with the smallest valug pf.e. the one with the lowest
communication cosh — A" . (If there are many, choose any one among them).

The process of the DD construction for functiers F,, starts with the selection of
variablexq, for the level 1 (the bottom level) of the DD according to our criterion.
Then we replace alyg, distincti(1l) - subfunctions by numerals 0, 1, Ay — 1.
These are the values of a new functign of n —1 variables, a residual function fq.
Then we continue subfunction counting for functieyy and get residual function
F.. , and so on, until finallfr, andF, are obtained. From the original functibnwe
thus create a sequence of residual functions of decreasing number of vé&fiahles
..., Fo, Where the indices denote the number of remaining variables.

The heuristics involved in our algorithm relies on the fact that for the given number of
V values of a residual function of binary variables, the number of eligible
subfunctions, i.e. pairs of different values, in the set of randomly created subfunctions
(pairs) will be most probably lower for a lower vaMeThe similar reasoning is also
adequate foM-ary variables. A detailed analysis of this heuristics in compavistn

the exact algorithm [Friedman and Supowit 1990] is presented separately [Dvorak
1993].

The time complexity of our algorithm for levklis determined by table look-ups and
creation of a subfunction table for eachnof k + 1 variables. These operationigh
table size 2* maytake time @n - k + 1) [Friedman and Supowit 1990], so that the
total time complexity is of order
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S =5 (n- k+1)22"k 1)
k=1

Ifwe put n—k+1 =h, then[Eqgn. 1] can be written in a form

S =

n

n n d d .o n
=) h?2" = 2h(h-1)2"? +h2" ) =—[2—HY x"+H) x"
th th[ (h-1) | el e go go ]

Because

x=2"

by evaluating derivatives and by substituirg 2 we get S, = 2" (n* - 2n + 3) - 3 for
every integen =1, or in other wordsS, = O(2' n?).

We will illustrate the algorithm by a small example in [Fif. The 5-valued function
F4 of 4 Boolean variables,B,C,Dis specified by the map in the upper left corner.
First we create a list of single-variable subfunctions for each variable:

A: [0,-], [1,4], [2,0], [2,1], [-4], [2.-]. [2,2], [2,3]
B: [0-][1.2],[2,2], [-4], [4-],[0,2], [1,3]
C: [0.2], [-,2], [-,0], [4.2], [1.2], [2,2], [4,1], [-,3]
D: [0.1], [-2], [-4], [4-]. [2.2], [0.1], [2,3] .

Some of the above subfunctions are mutually compatible and we therefore create sets
of distinct subfunctions only:

eligible subfunctions: subfunctions represented by constants
A [1,4],[2,0], [2.1], [2.3] [0,0], [4,4], [2,2]

B: [1,2],[0,2], [1,3] [0,0], [2,2], [4,4]

C: [0,2], [4,2], [1,2], [4.1] [2,2], [0,0], [3,3]

D: [0,1], [2,3] (2,2], [4,4]
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The number of eligible single-variable subfunctiondg=dé 4, 3, 4, 2 forA, B, C, D
respectively. The variableith the least number of eligible subfunction®isnd so it

is selected as a control variable for the bottom level of the DD. The number of
decision nodes in this level will be thusinimum (2). Distinct subfunctions of
variableD (including the constant subfunctions) are enumerated and their id. numbers
in turn become the values of a residual funckeifA,B,C)

[0,1]:=0, [2,3]:=3, [22]:=1, [4,4] :=2

Note that each assignment replaces two valu€g by one new value, so that the map
of a residual function of 3 variables is obtained. Decision nodes realize the inverse
assignment, expanding a new value into two.

This process is repeated level by level from the bottom of the diagram up, until no
variable remains. In the second step we have 4, 2, and 3 eligible subfunctions of
variableA, B, andC respectively, so that we seldgtas the control variable for the
level 2:

A: [0,2], [1,0], [1,2], [1,3]
B: [0,1], [0,3] [2,2], [1,1]
C: [0,1], [2,0], [2,3] [1,1]

The order of last two variablésandC is arbitrary, since always 2 decision nodes will
be needed for the level 3

A: [0,1], [2,3] C: [0,2],[1,3]

and one decision node for the root (the top level).The sequence of maps of residual
functions in the synthesis process and the resulting binary DD are shown in [Fig. 1].

