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Abstract: We show that it is decidable whether or not the set of coefficients of a given
Q-algebraic sequence is finite. The same question is undecidable for Q-algebraic series.
We consider also prime factors of algebraic series.

Category: F.4.3

1 Introduction

Formal power series play an important role in many diverse areas of theoretical
computer science and mathematics, see [Berstel and Reutenauer 88], [Kuich and
Salomaa 86] and [Salomaa and Soittola 78]. The classes of power series studied
most often in connection with automata, grammars and languages are the rational
and algebraic series.

In language theory formal power series often provide a powerful tool for
obtaining deep decidability results, see [Kuich and Salomaa 86] and [Salomaa
and Soittola 78]. A brilliant example is the solution of the equivalence problem
for finite deterministic multitape automata given in [Harju and Karhumaki 91].

In this paper we consider decision problems concerning algebraic sequences
and series. For earlier decidability results see [Kuich and Salomaa 86]. We show
first that it is decidable whether or not the set of coefficients of a given Q-
algebraic sequence is finite. We show that the same question is undecidable for

series in Nalg < X* >». Next we consider algebraic series with commuting
variables. We show that it is decidable, given a positive integer k& and a series

r € Qalg <« X% > whether or not the set of coefficients of  has cardinality
at most k. (Here X9 is the free commutative monoid generated by X.) We
also apply the methods of our decidability proofs to study the prime factors of
Q-algebraic series.

The questions studied in this paper are closely related to the study of thin
and slender languages and their generalizations, see [Andragiu, Dassow, P&un
and Salomaa 93], [Pdun and Salomaa 92], [Paun and Salomaa 93], [Pdun and
Salomaa 95], [Dassow, Paun and Salomaa 93], [Ilie 94], [Raz 00], [Nishida and
Salomaa 00] and [Honkala 00].

Standard terminology and notation concerning formal languages and power
series will be used in this paper. Whenever necessary, the reader may consult
[Salomaa 73], [Salomaa and Soittola 78], [Kuich and Salomaa 86] and [Berstel
and Reutenauer 88].
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2 TImages of algebraic series

Let X be an alphabet. The free monoid (resp. the free commutative monoid)
generated by X is denoted by X* (resp. XP). The set of Q-rational (resp.
Q-algebraic) series with noncommuting variables in X is denoted by Qrat <
X* > (resp. Qalg < X* >»). (Here Q is the field of rational numbers.) We
consider also Q-rational and Q-algebraic series with commuting variables in X .

The corresponding sets are denoted by Qrat < X% > and Qalg < X9 >
respectively. Furthermore, denote by ¢ the canonical morphisme: Q < X* >»>—
Q < X% >». Hence,

Q'™ « X% > = {c(r)]r € Q" <« X* >}

and
QM8 <« X > = {e(r)|r € QM8 < X* ).

By definition, the image of a series 1s the set of its coefficients. Hence, if
r=> (r,w)w € Q K X* >, the image of r equals the set

{(r,w)|we X*}.

The following basic decidability result concerning images of QQ-rational series

was established in [Jacob 78].

Theorem 1. (Jacob) It is decidable whether or not a given rational series r €
th < X* > has a finite image.

In this paper we discuss the possibilities to generalize this result to Q-
algebraic series. We first establish a lemma concerning Q-algebraic series with
commuting variables. Tts proof relies heavily on earlier deep results in [Kuich and
Salomaa 86] and [Semenov 77].

If we X* (or we X%), the Parikh vector ¢/(w) of w is defined by

1/)(10) = (#xl(w)’ ce #xn(w))

Here X = {x1,...,2,} and #,(w) stands for the number of occurrences of the
letter = in w.

Lemma2. Ifr € Qalg < X% > has a finite image, then r is a finite Q-linear

combination of series in N7t ¢ X6 of the form uvy ... v}, with pairwise dis-

joint supports. Here u, vy, ... ,vm € X® and the Parikh vectors y(v1), ..., ¥ (vm)
are linearly independent over Q. In particular, if r € Qalg < X% > has a finite
image then r € QT <« X >

Proof. Suppose that r € Qalg <« X% >» has a finite image. Without loss of
generality we assume that r is quasiregular. Because r has a finite image there
exists a positive integer a € N such that ar € Z <« X% >>. By Corollary
16.11 in [Kuich and Salomaa 86] there exists a nonzero polynomial P(zq,...,
Tn,y) €Z < (X Uy)? > such that

P(x1,...,2n,ar) =0. (1)
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(Here X = {®1,...,2,}.) Next, fix an integer j and denote
D; ={(i1,...,in) € N"|(ar, J:Zf .. x;") =jh

