
CHAITIN'S TOYLISP ON A CONNEX MEMORY

MACHINE
1

Gheorghe S�tefan
Politechnical University of Bucharest, Department of Electronics, Bd. Armata

Poporului 1-3, Bucharest 6, Romania, email: stefan@hera.pub.ro.

Mihaela Malit�a
University of Bucharest, Faculty of Mathematics, Str. Academiei 14, Bucharest 1,

Romania, email: system@bsu.ro.

Abstract: This paper describes an implementation of Chaitin's ToyLisp [Chaitin '87]
on a Connex Memory Machine (CMM) [S�tefan '85]. The Connex Memory Machine has
a smaller complexity than previous Universal Machines used to run Lisp programs, so
the time and space used in running Lisp programs can be considerably decreased.
A ToyLisp like language can be used with a CMM to construct a Lisp (Co)Processor
for accelerating Lisp processing in conventional architectures.

1 Introduction

Improving the performance of a string processing system could be done in two
main ways:

{ by de�ning and designing a high performance processing unit, having a \well
�tted" set of functions, or

{ by �nding a \good" memory support for the data structures.

We have investigated the second alternative by de�ning a more \natural"
memory support for lists, i.e. a better representation for storing and manipu-
lating lists. We suggest a \smart memory",in which some of its functions are
performed at the storage level. Two main consequences derive from this ap-
proach:

{ the processor attached to the memory becomes simpler and faster,
{ the computational processes are simpler and their time and space complex-
ities decrease.

In the '80s a small team in the Polytechnical University of Bucharest designed
and implemented a Lisp Machine as a microprogrammed machine. From this
experience a new memory model has emerged: the Connex Memory [S�tefan '85].2

Our paper has two aims:

1 C. Calude (ed.). The Finite, the Unbounded and the In�nite, Proceedings of the
Summer School \Chaitin Complexity and Applications",Mangalia, Romania, 27 June
{ 6 July, 1995.

2 Some applications of this memory were presented in [S�tefan '91], [S�tefan 95], [Hascsi
'95].

Journal of Universal Computer Science, vol. 2, no. 5 (1996), 410-426
submitted: 13/5/96, accepted: 13/5/96, appeared: 28/5/96 Springer Pub. Co.

{ a theoretical one: to o�er another model for Universal Machine used to in-
terpret Chaitin's ToyLisp;3

{ a practical one: to de�ne and implement a Lisp (Co)Processor starting from
a ToyLisp like language as an assembly language.

2 Basic Requirements for String Processing

A Lisp-like language e�cient implementation requires some unusual features, as:

{ a \natural" representation of S-expressions on the physical support,
{ a \natural" manipulation of S-expressions,
{ time operation uncorrelated with the string length.

All these requirements can be satis�ed with a physical support that:

{ �nds (accesses) the starting place of a substring in a string,
{ inserts/deletes a symbol in an accessed point,
{ delimits a self-delimited substring.

Dealing with symbols implies operations as �nding, matching, inserting,
deleting, moving, copying. These operations, usually, don't a�ect the symbol
itself, but its position in the string. Memory functions are crucial in this case.
Numerical operations are realized by functions that modify the value of their
arguments using processing units. A processor like approach is more �tted for
numbers.

Fig. 1. The von Neumann Model

Processor Memory-�
6

Channel

Having in mind the well known von Neumann model (Processor - Channel
- Memory, see Fig. 1) we believe that for a more e�cient symbol manipulation
we need new memory functions instead of more powerful processors. Therefore,
our proposal is a new concept of memory: the Connex Memory.

3 The Connex Memory

3.1 Informal De�nition of the Connex Memory

The connex memory (CM) is a physical support for a symbolic string in which
we can �nd any substring, identifying, in such a manner, any place in the string,
for reading, inserting or deleting a symbol or a substring of symbols.

The content of the CM is a string of variables: v1v2 : : : vi : : : vn. Each variable
vi has:

3 This could be a step towards obtaining a shorter diophantine equation describing
Chaitin's Omega Number, [Chaitin '87, Calude '94].

411Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

{ a value from a �nite alphabet A,
{ a state which is marked or non-marked; the access point is at the �rst marked
variable.

