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Abstract: Variable-length T-Codes may be used to provide robust compression for
data communication and storage on noisy channels or media. Over the past twelve
years, a number of papers on T-Codes have been published in various journals and as
technical reports. During this time, notation and scope of the T-Codes have changed
considerably, giving rise to a more integrated theory of T-Codes as recursive codes.
This paper presents all known core principles of T-Code theory by taking a recursive
approach throughout. A su�cient condition for information sources, ensuring decoder
self-synchronisation for the T-encoded symbol stream, is introduced. By example of a
recursive program, the paper shows how a suitable T-Code set for encoding a given
memoryless source can be found.
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1 Introduction

It is now twelve years since Mark Titchener, then a postgraduate student, de-
veloped the concept of a recursive coding system which became known as the
\T-Codes" [Titchener 1984], [Titchener 1985], [Titchener 1986]. A comparatively
late arrival on the scene of digital communications, T-Codes nevertheless o�er a
range of interesting features in a combination that other coding systems do not
exhibit. Some of these features are explored here in detail, including the feature
that has perhaps attracted most interest: the inherent self-synchronisation in
the face of errors [Titchener and Hunter 1985]. Self-synchronisation is of general
signi�cance for variable-length codes, and has been discussed by a number of in-
vestigators, including [Gilbert 1960], [Ferguson and Rabinowitz 1984], [Maxted
and Robinson 1985], [Montgomery and Abrahams 1986], and [Takishima,Wada,
and Murakami 1994].

In the �rst section, we will introduce the concepts of recursive coding, simple
T-augmentation and simple T-Codes, which are then expanded to the generalized
T-augmentation and generalized T-Codes. The second section briey discusses
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these concepts in a graphical tree picture. The third section deals with the self-
synchronisation property of T-Codes. After having established the theoretical
basis for this useful property, we show how to �nd the most e�cient T-Code
set for the encoding of a given memoryless information source. Finally, we show
how to T-decompose strings, which is a possible method of relaying code set
information in a compact way.

2 T-Code Set Construction by T-Augmentation

The following sections give an introduction to the recursive coding concept [Sec-
tion 2.1] on which the T-Code construction properties are based, introduce T-
augmentation and T-Code sets [Section 2.2], and discuss the set size lemma
[Section 2.2].

2.1 Recursive Coding and Variable-Length Codes

What is recursive coding? Imagine a piece of English text (the works of Shake-
speare come to mind as an example). We could split the works of Shakespeare
into several books, and refer to them as \Macbeth", \Romeo and Juliet" and so
on. The titles are themselves a kind of encoding as there seems to be a general
understanding of what, e.g., \Romeo and Juliet" stands for. Thus we may regard
Shakespeare's works as a concatenation of books. Then again, we could regard
the works of Shakespeare as a concatenation of chapters (or acts), and refer to
individual chapters instead of books. We observe that, if we printed all of Shake-
speare's works in a single volume, any boundary between two books is also a
boundary between two chapters, but not vice versa. We could now regard each
chapter as a concatenation of sentences, which makes the works of Shakespeare
a concatenation of sentences. A boundary between two books is also a boundary
between chapters which is also a boundary between sentences. The reverse is not
true, however: a boundary between two sentences does not generally mark the
boundary between two chapters or even books, and a boundary between chap-
ters is generally no boundary between books. Continuing down the same path,
we know that sentences are made up of words which are made up of letters. If
we regard letters as, e.g., ASCII characters, we can even split them up into bits.

In the last paragraph, we regard Shakespeare's works as an example for
recursive coding over several levels. Shakespeare's works, viewed from this aspect,
also provide an example for variable-length codes. Words in the English language
are made up from a varying number of letters, and sentences from a varying
number of words. The same applies to sentences and chapters, chapters and
books, and so on. At the lowest coding level (letters as ASCII characters with 8
bits each), however, we have an example of a block code, where each codeword
(ASCII letter) contains a �xed number of (binary) alphabet symbols (bits).
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We could also imagine a situation where the letters are encoded with a Hu�-
man or a similar binary variable-length code [see Hu�man 1952]. In this case,
frequent letters such as \e" or \r" are represented by short codewords, and letters
such as \w" or \x" with a low frequency of occurrence are represented by longer
codewords. The total number of bits needed to represent Shakespeare's works
may thus be reduced signi�cantly compared to the ASCII encoding. Therefore,
variable-length codes are very popular as the permit data compression for storage
or serial communication of data.