To study the properties of the set D; choose a large prime p and denote by v the
canonical morphism

V2L XY >0 7, < XP >
Define the sequence s : N* — Z, by

s(i1, ... tn) = (I/(Cl?“),l‘lf Lt

It follows from (1) that
v(P)(x1,...,2n,v(ar)) =0

or

V(P)(x1a~~~a$n, Z S(il,...,in)l‘il...x;"):0,

i1y in >0

Hence the sequence s is p-algebraic. By Theorem 5.1 in [Bruyeére, Hansel,
Michaux and Villemaire 94] the sequence s is p-recognizable. Consequently, the
set D’ defined by

Di ={(i1,...,in) € N"|(ar, 2} ...2}#) = j (mod p)}

is a p-recognizable subset of N™. Because p is large, D; = D}. Hence Dj is a
p-recognizable subset of N”.

Now, by replacing in the argument above the prime p by another large prime
q it follows that D); is also g-recognizable. Therefore, by a deep result of Semenov
(see [Semenov 77]), the set D; is a rational subset of N”. Denote

Clearly, F; is a rational subset of X%. Because X% is a commutative monoid,
E; is an unambiguous rational subset of X% (see [Eilenberg and Schiitzenberger
69]). Tt follows that

char(E;) € Nl X%

Hence char(E;) is a finite N-linear combination of series of the form wvj ... v}

m
with pairwise disjoint supports, where u, vy, ..., v, € X% and the Parikh vectors
¥(v1),...,¢(vm) are linearly independent over Q. Because ar has a finite image,

ar is a finite Z-linear combination of series char(E};), where j is an integer. This
implies the claim. O

In the next theorem, x € X is a letter.

Theorem 3. [t is decidable whether or not a given sequence r € Qalg Lt >
has a finite image.
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Proof. First, decide by the method of Theorem 16.13 in [Kuich and Salomaa 86]
whether r belongs to Qrat < x* >. If not, Lemma 2 implies that the image of

r is infinite. If » € Qrat <& x* >, the finiteness of the image can be decided by
Theorem 1. O

Theorem 3 cannot be extended to alphabets with more than one letter.

Theorem4. Let X be an alphabet with at least two letters. It is undecidable,
given a series r € Nalg & X* >, whether or not v has a finite image.

Proof. Let (uy,...,uy) and (vy,...,v,) be two lists of words over an alphabet
27 determining an instance PCP of the Post Correspondence Problem. Choose
new letters a, b, ¢, d and define the series r by

7= E ba'tba’? .. . ba'*cu;, ... uijuid
k>1,1<i1, . ix<n

+ Z ba''ba'® .. ba'*ev;, ... vivi,d.
E>1,1<iq,... ix<n
Consider the series rT. Clearly rt is N-algebraic. Now, if PCP has a solution,

at least one term of » has coefficient, 2. Hence rT has an infinite image. On the
other hand, if PCP does not possess a solution the set

{ba'ba® .. ba'cu;, .. ougug dlk > 1,1 <y, ... iy <n}
U{ba'rba®® .. ba' cus, .. v v, dlk > 1,1 <iy,... 4 <n},
where the union is disjoint, is a prefix code. Therefore, each coefficient of r*
equals 0 or 1, and the image of rT is finite. Consequently, the image of rT is
finite if and only if PCP does not possess a solution.
Finally, let 2 : (¥ U {a,b,¢c,d})* = X* be an injective morphism. Such a
morphism exists because X has at least two letters. By the closure properties of

algebraic series, h(rt) belongs to Nalg < X* >. Because the injective morphism
preserves the image, the claim follows. O

It is an open problem whether or not it is decidable if a given power series

rE Qalg <« X% >» has a finite image. The following theorem solves a related
problem.

Theorem 5. Given a positive integer k and a series r € Qalg < X% > it s
decidable whether or not the image of v has cardinality at most k.

Proof. First, decide whether or not » belongs to Qrat < X% >». If not, r has

an infinite image and we are done. If » € Qrat <« X% > we consider two semial-
gorithms. The first semialgorithm computes successively the coefficients of 7 and
tries to find k+1 distinct coefficients. The second semialgorithm tries to express r
as a finite Q-linear combination of series of the form vy ... v} with pairwise dis-
joint supports, where u, vy, ...,v, € X% and the Parikh vectors ¥ (vy1), ..., ¥ (v,)
are linearly independent over Q. This semialgorithm terminates, by Lemma 2, if
r has a finite image. If it terminates, it can be decided whether or not the image
of r has cardinality at most k.