Let us note that maps were used for illustration only, the real computer program

accepts the lists of vertices with defined values or logic expressions.
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Fi(A B C D Fs(A B O
cD Subf. C  subf.

AB 00 01 10 11 of D AB 01 of B

00 012 2 01:=0i Q0 1 DL=0ii >

01 -[2 22 22=1 Of LI 22:=1

10 -|4 01 44=2 1p 20 1= -

11 4/ - 2 3 23=3i11 2 3 0=3iv >

F:(A Q Fi( O Fo=const

c Subf. C  subf.

A 01 of A 0 1 of c

0o of2 orqovC 0o Doizg |[o C DO—
1 113 23791viC D i

a)

top level

level 2
0

level 1 i

b)

Figure 1. Decomposition of the sarmple function a)
and the associated BDD b)
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3 Upper Bounds on The Size of Ordered DD for Complete
Functions

The upper bounds for general logic functions derived below hold for every ordering of
variables. For some special classes of functionsgit bepossible to use a particular
ordering of variables which will produce improved upper bounds. However, this
approach has not been investigated in the context of this paper.

For the sake of completeness, we stégth theorems for complete functionshich
involve some minor corrections to the known results as given e.g. in  [Davio et al.
1983 ]. Their proofs are made compatiltgh another section dealing with partial
functions.

Theorem 1.

The logic function F, : Z," - Zz can be represented by a binary decision diagram
with not more than

P=Min@*+R) -R-1  0< ks n )
k
decision nodes.

Proof. The co-domain of the original functidh contains values 0,1,.R-1 and
therefore there are not more thas = R* - R eligible single-variable subfunctions,
since up tdR subfunctions are constant. The residual fundtignattains at mos; =
R’ different values denoting distinct subfunction$afhus there exist not more than

A=R -FR

eligible single-variable subfunctions &f.;. If we continue like this, then function
Frir1 in stepk will have up to

A(' — Rzk _ R»Zk—l

eligible subfunctions. On the other hand, their number will be limited also by the
cardinality of the domain of ..., and will be less or equal to"¥%2 = 2"
Combining these two restrictions we have

P=S Min(2™, R - R")=3 Min(2, B) .

SinceP; decreases arf®, increases with a value &f we can find a valuk = k” such
that
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fork=1,2,..,K:  P,<P;holds (ok” =0)
fork=K'+1, .., n: P;<P,holds.

Therefore we can write

*

k n - .
P= YR+ SR=(R -R+(27 -1 .

1<ksk” k=K +1
The value ok = k”is the one that minimizes the above expression, Q.E.D.

The above upper bound [Eqgn. @Jas derived less accuratelR has not been
subtracted) in [Davio 1983] and also some asymptotics have been given which involve
certain approximation and produce even larger errors. Therefore the use of
asymptotics is not recommended, especially when the exact \aeiesasily found

from [ Eqn. 2] or from [Tab. 1]. If expression [Egn. 2] reachesi@mumfor k = 0,

thenP = 2" -1 and we have the case of the complete binary decision tree. In case the
minimum occurs fork > 0, the upper bound is lower than the one for the complete
binary tree. These areds< 1 and 2) are framed in [Tab. 1].

R n
1 2 3 4 5 6 7 8 9 10
2|1 3| 5 9 17| 29 45 77 141 269 k=2

4 | 8 7 15| 27 43 75 139 26] 507
8 | 7 15 31 63| 119 183 311 567 k=1
16 | 15 31 63 127 254 495 751
32 ~ [ 81 63 127 255 511 102§ k=0
64 | 63 127 255 511 1023

Table 1. The upper bound on a number of binary decision nodes in the decision
diagram of function Z- Zgz, R =2"

Now we are going to generalize the expression for the upper bound of decision nodes
for the case oM-valued logic functions. We have the following

Theorem 2.
The logic function F : Z\," -~ Zz can be represented by &fary decision diagram

with not more than
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M" k-1

P=Min—— - +R""' =R 0 3)
Min—y—7

IN
=~
IN
>

decision nodes.

Proof. By analogy, there arg P; decision nodes inn—k top levels and} P,
decision nodes ink bottom levels of the decision diagram where
M" -1
M-1
SRR R+ +(R - H)+( K- R K- R

> R=1+M+ M%+.. + Mt =

The required number &fi-ary decision nodes (the upper bound) as a functionaoid
R =2, calculated from [Eqgn. 3] fo = 4 is presented in [Tab. 2Again the area
where the number of decision nodes is less than in the corvplate tree is marked.