For example, the content in some place in CM is the string: ...(b̂ubu (ĝood
boy))... In Fig. 2 we can see the structure of the representation of the variables
from the string: one bit for the marker and m = log2(card(A)) bits for each
symbol in the alphabet A.

On any string stored in CM we can apply the set of functions described in
the following de�nition.

De�nition 1. The connex memory CM1 is a physical support for a string
of variables, having values from a �nite set of symbols A and two states: non-
marked or marked, over which we can apply the following set of functions:

{ RESET s : all the variables after the �rst marked variable take the value s
{ FIND s : all the variables that follow a variable having the value s switch
to the marked state and the rest switch in the non-marked state

{ C(onditioned)FIND s : all the variables that follow a variable having the
value s and being in the marked state switch in the marked state and the
rest switch in the non-marked state

{ INSERT s : the value s is inserted before the �rst marked variable
{ READupjdownj : the output has the value of the �rst marked variable and
the marker moves one position to right (up) or to left (down) or remains
unchanged ()

{ DELETE : the value stored in the �rst marked position is deleted, the
position remains marked (the output has the value of the �rst marked
variable) and the symbols from the right are moved one position left

Fig. 2. The content of CM. An example

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

(b u b u (g o o d b o y))

�
�
�
�
�
��

�
�

�
�

�
�

�
�

�
�

�
��+

�

access point marked variables

For di�erent purposes in di�erent stages of the computational process we need
di�erent types of markers. Until now our example has involved only one marker.
We shall consider an extended de�nition of CM with two or more markers. In
this way we could \colour" the symbols of the string with more than one \colour"
(marker).

De�nition 2. The CM2 has in addition to the set of functions de�ned in for
CM1 (see De�nition 1) the following new function:

412 Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

SET POINTER p1jp2j:::jpk: the pointer pi (i = 1; 2; :::; k) is set to the �rst
position of the marker and modi�es the next functions as follows (the square
brackets are used to indicate optional �elds in the mnemonics of the function):

{ INSERT [pi]; s: inserts the symbol s in the position indicated by the pointer
pi; if a pointer is not indicated, s is inserted to the �rst occurrence of the
marker;

{ READupjdownj � [pi]: starts reading from the position indicated by the pi
pointer which is a�ected in the same manner as the marker;

{ DELETE [pi]: deletes the position pointed by pi.

According to these de�nitions the CM is structured as a bi-directional shift
register in which any signi�cant point is marked, as a consequence of an asso-
ciative sequential mechanism used to �nd a name in a number of steps equal to
the length of the name. In the marked place, read, insert and delete can be per-
formed. Theoretically, the CM at the right end is unlimited, and, consequently,
can be used for simulating or emulating e�ciently any number of registers
having an unspeci�ed length (theoretical in�nite). Briey: CM = is a CAM
designed as a Bi-directional Shift Register left delimited by the �rst marker.

Fig. 3. Block Diagram of CM

CONNEX MEMORY

-

-�

Functions

Data

The block diagram of CM1 from Fig. 3 shows the connections for data and
functions de�ned before. We should not be surprised that this kind of memory
has no addresses. Indeed, we don't need them because the access point is found
by an associative search. In this way we avoid the logn connections used for
addressing a standard memory.

It is a real joy to discover that this type of memory could remain, with an
appropriate design, in the class of O(n). At this reduced complexity, all functions
are executed in time T (n) 2 O(1), in one clock cycle. For example, using the 16
Mb DRAM technology we realize our CM of 64 Ksymbol, where each symbol is
encoded in 12 bits with 4 markers (having 16 states per symbol).

3.2 The Connex Memory at Work

Let us see some examples illustrating the main abilities of the CM.

Example 1. Using the CM1 we can �nd any substring in a string. Suppose
that we have in a CM the following string:

:::(bubu (bad butcher)):::(bulgaria(:::)):::

and we want to select and read the list of bubu's properties, i.e., (bad butcher).
The following sequence of functions is executed:

413Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

FIND (
CFIND b
CFIND u
CFIND b
CFIND u
CFIND blank
loop

READ up
until)

repeat

The content of the CM becomes successively (the marked places are indicated
by oversigned symbols):

...(b̂ubu (b̂ad butcher))...(b̂ulgaria (...))...