Now imagine the works of Shakespeare being sent between two computers on
a serial cable which is prone to bit errors. Bit errors can come as bit inversion,
bit deletion or bit insertion. Unless there is a mechanism to ensure that bit
errors don't propagate very far, the works of Shakespeare as received by the
second computer may have very little literary quality left: : : In the case of ASCII
encoding, only bit deletion or bit insertion cause any lasting di�culty. However,
with a variable-length encoding, any type of bit error may cause major problems
as boundaries between individual codewords are not evenly spaced.

Encoding the works of Shakespeare with T-Codes is a possible way of keeping
the e�ect of bit errors restricted, while still being able to compress the data for
e�cient transmission.

We will now show how T-Code sets may be constructed, highlighting their
recursive structure. Readers who are familiar with the construction of Hu�man
codes will probably miss the source probabilities at this stage | this will be
discussed later.

2.2 T-Augmentation

How does one construct a T-Code set? The construction starts from a base
alphabet S. All T-Code properties presented here hold for any �nite alphabet
S with at least two symbols, i.e., #S � 2. However, in our examples we will
assume for simplicity that S is the binary alphabet f0; 1g. Let us �rst consider
what we will call \simple T-augmentation":

Example 1. [Simple T-augmentation]. We write down the alphabet S = f0; 1g
(which in itself is a T-Code set at \0'th T-augmentation level") in a single column
in a table (shown here below the double line):

T-augmentation level
n 0 1 2 3
kn n/a - - -
set S - - -

0
1
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The line labeled kn may be ignored for the time being, its signi�cance will be
discussed later when we will discuss generalized T-augmentation. Now we will
T-augment the set to T-augmentation level 1. The �rst step is to copy the current
set twice into the next column:

T-augmentation level
n 0 1 2 3
kn n/a 1 - -
set S - - -

0 0
1 1

0
1

The next step is to select a codeword from the �rst copy of the set, e.g., the 1.
This codeword | called the \T-pre�x" | is eliminated from the �rst copy of
the list and pre�xed (concatenated on the left-hand side) to the second copy:

T-augmentation level
n 0 1 2 3
kn n/a 1 - -
set S S(1) - -

0 0
1 1=

10
11

This concludes the �rst simple T-augmentation. Our T-Code set at T-augmen-
tation level 1 is now S(1) = f0; 10; 11g, where the subscript indicates the T-pre�x
chosen.

We note that S(1) = f0; 10; 11g is pre�x-free, i.e., none of the codewords
is the pre�x of another. It is also complete, which means that any arbitrary
(in�nite) bit stream has a unique decoding over S(1) and no ambiguities arise
(cf., e.g., [Bell, Cleary, and Witten 1990], p.208). Complete code sets have also
been referred to as \exhaustive" (cf., e.g., [Gilbert and Moore 1959], [Higgie
1991], [Roberts 1993]).

With the present set, only three codewords are available. If one would like to
encode an ASCII �le, for example, 256 codewords would be needed to encode all
possible 8-bit ASCII characters. Therefore, we may wish to increase the number
of available codewords by T-augmenting again:
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T-augmentation level
n 0 1 2 3
kn n/a 1 1 -
set S S(1) S(1;10) -

0 0 0
1 1= �

10 10==
11 11

100
�

1010
1011

This time we chose 10 as our T-pre�x, copied the set over to the next col-
umn and duplicated it, eliminated the T-pre�x from the �rst part of the list
and pre�xed it to the second part. The set at T-augmentation level 2 is now
S(1;10) = f0; 11; 100; 1010;1011g, and the subscript vector lists the T-pre�xes
used in the two T-augmentations that we performed. This set is again complete
and pre�x-free. Note that the choice of T-pre�x is arbitrary | we could have
just as well taken any of the other codewords from S(1). This would have neither
changed the completeness nor the pre�x-freeness of the set nor the total number
of codewords in the set (�ve). Only the codeword length distribution of the set
can be manipulated this way. As we will see, this is a useful tool when we wish to
match the probability distribution of a given source. A further T-augmentation
to T-augmentation level 3 might look like this:

