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Abstract: An edge-ipping operation in a triangulation T of a set of points in the
plane is a local restructuring that changes T into a triangulation that di�ers from T
in exactly one edge. The edge-ipping distance between two triangulations of the same
set of points is the minimum number of edge-ipping operations needed to convert
one into the other. In the context of computing the rotation distance of binary trees
Sleator, Tarjan, and Thurston show an upper bound of 2n�10 on the maximum edge-
ipping distance between triangulations of convex polygons with n nodes, n > 12. Using
volumetric arguments in hyperbolic 3-space they prove that the bound is tight. In this
paper we establish an upper bound on the edge-ipping distance between triangulations
of a general �nite set of points in the plane by showing that no more edge-ipping
operations than the number of intersections between the edges of two triangulations
are needed to transform these triangulations into another, and we present an algorithm
that computes such a sequence of edge-ipping operations.
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1 Introduction

Triangulations of point sets play an important role in many applications. It is
often desirable to compare two triangulations of the same point set. One way to
measure the similarity between two triangulations is to compute the edge-ipping
distance between them. If S is a set of points in the plane and T a triangulation
of S, then an edge-ipping operation f in T replaces an inner edge e of T with the
other diagonal of the quadrilateral Q which surrounds e if Q is convex (Fig. 1).
So f transforms T into a triangulation of S that di�ers from T in exactly one
edge. If another edge-ipping operation is used that is not the invers to f , then
a triangulation of S is generated that di�ers from T in exactly two edges, and so
on. In this way a triangulation can be changed gradually by a sequence of edge-
ipping operations. In the literature this method is used to construct particular
triangulations from any starting triangulation, where certain criteria (like the
min-max angle criterion to construct the Delaunay triangulation [Lawson 77])
decide which edges are ipped.

The edge-ipping distance is now de�ned as the least number of admissible
edge-ipping operations to transform one triangulation into another. Of course,
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Figure 1: An edge-ipping operation replacing e.

it must be shown that such a transformation is always possible. A di�erent
interesting result on comparing two triangulations was recently presented by
Aichholzer et al. who show that there exists a perfect matching between the
edges of the triangulations that intersect [Aichholzer et al. 96].

Already in 1936 Wagner discussed a problem very similar to computing the
edge-ipping distance in the context of arbitrary triangulated planar graphs
[Wagner 36]: Wagner de�nes a diagonal transformation in any quadrilateral of
a planar graph, and he shows that it is possible to transform any triangulated
planar graphs with the same number of nodes into each other by a sequence of
those diagonal transformations. In 1973 Dewdney extended Wagner's result to
torus graphs [Dewdney 73].

In 1987 Pallo established a O(n2) algorithm for computing e�cient lower
and upper bounds of the rotation distance between binary trees [Pallo 87]. Be-
cause there is a 1-1-relationship between edge-ipping operations in triangula-
tions of convex polygons with n+2 vertices and rotations in binary trees of size
n [Sleator et al. 88], Pallo's results are also interesting for the study of edge-
ipping distances. Every binary tree with n internal nodes can be represented
as a triangulation of a convex polygon P = fp1; :::; pn+2g in the following way:
The edge pn+2p1 represents the root, and every other boundary edge pipi+1
(i = 1; :::; n+1) represents a leaf of the tree. The triangulation contains a trian-
gle with edges e1, e2, and e3 if and only if the node represented as e1 (without loss
of generality) is the father of the nodes represented as e2 and e3. So a rotation in
the tree corresponds to exactly one edge-ipping operation in the triangulation.
Let p be a node in the tree with father q, and let e and e0 respectively be the
corresponding edges in the triangulation. If we rotate at p, we get the triangula-
tion representing the generated tree by ipping e. Then the new edge represents
q, and e0 represents p (Fig. 2). Therefore, rotation distances of binary trees and
edge-ipping distances of triangulations of convex polygons are equivalent.