...(bûbu (bâd butcher))...(bûlgaria (...))...

...(bub̂u (bad butcher))...(bûlgaria (...))...

...(bubû (bad butcher))...(bulgaria (...))...

...(bubu^(bad butcher))...(bulgaria (...))...

...(bubu (̂bad butcher))...(bulgaria (...))...

...(bubu (b̂ad butcher))...(bulgaria (...))... / out = (/

...(bubu (bâd butcher))...(bulgaria (...))... / out = b /

...(bubu (bad̂ butcher))...(bulgaria (...))... / out = a /

...(bubu (bad^butcher))...(bulgaria (...))... / out = d /
and so on, until:

...(bubu (bad butcher)̂)...(bulgaria (...))... / out =) /.

Example 2. Let us suppose that we want to change the �rst property of
bubu with the value good. The sequence of functions will be:

FIND (
CFIND b
CFIND u
CFIND b
CFIND u
CFIND blank
READ up
loop

DELETE
until blank

repeat
INSERT g
INSERT o
INSERT o
INSERT d
INSERT blank

Now the new content of the CM becomes:
...(bubu (good butcher))...(bulgaria (...))...

414 Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

4 CM Machine as a Universal Machine

The Connex Memory Machine (CMM) has the computational power of a Uni-
versal Turing Machine. In order to compare the CMM with other models we will
make a short review of two other models: Universal Turing Machine (UTM) and
Chaitin's Register Machine (RM).

4.1 Universal Turing Machine

Instead of the classical de�nition for a Turing Machine (TM) with:

{ an in�nite tape containing a string of symbols that can be read or modi�ed,
{ a �nite automaton (which, for UTM, \knows" how to interpret a symbolic
substring on the tape as a TM description),

{ a read/write head which accesses the tape,

we propose a TM version more appropriate to the actual technology. In Fig. 4
the UTM contains:

{ an in�nite Random Access Memory (RAM), instead of the tape
{ a �nite automaton, as interpreter for TM description from the RAM
{ an up-down counter that generates the address to the RAM.

Fig. 4 Universal Turing Machine (UTM)

Finite

Automaton

-

Q
-

-

6

C (commands)

A (data)

U/D Counter

RAM

Addresses
?

De�nition 3 An UTM is a 4-tuple (Fig. 4):

UTM = (A;Q; f ; #)

where:

{ A, the �nite alphabet (for the RAM),
{ Q, the �nite set of states (of the automaton),
{ f , the transition function of UTM, f : A � Q ! A � Q � C, where C =
fUP; DOWN; �g is the set of commands given by the automaton to the
U/D Counter,

{ # 2 A is a special symbol delimiting the active space in RAM.

Therefore, a TM is a three part system: the �nite automaton (for control),
the in�nite automaton (for addressing the RAM), and the in�nite RAM.

415Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

4.2 Chaitin's Register Machine

G. J. Chaitin ([Chaitin '87, '94]) de�nes the RM optimizing the UTM4 The goal
of this approach is to built a Lisp oriented machine with a better solution for
list inserting and deleting.

Finite

Automaton

-

Q

Fig. 5. Registers Machine (RM)

R1

R2R2

Rm

-�

-

-

6

6

6

u

u

u

u

A

F � S

.

.

.

In Fig. 5 the RM has a �nite automaton (as interpreter for ToyLisp programs)
and a �nite number of in�nite left/right shift registers used as stacks (initially,
in one register we have a Lisp object to be evaluated and the �nal result will be
found in any register).

De�nition 4. A RM (see Fig. 5) is a 5-tuple:

RM = (A;Q; F;R; g)

where:

{ A, the �nite alphabet (for registers),
{ Q, the �nite set of states (of the automaton),
{ F, the �nite set of functions applied to the content of the registers,
F = fREAD;WRITE; PUSH;POPg,

{ R, the �nite set of registers,
{ g, the transition function of RM, g : Q�R�A! Q�R�A� F .

