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Abstract: An w-word p over a finite alphabet X' is called disjunctive if every finite
word over X occurs as a subword in p. A real number is called disjunctive to base a
if it has a disjunctive a-adic expansion. For every pair of integers a,b > 2 such that
there exist numbers disjunctive to base a but not to base b we explicitly construct
very simple examples of such numbers. General versions of the following results are
proved. If (n;)ico is a strictly increasing sequence of positive integers with n;1, > 3¢
for infinitely many ¢ then ) 37" is disjunctive to base 2. The number 22_“_’ is
disjunctive to base a if ¢ is even and not a power of 2. The sum Z 27 is disjunctive
to base 6 if ¢ > 3 is odd.

Key Words: w-words, number representations, invariant properties, disjunctiveness,
normality, periods of rational numbers

Category: F.m

1 Introduction

Let X be a finite alphabet. By X* we denote the set of all finite words over X,
and by ¥ := {p:w — X'} the set of w-words over X where w = {0,1,2,.. .}.

Definition 1.1 An w-word p € X% is disjunctive if every finite string in 2*
occurs as a subword in p.

We are interested in disjunctive w-words for two reasons. The first is that
“disjunctiveness” is a natural and simple weakening of “normality”and of “ran-
domness” [see Section 2]. The second is that disjunctive w-words appear as spe-
cial cases of disjunctive w-languages in automata-theoretic investigations. These
languages are defined to be subsets of X whose principal congruence relation
is the equality [Jiirgensen, Shyr, Thierrin 1983]. Since any w-word over a finite
alphabet can be considered as an expansion of a real number 1t is natural to con-
sider the corresponding real numbers too if one wants to investigate w-words with
certain properties. First results concerning the connection between disjunctive
w-languages and real numbers can be found in [Jirgensen and Thierrin 1988].

Let b > 2 be an integer. The b-adic expansion vy(x) of a real number z in
the interval [0;1) is the unique w-word p = popips... € Xy over the alphabet
Yy :={0,...,b— 1} containing infinitely many digits # b — 1 such that 2 =
S pi - bTUTD,

Definition 1.2 A real number # € [0;1) is said to be disjunctive (normal,
random) to base b if vy(x) € XY is disjunctive (normal, random).

We excluded the — not very interesting — w-words ending on (b—1)*. They
are neither disjunctive nor normal nor random.
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For any property of w-words the question arises whether it is an invari-
ant property of real numbers. For randomness the positive answer has been
given quite recently [Calude and Jiirgensen 1994], see also [Calude 1994]. For
another proof see [Weihrauch 1995]. For normality and disjunctiveness the neg-
ative answer is part of famous result of Cassels [Cassels 1959] and of Schmidt
[Schmidt 1960]. For these two properties two more problems pose themselves:
the question for which pairs of integers a,b > 2 disjunctiveness (normality) to
base a implies disjunctiveness (normality) to base b, and the problem to give
explicitly simple counterexamples of real numbers for the other pairs of bases.
It turns out that the answer to the first question is the same in both cases.

Two real numbers a,b > 1 are said to be equivalent if there are positive
integers n,m such that a” = ™. Then we write a ~ b, else a £ b.

Theorem 1 A Assume a ~ b for integers a,b > 2. Then any real number
disjunctive to base a is disjunctive to base b too.

B Assume a + b for integers a,b > 2. Then the set of real numbers which
are disjunctive to base a but not disjunctive to base b has the cardinality of the
continuum.

This theorem is contained in [El-Zanati and Transue 1990]. Part B is already
contained in [Schmidt 1960]. Furthermore Schmidt has proved that Theorem
1 is true too if one replaces “digjunctive” by “normal”. In both papers coun-
terexamples of real numbers for nonequivalent bases are constructed by limit
processes. But still there are missing simple and natural counterexamples.

We shall give a new proof of Theorem 1 and show that for any nonequivalent
pair of bases a, b > 2 there are simple and even quite prominent examples of real
numbers which are disjunctive to base a but not to base b.

Before we do that we formulate a few more related results in [Section 2].
For completeness sake we give the simple proof of Theorem 1 A in [Section 3].
Then, for the construction of counterexamples we have to investigate the periods
of rational numbers in [Section 4]. The following result may be of independent
interest.

Theorem 4 Let a,b > 2 be integers and let Q) be the mazximal divisor of b that
s prime to a. There s a constant K4 such that for any n > 1 and any integer
¢ prime to b all words in X% of length <log,(Q)-n — K43 occur in the periodic
part of v4(3% mod 1).

A constant K,; will be given in the proof. For special cases more precise
versions of this result have been obtained by Stoneham, cf. [Stoneham 1964],
[Stoneham 1973] and the references there.

In the last two sections we construct numbers that are disjunctive to a base
a and not disjunctive to a base b, giving a new proof of Theorem 1 B. It turns
out that there are two different cases for @ % b in which one can use different
methods for the construction:

I. not all prime divisors of b divide a,
II. all prime divisors of b divide a (but still a £ b).

In [Section 5] we consider Case I, i.e. the case that () has nonzero periodic

part. From the results in [Section 4] on the periods of rational numbers we deduce
the following theorem.
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Theorem 5 Let a,b > 2 be integers such that the maxrimal divisor ¢ of b that
is prime to a is greater than 1. If (n;)icw is a strictly increasing sequence of
positive integers satisfying niy1 > logy(a)- Q™ for infinitely many ¢ then the real
number > .2 b~ is disjunctive to base a.