R n
1 2 3 4 5 6
2 1 5 | 19 35 99 355 |k=1
4 1 5 21 85 | 337 593
8 5 21 85 341 1365
16 5 21 85 341 1365 k=0
32 21 85 341 1365
64 21 85 341 1465

Table 2: The upper bound on a number of quaternary decision nodes in the decision
diagram of the functionZ— Zg, R=2".

4 Upper Bounds on The Size of Ordered DD for Partial Functions

To the author's best knowledge, there are no results available for partial logic
functions. The next theorem deals with this case.

Theorem 3.
Any partial logic function of n Boolean variables

F:Xo Za, xad 2", X< 2"

can be represented by a binary decision diagram with not more than
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P=2"%"—1+ (k-k-1.|X/2+ R* - R @)

decision nodes, where

k, = M-log, | X[/,

k; = [+log, log, (527 -

Proof. In the first step = 1), X| function values (not necessarily distinct) can be
combined pairwise into subfunctions. In the worst case every function value is
combined pairwise with don't care in one position only:

[a,-] ’ [b,'] y [C,'] g s

In this way, a maximum ofX| subfunctions could be obtained because no two
subfunctions are compatible. Thereféxg< |[X| and this is also the size of the co-
domain of the residual functidf,; . However, since only subfunctions of the form
[a,h] qualify as eligible, a maximum number of eligible subfunctions wilbbined

if all the values are distinct. Then we §¢t/2 distinct pairs. On the other hand, there

has to be at least one such subfunction, otherwise the function would not depend on all
n variables. Therefore we have

1< A< |X] /2

eligible subfunctions (decision nodes). The same is true for other steps as well, since
all residual functiond= have in the worst case the maximum co-domain 3fge |
Therefore the upper bound of the size of a binary DD for a partial function can be
reduced by taking the number of decision no&¢d2 at those levelk where it is

below the limits specified for complete functions:

P:£ Min(| X|/2,2"% R - R™)

(For complete function¥] /2 = 2"t > 2"*for k = 1, so that this term has no influence
on P.) We have to find intervals &fvalues where each term dominates (being the
lowest in value). Let the last term dominate far k< k, (ork =0 ) and the middle
term 2 dominate in the interval > k= k; . In the first case we have

R -R™ <| X2
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k-1
By using the substitutionz = R we get the expansion

(2= 52 (- =55 <0 .

Sincez > 0, the solution is only

1+, 1+ 2 X
zs 2

and after substitution far

k <1+log, log, (2524)

or the boundary of the first interval

k; = [J+log, log, 527 -

Now let the term 2* dominates. In that case we have
2%<X|/2  or k=n-log [X| /2.
The boundary of the upper interval is then
ky = [h - log, |X]| /120

Every levelk with the number of subfunctions limited by the valueXjf/R must
satisfyk, < k <k; , so that the number of such levelk;is k, — 1.

The total number of decision nodes in three sections of the diagram is thus

P=l+2+. 427 +|X|/2+ .+ X |2 B -R" ¥ .+ B- R
2" 14 (k —k, - D.| X2+ R* - R

Q.E.D.

Let us note that for complete functioks=k; — 1 = K as before. Ik, -k, - 1 < 0,
then the upper bound for complete functions remains in effect and cannot be
improved.
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Corollary 3.1.

The same upper bound is also valid for a logic function that evaluates to the same
(dominant) value or don't care everywhere except origkhaidrtices. Don't cares
may be replaced by this dominant value in our previous considerations.

Example 1.
Let us consider a partial function mf 8 variables defined iiX] = 20 vertices and let
its co-domain contai® = 4 distinct values. Then

k1 = lIf"'ngIXI/ZZF @_ |09210EF S

k, = [I+log, log, *3°[¥ [3+ log, log, 37F 0
P=2%51_1+(5-0-1.10+ 4 - 4 55.

The OBDDmay have upto1+2+4+8 + 10 + 10 + 10 + 10 + 10 ndstes. By
contrast, the OBDD of a complete functiBnz,® - z, may have up td39 decision

nodes [see Tab. 1].