T-augmentation level
n 0 1 2 3
kn n/a 1 1 1
set S S(1) S(1;10) S(1;10;0)

0 0 0 0=
1 1= � �

10 10== �
11 11 11

100 100
� �

1010 1010
1011 1011

00
�
�

011
0100
�

01010
01011
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By now, it should be apparent that we used 0 as the T-pre�x for this T-
augmentation, and that the resulting set S(1;10;0) is once again pre�x-free and
complete. The number of codewords in this set is 9.

In fact, the T-augmentation process may be repeated over and over again to
generate large sets with an unrestricted number of codewords. All of those sets
will be complete and pre�x-free. Note that this is a property of the algorithm,
and not of the particular T-pre�xes that we have chosen. All T-Code sets that
are derived entirely by simple T-augmentation are called \simple T-Code sets".

Simple T-augmentation as described above was the original \augmentation" al-
gorithm proposed by Titchener in [Titchener 1984], and has since been investi-
gated by others including [Higgie 1991] and [Roberts 1993]. As we shall see, it is
a special case of the generalized T-augmentation.

To generalize T-augmentation, we expand the notation for simple T-Code
sets by adding a superscript for each T-augmentation level to our set notation.
This superscript is known as T-expansion factor or T-expansion parameter, and
for a single T-augmentation it is denoted as k. k is a positive integer. In a
set constructed by multiple T-augmentations, the T-expansion factors form a
(superscript) vector (k1; k2; : : : ; kn) similar to the (subscript) T-pre�x vector

(p1; p2; : : : ; pn). Accordingly, we also use the notation S
(k1;k2;:::;kn)
(p1;p2 ;:::;pn)

.

But why do we need a T-expansion factor? So far, when T-augmenting,
we have copied the existing set twice to the next column. In generalized T-
augmentation, we copy the set k + 1 times. However, the multiple copies alone
do not complete the T-augmentation. We also need to remove the T-pre�x for
this T-augmentation from all copies of the set in the new column, except for
the last copy. The T-pre�x is then attached once to the second copy of the set,
twice to the third, three times to the fourth and so forth. If we set k = 1,
we copy the set twice. Hence simple T-augmentation is merely a special case
of the generalized T-augmentation, and we may use the simpli�ed notation

S(p1;p2;:::;pn) = S
(1;1;:::;1)
(p1 ;p2;:::;pn)

. So S(1;10;0) becomes S(1;1;1)(1;10;0) in the generalized T-

augmentation notation.

Example 2. [Generalized T-Augmentation]. Consider the set S(1;1)(1;10) at the second

T-augmentation level from our previous example above. Let us use 0 as the third-
level T-pre�x again, but this time with a T-expansion parameter k3 = 3 rather
than k3 = 1 as before. We obtain:
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T-augmentation level
n 0 1 2 3
kn n/a 1 1 3

set S S
(1)
(1) S

(1;1)
(1;10) S

(1;1;3)
(1;10;0)

0 0 0 0=
1 1= � �

10 10== �
11 11 11

100 100
� �

1010 1010
1011 1011

00==
�
�

011
0100
�

01010
01011
000===
�
�

0011
00100

�
001010
001011
0000
�
�

00011
000100

�
0001010
0001011

The resulting set is denoted S
(1;1;3)
(1;10;0). We note that this set is also pre�x-free and

complete.

We can now summarize and formally de�ne generalized T-augmentation:

De�nition1. [Generalized T-augmentation]. Consider an alphabet S, a set
S1 � S+ , a string p 2 S1, and a positive integer k. The operation that gen-
erates the set S2 according to the rule

S2 =
k[

i=0

fpisjs 2 S1nfpgg [ fp
k+1g (1)
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is called T-augmentation. The string p is called T-pre�x and the integer k is
called T-expansion parameter or T-expansion factor. The set S2 may be denoted

as S2 = [S1]
(k)
(p).