Ife.g. (n;)sew is astrictly increasing sequence of positive integers with n;4q > 3™
for infinitely many ¢ then the number 272,377 is disjunctive to base 2.

In [Section 6] we consider Case II. We show how one can obtain strictly
increasing sequences (n;);e, such that Y 67" is digjunctive to base a. By com-
bining this method with the basic idea of [Section 4] we obtain the following two
examples.

Theorem 6 Let b > 2 be an integer. Then the number Y ;- b=~ s disjunctive
to all bases a with a + b that are divisible by all prime divisors of b.

Obviously >~ 67%~ is not disjunctive to base b.

Theorem 7 Let a = Hp prime p% > 2 and b= Hp prime P77 2> 2 be integers with
adband (e #0=>d, #0). Let ¥ := max{ 3~ | e, # 0} and let ¢ > ¥ -log,(a)
be an integer which is not divisible by any prime p with 2—" =.

Then the real number Z?io b= is disjunctive to base a but not to base b.

For example vs(d ;e 27¢") is disjunctive if ¢ > 3 is odd.

All numbers of the form as in Theorem b5 or in Theorem 6 are Liouville num-
bers and hence transcendental. The numbers described in the last theorem are
not Liouville numbers. But their transcendence is a consequence of a variant of
the Thue-Siegel-Roth approximation theorem.

Finally let us introduce a few notations. For a real number z and a positive
integer n we denote the unique real number y € [0;n) with # —y € n - Z by
(z mod n). The number |[x] is the largest integer not greater than z, and [x] is
the smallest integer not smaller than .

2 Known Results

We define simply normal, normal, random, and computable w-words. For these
properties and for disjunctiveness several results related to Theorem 1 are for-
mulated.

Let X' be a finite alphabet. For two words v,w € 1™, w = wqg ... w)y|—1 with

w; € X .
Nv(w) = #{ZE {Oa"'a|w|_1}|vzwi"~wi+|v|—1}

is the number of occurrences of v in w. For p = pgp; ... € X X* U X¥
plnli=po...pno1 € X"

is the prefix of p of length n. If for a finite string v and an w-word p the limit [ :=
limy, 0o (Ny (p[n])/n) exists then we say that v occurs in p with the asymptotic
frequency l. A randomness test on X% 1s a recursively enumerable subset V C
X xw with g(V,,) < | X7 for all n € w where V,, := {q € 2% |(3%) (¢[i], n) € V'}
and the measure g on % is defined by p(wX¥) := | Z|~1*l for all w € £*.
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Definition 2.1 An w-word p € X% is called

1. simply normalif every digit in £ occurs with the asymptotic frequency 1/|X|
in p,

2. normal if every finite word w € X* occurs with the asymptotic frequency
DRI

3. non-random if there is a randomness test V C X* x w with p € |V,
random 1t p is not non-random,

4. computable if the set {p[f] |i € w} C X* is recursive (or recursively enumer-

able).

It is well known that computability is stronger than non-randomness, that ran-
domness is stronger than normality, and that normality is stronger than simple
normality and stronger than disjunctiveness. For all these properties and for any
pair of integers a,b > 2 one may ask whether for reals # € [0;1) the expansion
vp(2) has to have this property if v4(2) has it.

It is easy to see that computability is invariant. We already mentioned
that the invariance of randomness has been proved by Calude & Jiirgensen
[Calude and Jiirgensen 1994], [Calude 1994], see also [Weihrauch 1995]. By in-
dependent results of Cassels [Cassels 1959] and of Schmidt [Schmidt 1960] the
other properties are not invariant.

For normality we mentioned that Theorem 1 remains true is one replaces
“disjunctive” by “random”. This was proved by Schmidt [Schmidt 1960]. A result
which 1immediately implies the negative answer for the special case @ = 2 and
all non-equivalent & > 2 had been published by Cassels a few months earlier
[Cassels 1959]. Later Schmidt proved a stronger result [Schmidt 1962]:

Let A, B be two disjoint classes of possible bases with {2,3,...} = AUB
such that equivalent bases lie in the same class. Then the set of real
numbers that are normal to all bases in A and not normal to all bases
in B has the cardinality of the continuum.

The present author does not know whether a similar result is true for disjunctive
numbers.

For simply normal numbers the situation is slightly different. A proof of the
following theorem can be found in [Hertling 1995].

Theorem 2 A Let b > 2 and n > 1 be integers. Then any real number simply
normal to base b™ is simply normal to base b too.

B Let a,b > 2 be integers with a # " for all integers n. Then the set of real
numbers which are simply normal to base a but not simply normal to base b has
the cardinality of the continuum.

For disjunctiveness the following strengthening of Theorem 1 is proved in
[El-Zanati and Transue 1990]:

Let a,b > 2 be integers, £ C X} be a finite nonempty set, and Cg :=
{x €[0;1)] vp(x) does not contain a word from E}.

Then Cg contains a number disjunctive to base a if and only if Cg
contains a Cantor set and a o b.
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In the following sections we show for quite simple numbers that they are
disjunctive to a chosen base but not to another chosen base. But it seems to be
unknown whether numbers like ¢ or = or In(2) or algebraic irrational numbers
are digjunctive, simply normal or even normal with respect to any base. An
extensive bibliography of older papers on normal and simply normal numbers
can be found in [Kuipers and Niederreiter 1974], pp. 69 — 78.

3 Equivalent Bases
In this section we prove part A of Theorem 1.

Proof of Theorem 1.A. Fix integers b > 2 and n > 1. It is sufficient to prove
that a real number z is digjunctive to base 0" if and only x is disjunctive to base
b.