Theorem 3 can again be generalized forRamalued logic function ofM-valued
variables. In this case, however, the upper bound cannot be obtained in the explicit
form since a solution of a higher-order algebraic equation is involved.

Theorem 4.
Any R-valued incomplete logic function ai M-valued variables

F:X o Zq X Oz, K <M

can be represented by the M-ary decision diagram with not more than

B M n-k+1 _ 1

R¥? - R - k-1).| X/2
VT +(k-k-1.] X )

P

decision nodes, where
ky = [h - logy [X| /20
ko, =[1 + logy logr Z O
andz > 0 is a real root of the equation

2"-z-X2=0.
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Note here, that the partidlsubfunctions may beligible if defined at least for two
values of theM-valued variablex. Each such subfunction requires a decision node
with M out-edges, even though some out-edges end up in don't cares.

The following theorem presents an improved upper bound for Boolean functions of 4
variables.

Theorem 5.
Every Boolean function of four variableB, : Z,* - Z, can be represented by an
OBDD with not more than 8 decision nodes.

Proof. A constructive proof is given: It is shown that for every Boolean function of 4
variables an OBDD with not more than 8 nodes can be constrlttedowest level

of this OBDD does not need more than two nodes (subfunctimsd X; ), whereas

the top level needs one node (a root), and the level below it at most two nodes. We
will show that the level 2 of the OBDD requires not more than 3 nodes.

The number of nodes on the level 2 is given by the number of eliggolefunctions
of F5; or equivalently by the number of 2-variable eligible subfunctions,of_et us
consider two cases:

(i) At least one of 2-variable subfunctions®fdepends only on a single variable. If

we choose this variable for the nodes (two or one) in the lowest level, then three
remaining subfunctions, if distinct, will map into 3 nodes on the level 2 labelled by
the remaining variable. If not distinct, they will map into 2 or 1 node only, Q.E.D.

(i) No 2-variable subfunction df, depends on one variable only. We will show that
this will never hold true. There are only ten subfunctions which do depend on two
variables. Each one is indicated by an ordered list of 4 function values for respective
values 00, 01, 10, and 11 of input variables:

[0001],[0010],[0100], 100017,
[1110],[1101],[1011],[0111],
[01107,[1001].

Permutation of variables, negation at the inputs or at the output, or both these
transformations simultaneously do not influence the cost of the OBDD; they translate
only to different labelling of nodes, swapping values assigned to out-edges of certain
levels of nodes or values at terminal nodes. Under above transformations each of 10
subfunctions in the list can be converted to only one of the t@@01 ] or [ 0110 ].
Therefore without loss of generality one can consider that an arbitrary fuhRgtias

the first subfunction

F(O, 0,X ,X1) =Xo . X1 OF X [0 Xq .
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The second subfunctidf(1,1,X,, X; ) can be chosen arbitrarily from the collection of
remaining nine. This means 2 x 9 = 18 cases which can be easily analyzed by
computer or by hand with the result that regardless of the chole@df, x, , x; ) and

F(1, 0,% , X1 ), two variables, andx,, h,k O (1,2,3,4), can alays be selected in such

a waythat there exist only three distinct subfunctions of these variables different from

X Z, X.,and X . So the case (ii) cannot occur ever. Therefore only three

decision nodes are necessary on the second level and in total 1 + 2 + 3 + 2 = 8 nodes
or less will be needed for any function, Q.E.D.

Let us note that the number of two-input multiplexers needed for implementation of
any Boolean function of four variables is lower by one (i.e. at most seven), as the
multiplexer realizing a subfunctiox, in the lowest levemay bereplaced by the
signal linex) .

The last theorem is dealing with the "most difficult” functions, i.e. those which require
a complete tree for their representation. These functions can be recognized by
counting the number of their single-variable subfunctions for all variables.

Theorem 6.

Afunction F.:Zy" - Zz with the number of single-variable eligibtsubfunctions
equal toM for every variablex; cannot be represented by &hary DD with a lower
size than the size of a complete decision tree

M-l (6)

Proof. The domain and the co-domain of the residual funckgp has the same
cardinality M™. All subfunctions ofF,, are thus eligible (no subfunction is a
constant) and there ak™/M = M"? of them. Similarly residual functions of2, n-
1,...,2, and 1 variable have also tmeximum number oM™ , M™ ... M, and 1
eligible subfunction, respectively. By counting eligible subfunctions we obtain the
number of decision nodes

P=1+ M+...M"2+ M" 1= '\|<I/| _11 , Q.ED.