It is obvious that a RM with minimum two registers is universal.

4 to construct his paradoxal Big Omega.

416 Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

4.3 Connex Memory Machine

A new universal model of computation oriented towards list/tree processing.
satis�ng all requirements announced in the second section of this paper (fast
access in any point, easy in sert/delete in the accessed point, e�cient delimiting
of a substring) is briey described (for more technical details see [S�tefan '85, '86,
'94]).

CMM (Fig. 6) has two main parts:

{ a �nite automaton
{ an in�nite CM that stores strings of symbols

Finite

Automaton

-

Q
-

-�

G (functions)

A (data)

CM

Fig. 6 Connex Memory Machine (CMM)

The di�erences between CMM and the previous UM models are:

{ CMM has only one register which stores any number of strings without access
penalties;

{ instead of a serial string access, CMM allows a \random" access using asso-
ciative mechanisms, so the access time is in O(1).

De�nition 5. A CMM (see Fig. 6) is a 4-tuple:

CMM = (A;Q;G; h)

where:

{ A; the �nite alphabet (for the CM),
{ Q; the �nite set of states (of the automaton),
{ G; is the �nite set of CM's functions (see De�nition 1 and De�nition 2),
{ h; is the transition function of CMM, h : Q�A! Q�A�G.

4.4 Time Performances

The main di�erences between these three models is the execution time for the
basic operations (see Section 2) in string processing: the time for �nding (access-
ing) a point in a string, TF (n), the time for insert/delete operations, TI=D(n),
the time for delimiting substrings of m length, TL(m).

For the three previous models we have:

{ UTM: TF (n) 2 O(n), TI=D(n) 2 O(n), TL(m) 2 O(m)

417Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

{ RM:TF (n) 2 O(n), TI=D(n) 2 O(1), TL(m) 2 O(m)
{ CMM: TF (n) 2 O(1) in one cycle, TI=D(n) 2 O(1) in one cycle,
TL(m) 2 O(1)

In all situations the CMM model has a better performance; even more, for
TF (n) and TI=D(n) the execution time is in one cycle [S�tefan '86, '94].

5 The ToyLisp Interpreter

We start from the Pure Lisp Model proposed by G. J. Chaitin [Chaitin '87], in
which:

{ atoms are monosymbolic;
{ there are ten primitive functions: ATOM, EQUAL, CAR, CDR, CONS,
OUTPUT, QUOTE, IF-THEN-ELSE, EVAL, SAFE-EVAL;

{ LAMBDA expressions have the form (&vb) where v is the list of variables
and b is the body;

{ for de�ning variables we use (&xe) where x is the variable and e is an S-
expression with value v; (xv) is concatenated with the old environment;

{ for de�ning functions we use (&(fxyz)d) where fxyz is one or more atoms
and d is an S-expression; (f(&(xyz)d)) is concatenated with the old envi-
ronment;

{ if an S-expression is not of the form (& : : :) then it is evaluated in the current
environment.

5.1 The Pure Lisp Coprocessor

In order to evaluate ToyLisp programs we conceived a CMM as a Pure Lisp
Coprocessor (PLC). The structure of PLC is shown in Fig. 7, where:

{ I; is the interface on the host computer bus,
{ CA; is the control automaton being able to execute subroutines,
{ R; is a register which can store an atom,
{ UDC; is an up-down counter used as system symbol generator,
{ CM, is the connex memory.

418 Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

I

CA

CM

R UDC

�

-

?

6

-

-�

?

?

Host BUS

Commands-�Sync.

Data

Fig. 7. Pure Lisp Coprocessor

t

t

The PLC executes an unending cycle (print(eval(read))).The content of the
CM is organized as follows:

@environment$S � expression%temporary environment

and is:

{ @environment$% //after PRINT//
{ @environment$S � expression to be evaluated% //after READ//
{ @environment$evaluated S � expression%temporary environment
//after EVAL//

The content of CM is equivalent with the content of three \unbounded" regis-
ters that store the environment, the evaluated S-expression and the temporary
environment.

5.2 The Interpreter

We are using a string reduction mechanism, as it o�ers a smaller complexity of
description of the evaluation process. We shall exemplify by describing the CAR
function. For more details about the entire interpreter see [M�̂t�u '96].