An algorithm for Theorem 5 is now obtained by using concurrently the two
semialgorithms. O
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3 Prime factors of algebraic series

In this section we use the methods of the previous section to study prime factors
of algebraic series.

If p is a prime, the p-adic valuation v, over Q is defined as follows. If a, b € Z,
b # 0 and p divides neither a nor b, then v,(p"a/b) = n for n € Z. Furthermore,
vp(0) = co. Now, if r € Q <« X* > (or r € Q € X% ), the set Prime(r) of
prime factors of r is defined by

Prime(r) = {p € N|p is a prime number and for some w € X*

we have v, ((r, w)) # 0, c0}.

For the theory of prime factors of Q-rational series, see [Berstel and Reute-
nauer 88]. By a well known theorem of [Pdlya 21], the set of prime factors of
a rational series r € Qrat & x* > 1s finite if and only if r is the sum of a
polynomial and of a merge of geometric series.

For the next theorem we need two definitions. First, a language L C X* is
called commutatively nonrational if the commutative variant ¢(L) of L is not
a rational subset of X% . Secondly, a language L C X* is called Parikh thin if
c(wyr) # c¢(wse) whenever wy and wsy are distinct elements of L.

Theorem 6. Suppose r € Qalg < X* > is a Q-algebraic series. If supp(r) is
commutatively nonrational and Parikh thin, there is at most one prime p such
that p s not a prime factor of r.

Proof. We assume without loss of generality that r is quasiregular. Because r
is Parikh thin, the series r and ¢(r) have the same prime factors. Therefore it
suffices to show that there 1s at most one prime p which is not a prime factor of
e(r). Suppose p is such a prime. Denote

A ={a€Qlyla) > 0},

1= {a € Qluy(a) > 0}.

It is well known that A is a ring and I is a maximal ideal of A. Hence F' = A/I
is a field with p elements. Denote by v the canonical morphism

v:A—F

and 1ts extension
v AL XY > P X% >

Because p is not a prime factor of ¢(r), we have ¢(r) € A < X% >>. Hence,
v(e(r)) € F <« X% >>. Furthermore, the supports of ¢(r) and v(c(r)) are equal.

Now, by Corollary 16.12 in [Kuich and Salomaa 86], there exists a primitive
polynomial P(z1,...,2,,y) € Z < (X Uy)® > such that

P(x1,...,2n,c(r)) =0. (2)

(Here X = {x1,...,z,}.) Next, regard (2) as an equation in A < X% > and
apply the morphism v. It follows that

v(P)(x1,..., 20, v(c(r))) =0.
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Denote ) )
D ={(#1,...,8n)|2} ... 2;» € supp(e(r))}.

Now, it follows as in the proof of Lemma 2 that D is a p-recognizable subset of
N7. Consequently, we have seen that if p i1s a prime which is not a prime factor
of 7, then the set D is p-recognizable.

To conclude the proof, suppose that p and ¢ are distinct primes which are not
prime factors of . Then the set D is both a p-recognizable and a g-recognizable
subset of N”. Hence, by the result of [Semenov 77], D is a rational subset of N™.
Consequently, supp(c(r)) is a rational subset of X®. This is not possible because
supp(c(r)) = e(supp(r)). Hence there cannot be more than one prime which is
not a prime factor of ». O

Denote by o the isomorphism o : X® — N" defined by
a2l ain) = (i, ... i)
By definition, a language L C X* is commutatively p-recognizable if a(¢(L)) is a
p-recognizable subset of N”.

Theorem 7. Suppose r € Qalg K X* > is a Q-algebraic series such that
supp(r) is Parikh thin. If supp(r) is commutatively p-recognizable for no prime
p, then every prime is a prime factor of r.

Proof. The claim follows by the proof of Theorem 6. O

We conclude with an example of a series satisfying the assumptions of The-
orem 7.

Example 1. Denote

r= Z (n? —m)%a"b™.

n,m>0
The series r belongs to Qrat < {a,b}* >». Clearly,
supp(r) = {a"b™|n* # m and n,m > 0}.

Hence, supp(r) is Parikh thin. Also, the set a(c(supp(r))) = {(n,m)|n? #
m and n, m > 0} is p-recognizable for no prime p. Indeed, if a(c(supp(r))) were p-
recognizable so would be the sets {(n, m)|n? = m and n,m > 0} and {n?|n > 0}.
However, the last set is a well known example of a set which is not p-recognizable
for any p. Hence r satisfies the assumptions of Theorem 7. Obviously each prime
is a prime factor of r.
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