In the context of computing the rotation distance of binary trees Sleator,
Tarjan, and Thurston showed in 1988 that a transformation of triangulations of
convex polygons into each other by using edge-ipping operations is always pos-
sible and they prove a tight bound of 2n�10 on the admissible edge-ipping op-
erations, where n > 12 is the number of points of the polygon [Sleator et al. 88].
Furthermore they showed that if it is possible to ip one edge in a triangulation
T1 creating T

0

1 so that an edge of a triangulation T2 is generated then there exists
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Figure 2: An edge-ipping operation and the corresponding rotation

a sequence of edge-ipping operations of minimal length that transforms T1 into
T2 in which the �rst edge-ipping operation creates T 0

1.
In 1994 Cai and Hirsch [Cai, Hirsch 94] extended the results of Sleator, Tar-

jan, and Thurston to rotation distance problems of triangulations of planar sur-
faces. They give an upper and lower bound for this problem, and analogous to
Sleator et al. they show that in the case of triangulations of the annulus the
ip distance decreases by one through a ip operation which creates a common
edge.

In a recent paper Hurtado, Noy, and Urrutia [Hurtado et al. 96] study the
problem of ipping edges in triangulations of polygons and point sets. They
prove that if a polygon has k reex vertices, then any two triangulations of
this polygon can be transformed into another by ipping at most O(n + k2)
edges. They give examples of polygons with triangulations T and T 0 such that
to transform T into T 0 requires O(n2) edge-ipping operations, and they extend
these results to triangulations of point sets. Furthermore they show that any
triangulation of n points in the plane contains at least (n� 4)=2 edges that can
be ipped.

Let us now examine our initial problem, whether it is always possible to
transform two triangulations T1 and T2 of the same set of points in the plane by
a sequence of edge-ipping operations. Every triangulation (in particular T1 and
T2) can be transformed into a Delaunay triangulation with O(n2) edge-ipping
operations [Bern, Eppstein 92], where n is the number of points. The resulting
Delaunay triangulations may be di�erent, if more than three points lie on a
circle, but then these points form a convex polygon, which triangulations can
be transformed into each other with at most 2n � 6 edge-ipping operations
[Sleator et al. 88]. Since edge-ipping is reversible, it is possible to construct T2
from T1 with at most O(n2) edge-ipping operations.
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In Section 2 we improve this rough estimate of the edge-ipping distance by
showing that the number of intersections between the edges of two triangulations
is an upper bound on the edge-ipping distance between these triangulations.
(We say that two di�erent edges intersect, i� they intersect in their interiors.) In
Section 3 we also present an algorithm that computes a sequence of edge-ipping
operations that is no longer than the number of intersections.

2 An upper bound on the edge-ipping-distance

In the following we show that the number of intersections between the edges
of two triangulations is an upper bound on the edge-ipping distance between
these triangulations.

Let T1 and T2 be two triangulations of the same set of n points in the
plane. We denote by #(T1; T2) the number of intersections of T1 with T2 and by
flipdist(T1; T2) the edge-ipping distance between T1 and T2.

Theorem 1: If T1 and T2 are two triangulations of the same set of n points
in the plane, then

flipdist(T1; T2) � #(T1; T2) < (3n� 2nb � 3)2;

where nb is the number of boundary points of both T1 and T2.

The basic idea to prove the theorem is to show that for any two triangula-
tions T1 and T2 of the same set of points there always exists an edge-ipping
operation in T1 that decreases the number of intersections between these two
triangulations. Then, using such kinds of ips we can easily transform T1 into
T2 with at most #(T1; T2) edge-ipping operations since two triangulations are
the same i� the number of intersections is zero.

In order to �nd such an edge-ipping operation we consider the edges of
T1 that have a maximal number of intersections with the edges in T2. In the
following #(e; T ) denotes the number of intersections between the edge e and
the triangulation T , #(e1; e2; T ) the number of edges in T that intersect the
edge e1 as well as edge e2, and #p(e; T ) the number of edges in T adjacent to p
that intersect the edge e.

Lemma 1: T1 contains a convex quadrilateral abcd with diagonal ac so that ac
has the maximum number of intersections with T2, i.e. #(ac; T2) = maxf#(e; T2) j
e is an edge of T1g.

Proof: Let Q = abcd be a quadrilateral in T1 with diagonal ac so that ac has
a maximum number of intersections with T2. Assume that Q is not convex and
that the angle at point a inside the quadrilateral is larger than �. We claim that
all edges that intersect the edge ac also intersect both edges bc and cd.