; (CAR)
; the marker is on + (the CAR sign)
; the substring :::xf+!"s = expr" becomes :::x!"CARs = expr"
; x is marked or the �rst symbol of the non-evaluated argument is marked
; (setq cm '((z f + ! f f a b g c g g d) (2)))
; (&car) ! ((z ! f a b g d) (0))

(defun &car ()
(readup)
(cond((eq(read) '!)(readup)

(cond((eq(read) 'f)(&delete)(endsex)
(insert 'f)(readdown)(clrsex)(readup)(backsex))

419Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

)
(clrbr)(&delete)(readdown))

))

; (ENDSEX)
; the �rst symbol of an S-expression is marked and
; the marker will be moved at the beginning of the next symbol
; the pointer is on the �rst position of m
; if the marker is on a parentheses it is moved after the next paranthesis
; if the marker is an atom it is moved on the next atom
; uses special symbols $ and %
; (setq cm '((f 1 2 f 4 f 6 7 g 9 g g) (0)))
; (endsex) ! ((f 1 2 f 4 f 6 7 g9 g g) (11))

(defun endsex ()
(cond((neq(read) 'f)(readup))

(t(insert '$)(insert 'g)(readup)
(while(neq(topstack) 'g)(cond((eq(read) 'f)(push))

((eq(read) 'g)(pop)))
(readup))

(delstack))
))

; (CLRSEX)
; deletes the S-expression with the marked beginning
; returns cm modi�ed

(defun clrsex ()
(if(eq 'f(read))

(progn
(insert '*)(endsex)(insert '*)(find '*)(readdown)(&delete)
(while(eq(read) '*)(&delete))
(&delete)
)(&delete)

))

; (BACKSEX)
; the �rst marker is on a right par g
; changes the marker to the corresponding f
; (setq cm '((f a b s d c g f) (7)))
; (backsex) ! ((f a b s d c g f) (0))

(defun backsex ()
(readdown)
(if(eq(read) 'g)

(progn
(readup)(insert '$)(insert 'g)(readdown)(readdown)(readdown)
(while(neq(topstack) 'g)

(readdown)

420 Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

(cond((eq(read) 'g)(push))
((eq(read) 'f)(pop)))

)
(delstack)

)))

; (CLRBR)
; delete pointed bracket and its corresponding bracket, returns cm modi�ed
; special symbol *

(defun clrbr ()
(insert '*)(endsex)(readdown)(&delete)(find '*)(readdown)(&delete)
(&delete))

; (TOPSTACK)

(defun topstack() ;returns the top of the stack, modifies cm
(let (v)
(insert '%)(find '$)(setq v(read))(find '%)(readdown)(&delete)
v))

; (PUSH) ; pushes the symbol g in the stack after $

(defun push ()
(insert '%)(find '$)(insert 'g)(find '%)(readdown)(&delete))

; (POP)

(defun pop () ;pops the symbol from the top of the stack
(insert '%)(find '$)(&delete)(find '%)(readdown)
(&delete))

; (DELSTACK)

(defun delstack () ;deletes the stack
(insert '%)(find '$)(readdown)(&delete)(find '%)(readdown)
(&delete))

5.3 Conclusions

The current approach in Lisp implementation has imposed CAR and CDR as
basic functions. Our di�erent way of representing and processing the list in CM,
as a connex string, may emphasize other basic functions such as: APPEND,
MEMBER, LISTATOMS, INTERSECTION, UNION, DELETE, MATCH.

Future work will be focused on optimizing the execution time and the size
of memory, using graph reduction mechanisms. One of the next steps is to test
Lisp benchmarks on the simulated PLC in order to compare our approach with
other models or frequently used computer architectures.

421Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

References

[Calude '94] Calude, C. : Information and Randomness, Springer-Verlag, Brlin, 1994.
[Chaitin '87] Chaitin, G. J. : Algorithmic Information Theory, Cambridge Univ. Press,

1987.
[Chaitin '94] Chaitin, G. J. : The Limits of Mathematics IV, IBM Research Report

RC 19671, e-print chaodyn/9407009, July 1994.
[Hascsi '95] Hascsi, Z., S�tefan, G. : \The Connex Content Addressable Memory

(C2AM)", in Proceedings of 21st European Solid State Circuits, Lille, France,
Sept. 1995, 422-425.