We define a bijection h : ) — pn by h(by...bpq) = Z?:_ol N S
It is easy to see that for a real number @ € [0;1) with vy(2) = bobybs ... and
vpn(2) = apayrasg ... one has ap = h(bgp .. . bpnin—1) for any k. If we denote
by h also the induced bijective homomorphism h : (Z7)* — X}, we have
ar . Apqi—1 = h(bgn .. bgyryn—1) for any k and [.

First, assume « € [0;1) is disjunctive to base b”. Any word w € X} can be
extended to a word w' € Xy whose length is a multiple of n. The image h(w') is
a subword of = () since vy=(x) is assumed to be digjunctive. Since h is bijective
the word w' and its subword w must be contained in v;(z).

Next, assume z is disjunctive to base b. Fix an arbitrary word v € X7,.
Fori =0,...,n — 1 we define w; := h™*(v)0% and w := wy...w,_;. The word
w is a subword of vy(x) since vp(z) is assumed to be disjunctive. In vy(z) =
bob1by ... one of the subwords w; of w starts with an index divisible by n, i.e.
there exist 7 € {0,...,n — 1} and k € w with by ... bppg|v|nyi—1 = w;. Hence
h(bg.n - Dkngv|.n—1) = v is a subword of vy (x). O

4 Periods of Rational Numbers

It is well known that the decimal expansion of a rational number is periodic. We
shall determine a bound L, such that all words of length < L, occur in the
periodic part of the a-adic expansion of a rational number with denominator b in
lowest terms. It is remarkable that for denominators 6 with fixed b the bound
L, pn grows (not slower than) linearly with n if not all prime divisors of b divide
a. The basic idea 1s already contained in the proof of Proposition 4.6 which gives
a variant of our main result for a special case.

For prime powers b = p" Stoneham [Stoneham 1964] has given precise for-
mulas for the number of occurrences of any finite word in the periodic part of pin.
Later he extended his result and used it in order to construct normal numbers,
cf. [Stoneham 1973] and the references there.

The following proposition gives the length of the preperiodic part and the
period length of the expansion of an arbitrary rational number to an arbitrary
base. Tts proof can be found e.g. in [Bundschuh 1992].
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Proposition 4.1 Let a,b > 2 be integers. Set

() := the maximal divisor of b which is prime to a,
b
d:=—,
Q
k:=min{n|d|a"},
A:=order of ain (Z/QZ)" .
Let ¢ be an integer prime to b. Then there are words u € X% and v € X such
that v4(F mod 1) = uv®.
For any integer ¢ prime to b the numbers k and A are the minimal numbers with
this property.

Note that x and A do not depend on ¢. & is the length of the preperiodic part of
v(7 mod 1) and A is called the period length of vo(7 mod 1) or of 7 in base a. If
@ = 1 then the periodic part is just 0¥. If @) > 1 then the period 1is nontrivial.

For the rest of this section let a,b > 2 be integers and define @, d, x, and A
as in the last proposition. Write

Q=[] »

p prime
For p € Pg := {prime divisors of @} = {p € w |p prime and e, # 0} we define
__Jorder of ain (Z/pZ)* ifpisodd
M "= order of a in (Z/4Z) ifp=2,
p=lem{pup|p € Py},
b o= max{l| (e — 1)}

where [l.c.m. means “ least common multiple”. The announced bound is

Loy = Z log,(p) - max{e, — {,,0} .
pr€Pq

With

i Jlem{u,|p € Pgodd} ife; =1
wo= 7 else

we can formulate the main result of this section.

Theorem 3 Let a,b > 2 be integers and let ¢ be an integer prime to b. Set r :=

ve(7 mod 1). For any w € E(EL“’Z’J and any i € {0,..., 4" — 1} there is an index
ne{k,...,k+A=1} withn =r+imody and r(n)...r(n+|Lap| —1) = w.

Note that this result is almost optimal since the period length X is equal to

p - alan (see Corollary 4.5 below) and there are alleb] words in E(EL“’Z’J.

For the proof we have to show that the residues (7 - a” mod 1) for n > &
are “sufficiently uniformly” distributed in the unit interval [0;1). Fundamental
is the following well known number-theoretical fact. It is closely connected with
the fact that the unit groups (Z/p"Z)* are cyclic for odd primes p and cyclic

up to a factor of order 2 for p = 2.
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Lemma 4.2 a) Lel p be an odd prime, n > 1. Then for m > 1 and h prime
to p the cyclic subgroup of (Z/p"Z)* generated by 1 + hp™ is equal to {x €
Z/p"Z | x = 1 mod p™ininmly,

b) Forn > 1, m > 2 and odd h the cyclic subgroup of (Z/2"Z)* generated by
14 k2™ is equal to {x € Z/2"Z | # = 1 mod 2™n{nm1y

For completeness sake we give the proof.

Proof. Assume & = 1+ hp™ with p™ > 2 and h prime to p. Then all powers
of  are = 1 mod p™{"™} By Lemma P in [Knuth 1981], p. 16 the order of
x in (Z/p"Z)* is equal to pm@x{7=m.0} " Ag the set {x € Z/p"Z| © = 1 mod
pmin{”’m}} contains exactly pmex{n=m.0} clements the assertion follows. O

Proposition 4.3 The cyclic subgroup of (Z/QZ)* generated by a is equal to
{v€Z/QZ|x=1mod][],cp, prinierip}y,

Proof. Use the last lemma and the Chinese remainder theorem.