As in our examples, we denote multiple successive T-augmentations using sub-
script vectors for the T-pre�xes and superscript vectors for the T-expansion
factors. We now de�ne T-Code sets:

De�nition2 T-Code sets. . Consider a series of n � 0 successive T-augmen-
tations of an alphabet S using the T-pre�xes p1; p2; : : : ; pn, and T-expansion

parameters k1; k2; : : : ; kn respectively. The resulting set is denoted S
(k1;k2;:::;kn)
(p1;p2 ;:::;pn)

and is referred to as a T-Code set at the n'th T-augmentation level.

Note that according to this de�nition, an alphabet is always a T-Code set at
0'th T-augmentation level. We now de�ne simple T-augmentation as a special
case of T-augmentation:

De�nition3 Simple T-augmentation and Simple T-Code sets. The n+
1'th T-augmentation from T-augmentation level n to T-augmentation level n+1

is said to be simple i� kn+1 = 1. A T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

for which k1 = k2 =

: : : = kn = 1 is called a simple T-Code set. It may be denoted S(p1;p2;:::;pn).

Terminology: with reference to a T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

at the n'th T-

augmentation level, a T-Code set S
(k1;k2;:::;ki)
(p1;p2;:::;pi)

where i � n may also be re-

ferred to as an \intermediate" T-Code set. Abbreviated notation: a T-Code
set S

(k1 ;k2;:::;kn)
(p1;p2;:::;pn)

may be written as S
(k1;k2;:::;kn)
(p1 ;p2;:::;pn)

= Skp = Sk:np:n where p =

(p1; p2; : : : ; pn) and k = (k1; k2; : : : ; kn). Intermediate T-Code sets at T-aug-
mentation levels i, 0 � i � n, may be written as Sk:ip:i . For simple T-Code sets,
we use the abbreviated notation S(p1 ;p2;:::;pn) = Sp = Sp:n etc.

In some circumstances, a special class of T-Code sets are of interest:

De�nition4 Minimal and Strictly Minimal T-Code Sets. . A T-Code set

S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

for which all the T-pre�xes p1; p2; : : : ; pn used in its construction are

of a length that is smaller than or equal to the length of the shortest codeword

in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, i.e.,

8m � n; s 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

jsj � jpmj; (2)

is said to be \minimal". Furthermore, if this is also the case for all intermediate
T-Code sets, i.e.,

8m � n; s 2 S
(k1;k2;:::;km)
(p1;p2;:::;pm)

jsj � jpmj; (3)

S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

is said to be \strictly minimal".
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2.3 T-Code Set Size

The following lemma on the number of strings in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

was proved by

Titchener [Titchener 1986], initially for simple T-Code sets. In its expanded
version for generalized T-Code sets [Titchener 1995], the lemma may be stated
as follows:

Lemma5. [Number of Codewords in S and S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

]. Consider an alphabet

S and a pre�x-free set of codewords (strings) S0 � S+ containing #S0 codewords.
A series of n � 0 successive T-augmentations with the T-expansion parameters
k1; k2; : : : ; kn will generate a set of

#S0
(k1;k2;:::;kn)
(p1;p2;:::;pn)

= 1 + (#S0 � 1)
nY
i=1

(ki + 1) (4)

codewords.

Proof: It follows from [De�nition 1] that a pre�x-free set S0 generates

#S0
(k)
(p) = #S0(k + 1)� k = (k + 1)(#S0 � 1) + 1 (5)

codewords under a T-augmentation with T-expansion parameter k. By induction
over n � 1 we obtain

#S0
(k1;k2;:::;kn)
(p1;p2;:::;pn)

= (k1 + 1)(k2 + 1) : : : (kn + 1)(#S0 � 1) + 1

= 1 + (#S0 � 1)
nY
i=1

(ki + 1) (6)

as the number of codewords in the set S0(k1;k2;:::;kn)(p1;p2;:::;pn)
.2

In the case of n simple T-augmentations of an alphabet S, the lemma sim-
pli�es to:

#Sp:n = 1 + (#S � 1)2n: (7)