[M�̂t�u '96] M�̂t�u, B., Corina M�̂t�u : ToyLisp Interpreter on a Connex Memory Machine,
in C. Calude (ed.). The Finite, the Unbounded and the In�nite, Proceedings
of the Summer School \Chaitin Complexity and Applications", Mangalia, Ro-
mania, 27 June { 6 July, 1995.

[S�tefan '85] S�tefan, G., Bistriceanu, V., P�aun, A. : \Towards a Natural Mode of Lisp
Implementation", in Systems for Arti�cial Intelligence, Romanian Academy
Publishing House, Bucharest, 1991, 218-224. (in Romanian)

[S�tefan '86] S�tefan : \Connex Memory" in Proceedings of National Conference on Elec-
tronics, Telecommunications, Automatics and Computers, Bucharest, 1986
Vol. 2, IPB, Bucure�sti, 1986, 79 - 81. (in Romanian)

[S�tefan '91] S�tefan, G., Dr�aghici, F. : \Memory Management Unit - a New Principle for
LRU Implementation" in Proceedings of 6th Mediterranean Electrotechnical
Conference, Ljubljana, Yugoslavia, May 1991, 281-284.

[S�tefan '94] S�tefan, G.: \The Connex Memory. A Physical Support for Tree / List
Processing", Technical Report, Center for New Electronic Architecture of the
Romanian Academy, February 1994.

[S�tefan '94a] S�tefan, G., Hascsi, Z.: \The Internal Structure of the Connex Memory",
Technical Report, Center for New Electronic Architecture of the Romanian
Academy, April 1994.

[S�tefan '95] S�tefan, Mihaela Malit�a : \The Eco-Chip: A Physical Support for Arti�cial
Life Systems", in Arti�cial Life. Grammatical Models, ed. by Gh. P�aun, Black
Sea University Press, Bucharest, 1995, 260-275.

422 Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

A The Connex Memory. First Version: CM1

; The First Version of the Connex Memory
; Its Functions are Described in LISP
; Representation: the content of memory is a list cm = (s m)
; Where: s is a list containing the symbols on which we work
; m is the list of numbers representing the marked position in s
; Ex: cm = ((a b c a d)(1 4)) means b and d are marked
; the rest are non-marked
; (setq cm '(($) nil))
; cm is a global variable

; (RST p)
; all the symbols in s from cm = (s m) are substituted with symbol p
; all markers are deleted, m = (), returns cm
; (SETQ CM (QUOTE ((A B C D E) (2 4))))
; (RST (QUOTE P)) ! ((P P P P P) NIL)

(defun RST (p) ; cm = (sm) returns cm
(labels((make(p k)

(if(null k)nil(cons p(make p(cdr k))))
))
(setq cm(list(make p(car cm)) '()))))

; (READ)
; returns the �rst marked symbol and cm is unchanged
; (SETQ CM (QUOTE ((A B C D) (2))))
; (READ) ! C
; CM ! ((A B C D) (2))

(defun read () (first-marked))

(defun first-marked () ;cm = (s m) returns �rst pointed symbol
(let ((n (caadr cm)) (s (car cm)))
(if (null n) nil (nth n s))))

; (nthnL) returns the n-th element from L seen as a vector

; (READUP)
; returns the �rst marked symbol and modi�es cm
; moving the marker one position right
; (SETQ CM (QUOTE ((A B C D) (1))))
; (READUP) ! B
; CM ! ((A B C D) (2))

(defun readup () ; cm = (s m) returns rez and modifies cm
(let*((s(car cm))(m(cadr cm))(n(car m)(k(cadr m))
(rez(first-marked)))
(cond ((null n)rez)

423Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

((and k(= k(1+n)))(setq cm(list s(cdr m))) rez)
((>=(1+n)(length s))(setq cm(list s nil))rez)
(t(setq cm(list s(cons(1+n)(cdr m))))rez)