Or observe that for any power x = a*” of a* the number x — 1 is divisible
by p'» and hence divisible by the product HpePQ printenlrt This product is a
divisor of @. This implies C. On the other hand the order of a¢” in (Z/QZ)*
must be a multiple of the order p™@{er=1».0} of g# in (Z/p*»Z)* for p € Py,
since the natural map Z/QZ — Z/p*Z is a ring homomorphism. Since the
set {¢ € Z/QZ | v = 1 mod HpEPQ pminter s} contains HpePQ prax{ep—1p,0}
elements we obtain equality. O

Corollary 4.4 Lel ¢ be an integer prime to b, i € {0,... , u— 1}. Then
{c-a""*t*I modb|jewl={rmodb|z=c-a* modd- H printendaly
pr€Pq

Proof. Since ¢ - a*t?/d is a unit in Z/QZ Proposition 4.3 implies

K4i K+i

g ~a“'jmon|jEw}:{xmon|xEc~a

mod H pmin{ep,lp}}.
pr€Pq

{e-

Multiplying both sides with d gives the assertion. O

Corollary 4.5 A =y’ - HpePQ praxter—lp 0t — 7 gles

Proof. We know A = order of a in (Z/QZ)*. Hence p' divides A\. Whenever
p' = i the assertion follows since by Proposition 4.3 the order of a* in (Z /QZ)*
is H pmax{ep—lp,O}.

pEPq

Let us assume g’ # p. Then e; =1 and g = 2 - /. Fix a prime p € Pgy. By
Lemma 4.2 the order of a* in (Z/p°*Z)* is equal to p™*{¢»=1.0} The order of
a* in (Z/p*rZ)* must be the same or twice this number. But since p divides
a"' —1 by Lemma 4.2 the order of a* in (Z /p*>Z)* must be a power of p. Hence
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it is pmaxter=1n.0} if p is odd. This is true for p = 2 too because e = 1 implies

(Z/2%2Z)* = {1} and I > 1 and hence 2™>{¢2=12.0} — | We obtain

order of @ in (Z/QZ) = H order of a* in (Z/pZ)*

pr€Pq

— H pmax{ep—lp,O}

pr€Pq

This finishes the proof in the case p' # p too. O

Proof of Theorem 3. Let ¢ be an integer prime to b and set r := v,(7 mod 1).
Let w € E(EL“’Z’J be an arbitrary word. Then for m € w we have r(m)...r(m +
[Lap] —1) = wif and only if (¢ - «™ mod b) lies in the interval b - I, C [0;)
where
Iy == {x €[0;1)] vq(x) begins with w} .
This interval has a left closed end and a right open end. The interval & - I, has
length
boa Farl >p.qlar — . H pminerp}
pr€Pq

Hence by Corollary 4.4 for any ¢ € {0,...,p' — 1} C {0,...,u — 1} there is a
J € w such that (¢ a®*t"*# mod b) lies in this interval. Since 7 is periodic with
period length A, i.e.

. an+m an+m+)\

c =c- modb forallmew,

the number n:= k + (i + pj mod A) € {x,..., K+ A —1} is the desired index. Tt
satisfies n = x + ¢ mod p/ because p’ divides p and A. O

Theorem 4 Let a,b > 2 be integers and let @@ be the maximal divisor of b that
s prime to a. There s a constant K4 such that for any n > 1 and any integer
¢ prime to b all words in X% of length <log,(Q)-n — K43 occur in the periodic
part of v4(3% mod 1).

Proof. Because of

Lagn = ) log,(p) - max{ne, — 1,0}

pr€Pq

> 3" log,(p) - (ne, — 1)
pr€Pq

—loga(Q) n— Z loga(p) lp

Theorem 3 gives the assertion with

Kap = Z log,(p) - 1.

pr€Pq
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Note that K, < p because afer = HpePQ p' divides a* — 1. The multi-
plicative constant log,(Q) in Theorem 4 is optimal because for sufficiently large
n the period length of v,(3% mod 1) is @™ times a constant while X! contains
a' elements. But the additive constant Kgp given in the proof can be improved
in special cases.

Proposition 4.6 Let p be an odd prime and a > 2 be a primitive root modulo
p with a?~1 # 1mod p?. For any n > 1 and any integer ¢ prime to p set
ri= I/a(pc—n mod 1) and

L;l = loga(p) n— loga(Q) :
Then for any w € E(ELI"J there is an index m < (p— 1)p" =t with r(m)...r(m+
[Lh] = 1) = w.

Note that in this case k = 0, i.e. r is purely periodic, A = (p — 1)p" ™!, Lo pn =
log,(p) - (n — 1) and the constant of Corollary 4 is equal to K, = log,(p) >
log,(2).

Proof. The group (Z/p"Z)* has order (p — 1)p"~1. Thus for a primitive root
a modulo p the condition a?~! # 1 mod p? implies by Lemma4.2 a) that a
generates (Z/p"Z)*. Hence for ¢ prime to p we have

{c-a modp"|jew)=(Z/p"Z)" = {x modp™ | p% 0 mod p}.