The proof is by contradiction. Clearly, all edges that intersect the edge ac
also intersect at least one of the edges bc and cd since the angle at a is larger
than � (Fig. 3), and we obtain

#(ac; T2) = #(ab; cd; T2) + #b(cd; T2) + #(bc; cd; T2) +

#d(bc; T2) + #(da; bc; T2)
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Figure 3: All edges that intersect ac also intersect bc or cd or both

Assume w.l.o.g. there is one edge ef in T2 that intersects ac and cd but not bc.
This implies that either ef intersects ab or one of the end points of ef equals
b, and also that ef separates da from bc. Hence, there is no edge in T2 that
intersects both da and bc (or d and bc), i.e. #d(bc; T2) = #(da; bc; T2) = 0.
Therefore,

#(ac; T2) = #(ab; cd; T2) + #b(cd; T2) + #(bc; cd; T2);

i.e. all the edges that intersect ac also intersect cd.
Because ef is an edge of T2, and because T2 contains the points a, b, c, and

d as well, there exists an edge adjacent to a in T2 that intersects the edge cd.
This edge does not intersect ac and, therefore, #(ac; T2) � #(cd; T2)� 1 which
contradicts the maximality of #(ac; T2).

Hence, all edges which intersect ac also intersect the edges bc and cd and

#(bc; T2) = #(cd; T2) = #(ac; T2) = maxf#(e; T2) j e is an edge of T1g

In particular, bc and cd cannot be boundary edges of the triangulation. Now
consider the quadrilateral Q0 in T1 with diagonal bc. Q0 is either convex or there
is again a neighbouring quadrilateral Q00 which has a diagonal D00 with the
maximal number of intersections and, in addition, D00 is intersected by the same
edges as ac and bc. Continuing this process we �nally reach the convex hull of the
point set. As we observed before a quadrilateral that contains a boundary edge
of the triangulation and a diagonal with the maximal number of intersections is
convex. 2

Lemma 2: Let abcd be a convex quadrilateral in T1 with diagonal ac so that
ac has the maximum number of intersections with T2. If T2 contains an edge eb
that intersects da or cd (or an edge dg that intersects ab or bc respectively), then
the edge-ipping operation ac �! bd decreases the number of intersections of T1
with T2.

Proof: Without loss of generality let eb be an edge of T2 that intersects da. This
implies that all edges of T2 that intersect bd intersect the edge da as well, because
otherwise at least one point of the set S lies inside the triangle bds, where s is
the intersection point of eb with da (Fig. 4), and thus lies inside the quadrilateral
abcd. Since eb does not intersect bd, and because of the assumption that ac has
the maximum number of intersections with T2, it follows that

#(bd; T2) < #(da; T2) � #(ac; T2)
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So the edge-ipping operation ac �! bd decreases the number of intersections
of T1 with T2. 2

a

d
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e

c
s

Figure 4: De�nition of bds in Lemma 2

Lemma 3: Let Q = abcd be a convex quadrilateral in T1 with diagonal ac so
that ac has the maximum number of intersections with T2. If there is no edge eb
in T2 that intersects da or cd and there is no edge dg in T2 that intersects ab or
bc, then either

1. the edge-ipping operation ac �! bd reduces the number of intersections
between the triangulations T1 and T2, or

2. there is a di�erent quadrilateral Q0 in T1 such that the diagonal of Q0 has
the maximum number of intersections with T2 and Q0 ful�lls the conditions
of Lemma 2.

Proof: If the edge-ipping operation ac �! bd decreases the number of intersec-
tions between the triangulations T1 and T2, then we are done. So in the following
we assume that ac �! bd does not decrease the number of intersections.

Because the triangulation T2 does not contain edges eb and dg as assumed in
Lemma 2 above, there exists a triangle ebf adjacent to b, where ef intersects ab
as well as bc, and a triangle dgh adjacent to d, where gh intersects da as well as
cd (see Fig. 5). Therefore, ef and gh do not intersect the edge ac. Because of the
assumption that #(ac; T2) � maxf#(ab; T2);#(bc; T2);#(cd; T2);#(da; T2)g T2
also contains triangles apq and cxy, where pq intersects ab as well as da and
analogous xy intersects bc and cd, because otherwise there is a contradiction:
Assume that none or only one of these triangles exist, then without loss of
generality T2 contains an edge aq that intersects bc. This implies that all edges
of T2 that intersect the edge ac intersect bc as well (analogous to the proof of
Lemma 2). Because aq does not intersect ac, it follows #(ac; T2) � #(bc; T2)�1,
which contradicts the maximality of #(ac; T2).