3 T-Code Sets Represented by Trees

Readers that are familiar with coding issues will know that pre�x-free code sets
based on symbols from an alphabet S may be represented by \decoding trees".
Starting at the \root" of the tree, each symbol that is received causes the decoder
to either transit along a \branch" of the tree to another \node" of the tree, or
to conclude that a complete codeword has been received. There are two types
of nodes in a decoding tree:\branch nodes" and \leaf nodes". Branch nodes
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are characterized by up to #S outgoing branches associated with the receipt
of symbols from S. Leaf nodes, on the other hand, have no outgoing branches
attached to them. Once the decoder has reached a leaf node, it knows that it has
found a codeword boundary in the received symbol stream and that the next
symbol in the stream belongs to the following codeword. The same may be the
case if the decoder reaches a branch node and the next symbol received has no
outgoing branch associated with it. A complete code is characterized by the fact
that all branch nodes in the tree have exactly #S outgoing branches.

Just like other pre�x-free, complete code sets, a T-Code set may be repre-
sented graphically as such a tree. In fact, the recursive nature of the code set
construction may be visualized by drawing the T-Code set as a tree.

Example 3 . [T-Code set construction in the tree picture]. Consider [Fig. 1]. The
original set S = f0; 1g is �rst augmented with T-pre�x 1 and T-expansion factor
2. Two additional copies of the tree representing A, connected to each other at
the 1-node of the upper tree, are a�xed to the 1-node of the original tree. Thus
we get the set

S
(2)
(1) = f0; 10; 110; 111g

at T-augmentation level n = 1. At T-augmentation level n = 2, we augment this
set to get the new set

S
(2;1)
(1;10) = f0; 110; 111; 100;1010; 10110;10111g:

In terms of trees, it involves copying the tree from T-augmentation level 1 twice,
and attaching the root of one copy to the \10"-node of the other. The \10"-node
of the upper tree is now a branch node and no longer a leaf node | a necessary

condition for S(2;1)(1;10) to be pre�x-free.

Working in the \tree picture" emphasizes the recursive nature of the T-
Code construction. This recursive nature is also the \secret" behind the self-
synchronisation properties of T-Codes, which we will discuss in the following
section.

4 Self-Synchronisation of T-Codes

Self-synchronisation is the property of a code to \pick up the pieces" after one or
more symbol errors have occurred on the communication channel (e.g., a serial
interface line). These may be errors due to inversion, deletion or insertion of
a symbol, and generally cause the decoder to loose alignment with respect to
the location of codeword boundaries in the symbol stream. Self-synchronisation
means that the code itself permits the decoder to �nd an unambiguously correct
codeword boundary in the course of normal decoding, thus re-establishing correct
word alignment.
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Figure 1: Two T-augmentations from S = f0; 1g via S
(2)
(1) to S

(2;1)
(1;10) , using T-pre�xes p1 =

1 and p2 = 10, and T-expansion parameters k1 = 2 and k2 = 1: during the �rst T-
augmentation, the basic tree gets copied k1 + 1 = 3 times, and the copies get attached to
each other in hierarchical order at their p1-nodes. During the second T-augmentation, the
tree from T-augmentation level 1 gets copied twice, and the root of one of the copies gets
attached to the p2-node of the other copy.

At �rst glance, variable-length codes seem to present the decoder with a
di�cult task, as it cannot expect codewords of a �xed length. Therefore, a single
symbol error will generally result in the loss of synchronisation with the decoder
now erroneously decoding entirely di�erent codewords with di�erent lengths.
Thus, variable-length code synchronisation is not only required at the start of
the decoding process, but also during the decoding process whenever a symbol
error results in a loss of synchronisation.

4.1 The Self-Synchronisation Mechanism of T-Codes

As we will show, T-Code sets are inherently statistically self-synchronisable as a
result of their structure, provided that the probability of occurrence for certain
codewords is greater than zero.