This is an improvement of Corollary 4.4 for this special case. Since for any w €
(L] :
X the interval

Pt Ly =p" - {x €]0;1)]| va(z) begins with w}
has length ,
p?a Rl > 9

it contains a number (¢-a’ mod p"). For this integer j we have #(j)...r(j+|L! |-
1) = w. Since (p — 1)p” j

Lis the period length, the number m := j mod (p —
1)p"~1 is the desired index. O

An example is given by a = 2 and p = 3. For ¢ not divisible by 3 the 2-adic
expansion of ¢/3" is purely periodic and has period length 2 - 37~!. By the last
proposition it contains all words over {0, 1} of length < log,(3) -n— 1.

5 Nonequivalent Bases: Case I
The following result gives a constructive proof of Theorem 1.B in the case that
b has a prime divisor not dividing a.

Theorem 5 Let a,b > 2 be integers such that the mazrimal divisor () of b that
is prime to a is greater than 1. If (n;)icw is a strictly increasing sequence of
positive integers satisfying

nit1 > logy(a) - Q™ (1)

for infinitely many i then the real number Y ;o b™" is disjunctive to base a.
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If the sequence (n;)ic. satisfies (1) for almost all ¢ the number > ;2 b™" is
certainly not disjunctive to base b. Or one could add the condition

Nig1 > N + 2 for all ¢.

Then the b-adic expansion does not contain the word 11. If for example ng > 1
and n;41 > 3" for infinitely many ¢ then > :° 37" is disjunctive to base 2 but
not to base 3.

We explain the basic idea for the example ¢ = 2 and b = 3. Let us assume
that (n;)ice is a strictly increasing sequence. By the results in the last section,
for this example especially by Proposition 4.6, we know that the periodic part
plus a few more digits of 1/2(2?:0 37 = 1/2(2?:0 37k—1) /376 contains all
words over {0,1} of length < log,(3) - & — 1. Adding a very small term like

Z?ik+1 377 for an ngp41 > 3™* does not change the first period and some more

digits of 1/2(2?:0 37m4). Hence also the 2-adic expansion of ) ;- 37" contains
all words of length < log,(3) - & — 1. If this is true for infinitely many & then
va(3 i o 37™) must be disjunctive.

Remarks. 1. The growth condition (1) can be weakened to: 3C' > log;(a) - (Q —
1)/Q with
nip1 > C-Q™ (2)

for infinitely many ¢. In the proof we will give an even weaker more compli-
cated condition. In special cases one can obtain still weaker growth conditions
— with exponent approximately n;/2 instead of n;, — by using the results in
[Stoneham 1973].

2. We know more about vq(3 ;~,b~™") than that it is disjunctive. If n; sat-
isfies (1) or (2) and is sufficiently large then all words over X, of length <
log,(Q) - ni — K4 appear in its prefix of length Q”:.

In the following we prove Theorem 5. We assume that a,b > 2 are integers
and that a is not divisible by all prime divisors of . We use the terminology of
[Section 4].

Lemma 5.1 Let (n;)icw be a strictly increasing sequence of integers. If for some
m and some 1 b
a
niy1 > logy(a) - m+n; + logb(b — 1) (3)
then the prefizes of length m of VG(Z;:O b="3) and of 1/@(2})’;0 b="3) are iden-

tical.

Proof. Fix an m and an ¢ satisfying (3). Let v be the prefix of length m of

1/@(2;:0 b="7). We have to show that the difference between the infinite sum

and the finite sum is so small that adding it to the finite sum does not change
the prefix v of the a-adic expansion of the finite sum. We compute

= b
“nj < L pnit
PO i
j=ti+1
< b pmtem (@ moni—log,(;2)
Sho1

— a—m—l . b—n,
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This term is so small that only a carry could change the first m digits of the
finite sum when we add it. We show that such a carry does not occurr.

Let w := (a — 1)L10ga(b)'"’J'|'1 € EglOg“(b)'n’JH. The interval
b Ly = 0" - {x €[0;1) | va(z) begins with w}
f:ontains no integer because its (open !) right end is the integer 6™ and its length
° pri . g—loga(®)ni] =1 1

Hence for any integer ¢ prime to b the a-adic expansion of (47 mod 1) does not
contain the word w. Especially

”“(Z b="3)(m) . . '”“(Z b= ) (m + |w] — 1) # w

We conclude
Zb i< T (0% 4 am™ — g~ Lo (b ni) -1

<y Hw0¥) +am™ —am T g

Combining this with the estimation for the rest from above we obtain
Zb "<y w0 da ™.

This implies that v is the prefix of length m of v (> ;-

j=0 b_”j). a

In the following we assume that b has a prime divisor not dividing a. @, d,
Pg, and p are defined as in [Section 4]. For a positive integer n we define

G(n) = minfm | &"|a™} + Q"+ L] — 1.

HPEPQ Pl

Corollary 5.2 Let (n;)icw be a strictly increasing sequence of positive integers.
If for some sufficiently large n;

ab
niy1 > logg(a) - G(ng) + ny + logb(m) (4)

holds true then the prefiz of length G(n;) of 1/@(2;’;0 b="3) contains all words
over X of length |Lg pni].
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Proof. This is an immediate consequence of the last lemma (with m := G(n;))
and of Theorem 3.
The first summand min{m | d"

a™} in G(n;) is the length of the preperiodic
part of 1/@(2}:0 b="3). The second summand ﬁ Q"% 1s its period length
PE P
if n; is sufficiently large. Namely, then one has n; ip > 1, for all prime divisors
of @, and one can replace p’ by p because n; - e # 1. Theorem 3 states that the
subword of length
period length 4+ |Lgpni | — 1t

starting at index min{m | d"
of length [Lqpn:|. O

a™} in 1/@(2;:0 b="7) contains all words over X,

Corollary 5.3 Let (n;);ew be a strictly increasing sequence of positive integers
satisfying (4) for infinitely many i. Then the real number 3 .2 b™" is disjunc-
tive to base a.