Without loss of generality let T2 contain an edge uv that intersects the edges
da and bc (see Fig. 5), then follows #(ab; cd; T2) = 0, and

#(ac; T2) = #(ab; da; T2) + #(bc; cd; T2) + #(da; bc; T2) (1)

#(bc; T2) = #(ab; bc; T2) + #(bc; cd; T2) + #(da; bc; T2) (2)
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Figure 5: If T2 does not contain edges eb and dg as in Lemma 2 and ac ! bd does
not reduce the number of intersections, then there exist eight points e; : : : ; y such that
the edges between Q and e; : : : ; y intersect as displayed.

#(da; T2) = #(ab; da; T2) + #(da; cd; T2) + #(da; bc; T2) (3)

#(bd; T2) = #(ab; bc; T2) + #(da; cd; T2) + #(da; bc; T2) (4)

Because of the maximality of #(ac; T2), it follows that

(1) � (2) : #(ab; da; T2) � #(ab; bc; T2) (5)

(1) � (3) : #(bc; cd; T2) � #(da; cd; T2) (6)

Because the edge-ipping operation ac �! bd does not decrease the number of
intersections between T1 and T2,

#(ab; da; T2) + #(bc; cd; T2) � #(ab; bc; T2) + #(da; cd; T2); (7)

and so by (7) and (5) + (6):

#(ab; da; T2) + #(bc; cd; T2) = #(ab; bc; T2) + #(da; cd; T2): (8)

Therefore, by (8) and (5)

#(ab; bc; T2) + #(da; cd; T2)�#(bc; cd; T2) = #(ab; da; T2)

� #(ab; bc; T2) (9)

By addition of #(bc; cd; T2) in (9), it follows that #(bc; cd; T2) � #(da; cd; T2)
and using (6) we obtain #(bc; cd; T2) = #(da; cd; T2). Analogous we obtain
#(ab; da; T2) = #(ab; bc; T2). So

#(ac; T2) = #(bc; T2) = #(da; T2) = #(bd; T2):

Now consider the triangle bct of the triangulation T1 that neighbours on abcd,
then the quadrilateral abtc has a diagonal with a maximal number of intersec-
tions, too. If the edge-ipping operation that replaces bc decreases the number
of intersections, then we are done, else next take the quadrilateral of T1 with
diagonal bt, and so on. In the end, such a quadrilateral with maximal diago-
nal contains a boundary edge, and the conditions of Lemma 2 are ful�lled so
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that an edge-ipping operation replacing this diagonal decreases the number of
intersections between T1 and T2. 2

Proof of Theorem 1: It is clear that #(T1; T2) < (3n � 2nb � 3)2, because
3n� 2nb � 3 is the number of inner edges of both T1 and T2.

By Lemma 1, 2, and 3 imply that for all triangulations T1 and T2 which are
not equal there is an edge-ipping operation in T1 that decreases the number
of intersections between these triangulations. Therefore, if we use such kinds of
ips, we can easily transform T1 into T2 with at most #(T1; T2) edge-ipping
operations, since two triangulations are the same i� the number of intersections
is zero. 2

3 The Algorithm

In the case of triangulations of convex polygons Sleator, Tarjan, and Thurston
[Sleator et al. 88] show that if it is possible to ip one edge in a triangulation T1
creating T 0

1 so that an edge of a triangulation T2 is generated, then there exists
a sequence of edge-ipping operations of minimal length that transforms T1 into
T2 in which the �rst edge-ipping operation creates T 0

1. Therefore, if we want to
transform two given triangulations of a convex polygon into each other by using
only a minimum number of edge-ipping operations, we start to ip edges such
that an edge of the other triangulation is created by each operation. But what
to do, if at least two edge-ipping operations are needed to generate a common
edge, is still an open question.

The simple algorithm implied by the proof of Theorem 1 gives a heuristic
what to do in this case. The strategy to create common edges, whenever possible,
seems to be a good heuristic in the case of triangulations of point sets as well.
So in the following we present a combined algorithm to transform two given
triangulations of the same point set into each other.

The algorithm we present makes use of the following lemma.

Lemma 4: Let T and T 0 be two triangulations of the same point set. If e0 is an
edge of T 0 which is intersected by exactly one edge e in T , then e0 is an edge that
can be created by one ip, i.e. by ipping e �! e0.