Corollary 6.1.

The BDD of an arbitrary pair of Boolean functions of 3 (4) variables may need
as many as 7 (15) decision nodes. Examples of such functions are given in [Fig. 2],
where single values 0, 1, 2, 3 represent pairs of Boolean values 00, 01, 10, 11.
The number of eligible single-variable subfunctions is 4 (8) regardless of the
chosen variable.
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X3 — X3Xq —

X1 X2 0 1 X1 X, 00 01 10 11
DO 01 op 0 1 3
D1 113 oL 1 3 2
10 210 1p 2 O 1
11 3|2 1L 3 2 0

Fs( X1, X2, X3) Fa( X1, X2, X3, Xa)

a) b)

Figure 2: Functions with only a trivial decomposition.
a) of three variables b) of four variables .

5 Upper Bounds on The Size of BDDs for Evaluation of Boolean
Expressions

In this section we will consider general repeated BDDs in which each variable may
be tested more than once along the path from the root to the terminal node. The upper
bound on the size of these BDDs for Boolean functions specified in algebraic form
(DNF) has been investigated and a tighter bound than the one currently known has
been found. The new result is formulated in Theorem 7.

Lemma.
A BDD for the given Boolean expressi&with N literals can always be constructed
with a size less than or equal kb .

Proof by construction: Let us take a variablg in the expressio& and assign it to
the root of the BDD. We can write

E=xP+xQ+ R
where subexpressiofsQ, andR haveN - & literals in total,& being the number
of occurrences ok, inE.
The BDD can be constructed stsown in [Fig.3]. The nodes denoted B;Q, andR
can be now similarly expanded and substituted by subdiagrams. This process will go
on until the nodes are denoted by simple literals only. One decision node is used for
all the occurrences ofX; in E, and the same is also true for other variables at the
lower levels , so that the size of the BDD will be less than or at most eqbal to

Equality holds in the case where a variable is selected only once at every level in a
(sub-) expression, Q.E.D.
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Figure 3: A BDD representing Boolean expresdiof X P+¥Q+ R.

Theorem 7.
A Boolean function of n variables, specified by the DNF whtHiterals, can be
represented by a BDD with no more than

[(kNO

Mkin{N—E?gzk—} (7)

decision nodes, whete= 1,2, ...n.

Proof. Let the variablesx,, X,,...,X, occur in the DNFa,,a,,...,8, - times
respectively, either directly or negated. If we seléctariablesX; ), X )1+ X

and create an upper part of the BDD in a form of the completewlitlank -1
nodes, residual expressions will remain with

N _(a(l) + ar(2)+---+ a(k) )

literals. There are;) ways of choosing out of n variables and the sum of all
occurrences of all variables in all selections is exactly

n
_ -1
(31(1)"' a(2)+"'+q‘(k))_2(:—l)q ,
O{i(2,i(2,...t K)}O{ 1 2..n} J=1
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because each indgxs exactly in({;) subsets{i(),i( D, ...,i K )} and thus each
a; U{a ) 2r-++» @)} Will be summed that many times . We can always pick up
such a selection that

(ai(l) "'3‘(2)"'---""'31(|<))2 (1?:11)2 8]/(:2) ,

i.e. that the sum of occurrences of k selected variables is greater than or equal to the
average. After simplification we get

n
k —k
(ai(l) +ar(2)+---+a(k))2FZ = N
=1
and since the sum on the left hand side must be an integer, it also holds

@y +ap+-+ae)2 0

Therefore in our construction of the BDD, removikgrariables means thad ™
nodes are already assigned to the complete tree and

N —(%) + t51(2)"'---*'@-(10)5 N- EW&D

literals remain in residual expressions. E.g.Kor 2 variables there will be five
residual expressior$s, T,U,V,andWin the expansion

E=X.x S+ x x T X XU x x¥ W

and the BDD will have a form shown in [Fi¢d]. According to theLemma, to
represent these residual expressions by BDDs, the same number of nodes as there are
literals will always do, so that the total number of nodes is at most

N - [@N 2 -1

Hence theminimumfor a certain value df, k=1, 2,...N, is the best upper bound on
the BDD size, Q.E.D.