Proof. Immediate by the last corollary because
La,b"t Z loga(Q) Ny — [(a,b
(see the proof of Theorem 4). O

Proof of Theorem 5. In order to finish the proof of Theorem 5 we only have
to show that for sufficiently large n; Condition (2) for a fixed constant C' >
logy(a) - (@ — 1)/Q implies (4). Of course (1) implies (2) with C' = log;(a).
All summands in G(n;) and hence in the right side of (4) are constant or
grow linearly with n; except for ﬁ - Q™. This grows exponentially with
PE P
n;. The constant factor can be estimactged:

I lemA{p—1|p€ Pgodd} Q-1
— < < .
pep, p [lep, P Q
(Note that {, > 1 for all p € Py and Iy > 2 if 2 € Pgy.) Hence for sufficiently

large n; Condition (2) implies (4). This finishes the proof of Theorem 5. Finally
the last estimation also gives the assertion of Remark 2. O

A real number z is called a Liouville number if 1t 1s not rational and for each
n € w there are integers p, and ¢, > 0 such that

Liouville numbers are transcendental (cf. e.g. [Bundschuh 1992]).

Lemma 5.4 Let (n;)icw be a strictly increasing sequence of positive integers
satisfying
ny1 > ion+ 1 (5)

for infinitely many i. Then 3 o2 b~™ is a Liouville number.
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Proof. For any i satisfying (5) we have

- Zi'—o b= - b 1

pmri o =I=Y | — pI| < pT e < printl < -
2 b 2 = b—1° = (i
i=0 j=i+1

Since this is true for infinitely large ¢ the sum y ;- 5~"¢ is a Liouville number.
a

Hence the numbers Zi:o b~™i considered in Theorem 5 are Liouville num-
bers.

6 Nonequivalent Bases: Case 11

In this section we assume that a,b > 2 are integers with a + b but that each
prime divisor of b divides a. We shall show how one can construct sequences
(ni)iew such that the sum Z?io b~"¢ is disjunctive to base a but not to base b.

We write a = Hp prime pir b= Hp prime P77 Our assumption is (ep 20 =
d, # 0). Hence

Y= maX{Z—p | e, #0}
»

exists. Note that a « b implies log,(b) < ¥. By the next lemma for any n € w
only a finite block of digits in v4(67") can be nonzero.

Lemma 6.1 For any n € w
va(b)(j) # 0 = [n - log,(b)] =1 < j < [n-9] —1.

Proof. If v,(b=")(j) # 0 then a=U+D < 5=" and 4" does not divide a/. Because
of
min{k | b" divides a*} = [n - 9] (6)

the assertion follows. O

Hence, if a sequence (n;);ew grows sufficiently fast then the blocks of possibly
nonzero digits of the summands 5~"¢ do not overlap in v4( o, b~"*). This can
be used for the construction of disjunctive numbers.

Proposition 6.2 Let (n;)ic, be a strictly increasing sequence of positive inte-

gers satisfying
(i - Loga(6)] = 13 [ - 0] (7)

for almost all i. Furthermore assume that the topological closure of the set
J
M ::{(baT mod 1) |i€w, [n; log,(B)] —1<j < [n 9] -1}

contains an interval of positive length. Then the real number 3 22 b~™ is dis-
Junctive to base a but not to base b.
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Proof. The b-adic expansion v4(3 ;= b~"¢) cannot be disjunctive because (7)
and log,(b) < ¥ imply that the sequence (n;) grows exponentially fast.
Let 49 be a constant such that (7) holds true for all ¢ > {y. Because of (6)

nonzero digits in 1/@(2}”:0 b="3) appear only in the prefix of length [n;, - ¥]. By
Lemma 6.1 for ¢ > 4y the blocks of possibly nonzero digits in v4(b7"*) do not
overlap with this prefix or with each other. Hence for ¢ > iy, we obtain

oQ

va(D_ b)) = valb")()

=0

for [n; -log,(b)] — 1 < j < [n;-9] — 1, i.e. the block of possibly nonzero digits
in v4(b~") is a subword of 1/@(2;’;0 b=,

Let w € X% be an arbitrary word. By our second assumption there is an ¢ > g
and a j € {[n; -log,(b)] = 1,...,[n; - 9] — 1} such that I/a(bale mod 1) contains
the word wl. Then wl is a subword of the block of possibly nonzero digits in
va(b™") and hence a subword of v4(3 ;2 b~"™). So this must be disjunctive. O

Remark. It is easy to see that the closure of the set M in Proposition 6.2
automatically contains the unit interval [0; 1] if it contains an interval of positive
length. Namely, if the closure of M contains an interval of positive length then
it contains an interval I, := {& € [0;1) | v4(x) begins with v} for some v € 2.
Then for any w € X* there are a number n; and a j > [n; - log,(b)] — 1 such

that I/a(bale mod 1) begins with vwl. Hence Va(a];,:# mod 1) begins with wl. By
Lemma 6.1 we see j + |v| + |w] < [n; - 9] — 1. Hence also (%{vl mod 1) lies in
M . Since this is true for all w € X* the set M is dense in [0;1].