Proof: Assume that T and T 0 are two triangulations of the same point set and
e0 is an edge of T 0 that has only one intersection with the triangulation T .
Let e be the edge of T that intersects e0. Then e0 is not contained in T . Let
e0 = a0c0, that means a0 and c0 are the endpoints of the edge e0, and let abcd be
the quarilateral around e = bd in T . Because the boundary edges ab, bc, cd, and
da of the quadrilateral do not intersect the edge e0, and because the endpoints
of e0 cannot lie in the interior of the quadrilateral, it follows that ac = a0c0.
Since e = bd intersects e0 = a0c0 = ac, abcd is convex, and thus e0 is the second
diagonal of the quadrilateral around e in the triangulation T . 2

Using pseudo code we can now describe the algorithm as follows:

ip sequence(T1; T2)
f
init stack S;
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T 0

1 := T1; T
0

2 := T2;

while (T 0

1 6= T 0

2) do
f
while (there exists an edge e0 in T 0

i with #(e0; T 0

j) = 1, i; j 2 f1; 2g) do
f Let e be the edge in T 0

j that intersects e
0;

ip e �! e0 in T 0

j ;
if (j = 1) then output(e �! e0);

else S.push(e0 �! e);
g

if (T 0

1 6= T 0

2) then
f Let e be an edge of T 0

i , i 2 f1; 2g, such that ipping e decreases
#(T1; T2) by the greatest amount;
Let e0 be the second diagonal of the quadrilateral around the edge e
in T 0

i ;
ip e �! e0 in T 0

i ;
if (i = 1) then output(e �! e0);

else S.push(e0 �! e);
g

g

while (S not empty) do output(S.pop);
g

In order to prove the correctness of the algorithm we have to show that the
outer while-loop terminates. Observe that:

1. By each execution of the inner while-loop a common edge of the triangu-
lations T 0

1 and T 0

2 is generated, and so the number of intersections is decreased
by at least one.

2. The if-statement is executed if and only if T 0

1 6= T 0

2 and all edges that T 0

1

and T 0

2 do not have in common are intersected by at least two edges of the other
triangulation. By Lemma 1, 2, and 3 we have shown that for all triangulations
T 0

1 and T 0

2 which are not equal there is an edge-ipping operation that decreases
the number of intersections between these triangulations.

Therefore, the outer while-loop of the presented algorithm terminates after
at least #(T 0

1; T
0

2) steps, because T 0

1 = T 0

2 i� #(T 0

1; T
0

2) = 0. Then T 0

1 and T 0

2

have been transformed to the same triangulation T , where the sequence of edge-
ipping operations that transforms T 0

1 into T has been written on the output
during the transformation. Now the sequence that transforms T 0

2 into T is put out
in reverse order by the last while-loop of the algorithm. So the given algorithm
computes a sequence of edge-ipping operations with length of at least #(T 0

1; T
0

2)
that transforms T 0

1 into T 0

2.

4 Conclusion

We introduce the edge-ipping distance between two triangulations T1 and T2 of
the same set of points in the plane, and we give an algorithm that computes a
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sequence of edge-ipping operations to transforms T1 into T2 which is no longer
than the number of intersections between T1 and T2. This algorithm uses the
heuristic of always ipping so as to create an edge of T2, whenever possible. So
in the case of triangulations of convex polygons the algorithm computes the be-
ginning and end of an optimal sequence of edge-ipping operations until the �rst
occurrence of the if-statement. And, therefore, because of the 1-1-relationship
between edge-ipping operations in triangulations of convex polygons with n+2
vertices and rotations in binary trees of size n this algorithm is also interesting
for the computing of an upper bound on the rotation distance between two given
binary trees.

Note that in a sequence of edge-ipping operations with minimal length that
transform two triangulations into each other, the number of intersections be-
tween the generated triangulation during the transformation and the �nal trian-
gulation does not necessarily decrease after each step. There are some examples
of pairs of triangulations and optimal sequences of edge-ipping operations where
the number of intersections even increases by some edge-ipping operations dur-
ing the transformation.

Of course, one of the main open questions is the complexity status of com-
puting the edge-ipping distance between two triangulations. It is not known
whether the problem is in NP even if we restrict ourselves to convex polygons.
In particular, the structure of a minimal length sequence of edge-ipping oper-
ations is unknown.
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