Let us note, that the upper bound known so far [ see Pupyrev 1984 ] has been

N-&[F1.
The size of BDDs for expressiongth up toN = 100 literals and up to 10 variables
has been tabulated and is shown[Trab. 3]. In cells filledwith "-" Boolean

expressions do not exist sinde< n. A similar situation is in cells filled withx": the

most complex Boolean expression (the parity ) can have atma&t’ literals. Bold
numbers correspond to the upper bounds of OBDDs' size for general Boolean
functions in [Tab. 1] and given by Theorem 5, which must also bound general BDDs.
The remaining data are tighter upper bounds for functions given by Boolean
expressions. The improvement of the former upper bound [Pupyrev 198#ihin

the table) from 0 to 26 % .



20 Dvorak V.: Bounds on Sze of Decision Diagrams

Figure 4: Decomposition of a BDD with the complete tree of 2 variabbes x

6 Conclusion

The upper bounds on the size of DDs obtained above can be used in several different
ways. One important area is estimation of ROM capacity for memory-based finite
state machines, microprogrammed control units or programmable controllers. Here a
transition from one state to another is determined by a subset of input variables
relevant for this transition. If only one relevant variable can be tested at a time, then
the number of decision nodes to determine one oR t@irget states can be found

from formulae [Eqn.2] and [Eqgn.3]. Ik Boolean variables are to be tested
simultaneously, th-ary DD can be used withl = 2. Different architectures can be
compared thisway [Davio et al. 83], [ Coraor et al. 87] as far as themory
requirements is concerned.

Whereas the above application area concéirmsvare development, DDs can be
mapped also directly intoardware The upper bound on size of BDDs gives e.g. the
maximum number of 2 : 1 multiplexersquired to implement a given function or it
can be related to the consumption of logic blocks in multiplexer-based FPGA.

If DDs are implemented isoftware for modelling, simulation and verification of

digital circuits in CAD, again the upper bounds on sizay be useful to specify
memory requirements (RAM) of circuit description. émder to create universal
simulation methods, DDs can be described by application-specific tables that are
interpreted during simulation. AM-ary decision node is described by a tabléviof

items, where each item is interpreted as the base address of a table describing the next
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decision node in the lower level of the DD (e.g. if the MS bit = 0) or as the value of
the function (MS bit = 1, terminal node).

N/n|{3]4]|5 6 7 8 9 10
5 4 14 |5 - - - - -
10 58 |9 9 9 9 9 10
15 X [8 |12 |13 | 13 | 14| 14| 14
20 X |8 |15 |16 | 17 | 18| 18| 19
25 X |8 |17 |19 |20 | 21| 22| 23
30 X |8 |17 |22 |24 | 25| 26 | 27
35 X | x |17 |24 |27 | 28] 30| 31
40 X | x |17 |27 |29 | 32| 33| 35
45 X [ x |17 |29 |32 |35 | 37 | 38
50 X [ x |17 |29 |36 | 38 | 40 | 42
55 X [ x |17 |29 |38 |41 | 43 | 45
60 X [ x |17 [ 29 [40 |45 | 47 | 49
65 X [ x |17 |29 |42 | 47 | 50 | 52
70 X [ x |17 |29 | 45 |50 | 53 | 56
75 X [ x |17 |29 | 45 |52 |56 | 59
80 X [ x |17 |29 | 45 |55 |59 | 63
85 X [ x | X 29 145 |55 | 60 | 66
90 X [ x | X 29 145 |60 | 65 | 69
95 X [ x | X 29 145 |62 |67 | 73
100 X | X | X 29 |45 |65 | 70 | 75

Table 3: Upper bounds on size of BDDs for Boolean expressions of n variables
with N literals

As a by-product of a procedure used in the derivation of the upper bounds on size of
DDs, a technique suitable for optimization of a class of ordered DDs has been
obtained. This technique can be used for complete as well as partial functions, binary
as well asM-ary functions, can be easily programmed, and requires much less
computational effort than techniques suggested till now. A program for binary DDs
with one or more control variables in each level which runs on the PC is available
from the author.

A group of Boolean expressions can be represented by a sharedvBDBeveral

root nodes or by a single BDBith more than two terminal valueEhe upper bounds

of either BDD's size would be of a great value, but are not known as yet. Also the
upper bounds on size of ordered (not repeated) OBDDs for Boolean expressions are
still to be found. This could be o subject of future research.
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