By the next proposition there are indeed uncountably many sequences (n;);e.
satisfying the assumptions of Proposition 6.2. One can even choose them to grow
arbitrarily fast or to fulfill further conditions like n;41 > ¢ - n; + 1 for infinitely
many ¢ (then Z}io b= is a Liouville number by Lemma 5.4) or n;41 > n; + 2
for all ¢ (then I/b(z;?io b~"7) does not contain the word 11). The next proposition
states that for any word w with

1
Lyn(=1)#0
a
where I, := {& € [0; 1) | v4() begins with w} there are arbitrarily large integers
n such that v,(7) begins with Ol 1oga ()1 —1qy,
Proposition 6.3 Let a,b > 1 be real numbers with a +4 b. Then the set

ol log, (0] -1
e lnz1)

is a dense subset of the interval (%, 1).

Proof. Tt is easy to see that for an irrational number # > 0 the sequence (m -
Z)mew 18 dense modulo 1, i.e. the set {(m -2 mod 1)| m € w} is a dense subset
of [0;1) (in fact the sequence (m - #)mey is uniformly distributed modulo 1, see
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[Kuipers and Niederreiter 1974]). Hence for irrational # > 0 the set {m -z —
n|m,n €w} is a dense subset of TR.

Our assumption a + b is equivalent to “log;(a) is irrational”. Thus, by set-
ting # := log;(a) and multiplying with In(b) we conclude that {m -In(a) — n -
In(b) | m,n € w} is dense in IR. Exponentiating we see that {%—7: | m,n € w} is
a dense subset of the positive real numbers. The number %—7: 18 in (%, 1) if and
only if n # 0 and m = [n -log,(b)] — 1. Hence the assertion follows. O

The last proposition could be used for the construction of numbers disjunc-
tive to a base a but not to b also in the case that not all prime divisors of b
divide a, which was considered in the last section. In that case one cannot use
Proposition 6.2. Instead one has to use the fact that v,(;%) is periodic. But this
idea will probably not lead to a better construction than the one in Theorem 5.
Hence we do not pursue this idea.

The next results are obtained by combining Proposition 6.2 and Lemma 4.2
resp. Proposition 4.3.

Theorem 6 Letb > 2 be an integer. Then the number Z?io b=~ is disjunctive
to all bases a with a + b that are divisible by all prime divisors of b.

Obviously v,(>~ 67"~%) is not disjunctive. The numbers of the form as in this
theorem are Liouville numbers by Lemma 5.4. Before we give the proof we for-
mulate a result which is obtained by a similar method.

Theorem 7 Let a = Hp prime p% > 2 and b= Hp prime P77 2> 2 be integers with
adband (e #0=>d, #0). Let ¥ := max{ 3~ | e, # 0} and let ¢ > ¥ -log,(a)
be an integer which is not divisible by any prime p with 2—" =.

Then the real number Z?io b= is disjunctive to base a but not to base b.

For example vg(> i, 2-¢") is disjunctive if ¢ > 3 is odd, and the w-word
va100(> ieo 60_cl) is disjunctive if ¢ > 2 is odd and not divisible by 3.

For the proof of the last two theorems we need a lemma which is a special and
technical application of Proposition 4.3. The basic idea is that for two integers

r,s > 2 prime to each other the finite set {g—; mod 1| ¢ € w} is tending to be a
dense subset of [0; 1] for n tending to infinity. We write ord, (z) for the order of
zin (Z/yZ)".

Lemma 6.4 Let r,s1 > 2, t1 > 1 be integers with (r,s1) = 1, (r,t1) = 1. Let
my > 1 be an integer and N C w be a set such that for each m > my and for

each j € w the set
{keN|k=jmodordsm., (r)}

1s infinite. Furthermore let ¢ > 1 be any integer and so,t5 > 1 be products of the
prime divisors of r.

Then there is an me > my such that for any m > m, there exists an integer ¢,
such that for each j € w the set

{keN]q- =g g, s5'ta + j - sT s t1ts mod s 85t 1a}

1s infintte. If s = 1 then ¢, = qo for allm > m,.
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Proof. Proposition 4.3 implies that there is an integer m; > m; such that for
all m > my and all j € w the set

{ke N |rF =14j-s7t; mod sT't;}

is infinite. If k is sufficiently large then sJ't5 divides 7*. Hence for any j € w the
set

Ny i={k € N|r* =0mod s5't; and +*=1+; 57t mod st}
is infinite. With
qm = the smallest positive integer x with - s7°t2 = 1 mod s7"' ¢4
we define
]\7j =dkeN| ™ =qm csh'ty 4 j - s sty mod sT s tt0 ).

We claim that ~
Njljewt={N;|jeuw}. (8)

By the Chinese remainder theorem for any j € w there is a unique y; €
{0,..., 8Pt ts — 1} with

N; = {k € N|r* =y; mod sT" st} .
These numbers y; are exactly the s™~™! numbers
y€{0,...,s7s7t1t2 — 1} with y = 0 mod s7°¢s and y = 1 mod s7%4¢1.  (9)
On the other hand the s™~"* numbers
Ui 1= qm - Shla+ J - 87 sh ity mod sTsh gty

for j € {0,...,s™ ™ — 1} are pairwise different and fulfill (9). Hence Claim (8)
is proved.

Multiplying the congruence equation in the definition of ]\7j with ¢ can only
enlarge the set:

]\7j ClkeN|q- =g g spito + J - qs] tshtits mod s 59 tto ).

So this set must be infinite for each j € w. Finally there is an m, > m; such
that for m > m.