)))

; (READDOWN)
; returns the �rst marked symbol and modi�es cm with
; the �rst marker moved one position left
; (SETQ CM (QUOTE ((A B C) (1 2))))
; (READDOWN) ! B
; CM ! ((A B C) (0 2))

(defun readdown () ; cm = (s m) returns rez
; and modifies the first marker
(let*((s(car cm))(m(cadr cm))(n(car m))(k(cadr m))
(rez(first-marked)))
(cond ((null n)rez)

((=n 0)(setq cm(list s(cdr m)))rez)
((and k(=n(1+(length s))))(setq cm(list s(cdr m)))rez)
(t(setq cm(list s(cons(1-n)(cdr m))))rez)

)))

; (DELETE)
; returns the �rst marked symbol and deletes it from cm
; (SETQ CM (QUOTE ((A B C D E F) (1 4))))
; (&DELETE) ! B
; CM ! ((A C D E F) (1 3))

(defun &delete () ;cm = (s m) returns first marked symbol
; and modifies cm
(let*((s(car cm))(m(cadr cm))

(rest(cdr m))(n(car m))(k(cadr m))(rez(first-marked)))
(cond ((null s)(setq cm(list nil nil))rez)

((null n)rez)
((= n(1+(length s)))(setq cm(list(take n s)(1-n)))rez)
((null rest)(setq cm(list(take n s)m))rez)
((= n(1-k))(setq cm(list(take n s)(mapcar '1- rest)))rez)
(t(setq cm(list(take n s)(cons n(mapcar '1-rest))))rez)

)))

(defun take(n s) ; takes the n-th element from a list s
(cond ((null s)nil)

((= n 0)(cdr s))
(t(cons(car s)(take(1- n)(cdr s))))

))

; (INSERT p)

424 Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

; inserts p in front of the �rst marked symbol
; if there is no marked symbol everything remains unchanged
; the markers shift one position right returns cm modi�ed
; (SETQ CM (QUOTE ((A B C D) (2))))
; (INSERT (QUOTE P)) ! ((A B P C D) (3))

(defun insert(p) ;cm = (s m), p symbol inserted in cm modifies cm
; returns cm
(let*((s(car cm))(m(cadr cm))(n(car m)))
(cond ((null s)(setq cm(list nil nil)))

((null m)(setq cm(list s nil)))
((= n(length s))(setq cm(list(append s(list p))(1+n))))
(t (setq cm(list(put p n s)(mapcar '1+m))))

)))

(defun put (k n l) ; puts k in the n-th position in list l
(cond ((null l)nil)

((= n 0)(cons k l))
(t(cons(car l)(put k(1- n)(cdr l))))

))

; (FIND p)
; all the markers after p are marked
; the other markers are deleted, returns cm modi�ed
; (SETQ CM (QUOTE ((A P C D P F) (2 4))))
; (FIND (QUOTE P)) ! ((A P C D P F) (2 5))

(defun find (p) ; cm = (s m)
(let((s(car cm)))
(labels((position(p s r n)

(cond((null s)(reverse r))
((equal p(car s))(position p(cdr s)(cons n r)(1+ n)))
(t(position p(cdr s)r(1+n)))

)))
(setq cm(list s(position p s nil 1)))
)))

; (CFIND p)
; conditioned �nd of p in the list s from cm = (s m)
; all the markers after p that are marked are shifted one position right
; all the other markers are removed, returns cm modi�ed
; (SETQ CM (QUOTE ((A B P C D P A P F) (2 7))))
; (CFIND (QUOTE P)) ! ((A B P C D P A P F) (3 8))

(defun cfind (p) ; cm = (s m) modifies and returns cm
(let((s(car cm))(m(cadr cm)))
(labels((mark(p s m r) ;r result marker list

(cond((or(null s)(null m))(reverse r))

425Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

((equal p(nth(car m)s))(mark p s(cdr m)
(cons(1+(car m))r)))

(t(mark p s(cdr m)r))
)))
(setq cm(list s(mark p s m nil)))
)))

426 Stefan G., Malita M.: Chaitin’ s ToyLisp on a Connex Machine