{j - s sttty mod sT' sy tita | j € w} C {j - ¢qs" s5't1to mod s7's5't1ta | j € w}.
This proves the assertion. Note that ¢,, does not depend on m if s, = 1. O
Proof of Theorem 6. Let

a= »>92 and b= ‘r > 2
I »* > II »*>

p prime p prime
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be integers with a % b and (e, # 0 => d,, # 0). We write ¥ = max{z_z e, # 0}
in lowest terms: p
J=-" with (9,,94)=1.
vy
Let .
P :={p| p prime and d—p =9}, P:= dep’ Q= —.
P peP

9

Then b%¢ divides a”~, and the integer %5 is prime to P but divisible by all

b%a

prime divisors of ). We apply Lemma 6.4 to

. aﬂ"
T.II)UT,
s1 =P,
tlizl,
my =1,
-9
N::{(qu%d)—l—zHEw}.
d
SZ:IQa
tz::l,
qg:=1.

This gives us an integer m, and for each m > m, an integer ¢,, such that the
set

(z~19;)!+l.

aﬂ" 5l
{iew] (b—) = - Q" + - P™Q™ mod ™)

is infinite for each j € w. For the 7 in this set we compute

(-9q)!

q((i92)1+i92)0—m B A\ T4 T
@D+ \ pre am
1
Eqm'Qm.a_m—i_j.Pm—me mod 1.

For any fixed m > m, and for sufficiently large ¢ these last numbers are contained
in the set M defined in Proposition 6.2 (for ny := k!4 k) because for sufficiently
large ¢ we have

(W) +i9g) - 9 —m > [(10a)! + W) - log,(b)] — 1.

Hence for any m > m, each closed interval I C [0; 1] of length > =7 contains
at least one element of M. Thus, the closure of M contains [0;1]. By Proposi-
tion 6.2 the number Y 72 b~—%—1 is disjunctive to base a and not disjunctive to
base b. O

Proof of Theorem 7. We wish to apply Lemma 6.4 and Proposition 6.2 in the
same manner as in the last proof. In fact we apply Lemma 6.4 two times.
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Again we write ¥ = max{3 | e, # 0} in lowest terms:
P

9, .
¥ =— with (¥,,9q)=1.
Uq

We write the denominator ¥4 as a product ¥4 = o - 8 where « is the maximal
divisor of ¥4 that is prime to ¢. Furthermore

jo ;= min{j| B|¢'}, ip 1= ordg(e) .

Then ¥4 divides ¢/° - (¢!’ — 1) for any i € w. We define P, P, and @ as in the
last proof:

e
= 1 d2 =9 P .= dp = —.
P :={p | p prime an 7 1, 1" @

Note that our assumption about ¢ implies (P, ¢) = 1. Again (Z:%: s an integer
which is prime to P and divisible by all prime divisors of ). By Proposition 4.3
we know that there are integers m; and K such that for m > my

aﬂn : m * 4 m—-m
order ofblem (Z/PTZ)* =K - P .

We write K = Ky - Ko where K is the maximal divisor of K that is prime to ¢
(and K3 is a product of prime divisors of ¢).
At first we apply Lemma 6.4 to

7= ci”,
s1 = P,
tl =« [(1,
my =1,
N =w,
s9 =1,
tz = [(2,
clo
q:i=—.
g

We obtain m/, and a ¢ (note that s; = 1) such that for each m > m! and for
any j € w the set

(m) . cju IR cju / - . - pm! - Dm
N; ::{ZEW|?~C DE?~ 0 Ko+ j-aKPm mod « KP™}

is infinite. As a divides ¢*®® — 1 it must divide ¢} - K5 — 1 too. Hence this set is

equal to

co. (et —1) o (g Ko —1)
Vg Vg

N = fiew] +j - KP™ mod KP™}.
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This means that we can apply Lemma 6.4 a second time, now to:

1
KP™e
a’n
r= |33 ,

81 1=

tl =1,

/
mp ;= m, + mq,

cfo - (¢ — gp - K»)

N =/ TP |i€w and

94K P™e divides o - (¢ —gb - Ko)},
52 1= @,
ty =1,

cJo '(th)'KQ_l)

. ale® 91 adn o
q = bcju ’ I)UT

Note that for m > m/ + my the order of r in (Z/P™Z)* is P™~"<~™1  This
second application of Lemma 6.4 gives us an m, and for each m > m, a ¢, such
that for any j € w the set

. IO (et 0
. a[cJU~19] aﬂ" ﬁ%l
{Z cw | bcju : blgd

<10 (g Ka-1)

a[cj0~19] aﬂn ‘a m - m m m
peio (bT) qm Q" 4 j - PTQ™ mod a™}

is infinite. For the ¢ in this set we compute

SJo (et to—1)

a[c"’0+j0~19]—m a[cj0~19] abn Tg 1
perot T e (bT) an
ETm~L—|—j~7 mod 1
a™ pm—me

where the term 7,, does not depend on j. For any fixed m > m. and for suffi-
ciently large ¢ the numbers
gle ot 9]-m
bcl'lo+j0 mod 1
are contained in the set M defined in Proposition 6.2 (for ny := c*) because for
sufficiently large ¢ we have

[ci'i0+j0 . 79-| —m Z |_CZ'.Z'D+]'D . loga(b)] -1

Hence for any m > m. each closed interval I C [0;1] of length > Pm%,ne contains

at least one element of M. Thus, the closure of M contains [0;1]. By Proposi-

tion 6.2 (here we use the assumption ¢ > ¥ - log,(a)) the number $ 52 5=°" is
disjunctive to base a and not disjunctive to base b. O
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