De�nition6 Statistically Self-Synchronisable Codes. . Consider a �nite
code C based on an alphabet S, i.e., C � S+. C is called self-synchronisable with
respect to a given source if the probability of synchronising after the reception
of less than N symbols converges to 1 as N goes to in�nity:

lim
N!1

Psynch(N ) = 1: (8)

779Guenther U.: Data Compression and Serial Communication with Generalized T-Codes



An initial proof for the self-synchronisability of (then simple) T-Codes was de-
vised by Titchener and Hunter [Titchener and Hunter 1985]. This proof simply
assumed a random input into the decoder, and solved the problem as an absorb-
ing Markov chain. While this proof could be expanded to included generalized
T-Codes, the recursive structure of the codes allows us to take a somewhat sim-
pler, inductive approach, and spell out a su�cient condition for the source that
ensures that a T-encoded symbol stream will be statistically synchronisable.

Theorem7. [T-Codes are statistically synchronisable]. A T-Code set S(k1;k2;:::;kn)(p1;p2;:::;pn)

is statistically self-synchronising if the probability P (pj; j�1) of decoding the T-

pre�x pj, 1 � j � n, in a decoding of the source symbol stream over Sk:j�1p:j�1 is
smaller than 1:

P (pj; j � 1) < 1: (9)

Proof (essentially by induction): Consider a decoder that starts decoding a sym-

bol stream. The decoder operates with a top-level T-Code set S(k1;k2;:::;kn)(p1;p2;:::;pn)
. As

mentioned before, obtaining synchronisation is equivalent to �nding a codeword
boundary between codewords from that set in the symbol stream. Due to the
recursive structure of T-Code sets, every codeword boundary with respect to

the set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

in the symbol stream is also a codeword boundary with

respect to S
(k1 ;k2;:::;kn�1)
(p1 ;p2;:::;pn�1)

and all other sets at the lower T-augmentation levels,

i.e., S
(k1;k2;:::;ki)
(p1;p2;:::;pi)

where i < n. The same applies to all of the intermediate sets,

such that a codeword boundary with respect to S
(k1;k2;:::;kj)
(p1;p2 ;:::;pj)

is also always a

codeword boundary with respect to S
(k1;k2;:::;ki)
(p1;p2;:::;pi)

if i < j. The following example

illustrates this:

Example 4. [Common boundaries]. Consider the binary T-Code set S(1;1;3)(1;10;0) from

[Example 2]. If we choose an arbitrary message encoded with S
(1;1;3)
(1;10;0), let's say,

e.g., 100100101001110101111011, we can decode it as a message in all of the
intermediate sets at T-augmentation levels 0 to 2:

S 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1

S
(1)
(1) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1

S
(1;1)
(1;10) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1

S
(1;1;3)
(1;10;0) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1

Here, the vertical bars indicate the position of the codeword boundaries. As we
can see, each codeword boundary at a higher level set is also a boundary in
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the decoding with respect to all lower sets. This is because we can \spell" all
codewords in a T-Code set uniquely using codewords from any of its intermediate
sets.

A T-Code decoder operating over S(k1 ;k2;:::;kn)(p1 ;p2;:::;pn)
may thus be thought of as implic-

itly decoding over all intermediate sets at the same time. In its unsynchronised
state, the decoder is only in synchronisation with the codeword boundaries in
S. In the following paragraphs, we will show that the decoder may now use
the information received to try and determine whether a boundary in S is also a
boundary in the higher T-augmentation level sets, up to a maximum level j � n.
If such a common boundary is found, the decoder is at \synchronisation level"

j, i.e., in synchronism with respect to S
(k1;k2;:::;kj)
(p1;p2;:::;pj )

.

The decoder using S
(k1;k2;:::;kj)
(p1;p2;:::;pj )

for decoding now knows that all further code-

word boundaries decoded over Sk:jp:j will be correct ones (provided that no more

symbol errors occur). Again, the decoder may use the received information to de-
termine if any of these boundaries is shared with sets at higher T-augmentation
levels, and so forth. Once the decoder has determined a codeword boundary in

S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, it is fully synchronised. If it cannot unequivocally determine that

a codeword boundary with respect to an intermediate set Sk:jp:j is also a bound-
ary with respect to a higher set, at least one more codeword must be decoded

over Sk:jp:j before unambiguous synchronisation with respect to a set at a higher
level can be established. The synchronisation process may thus be viewed as a
sequence of up to n transitions between increasing synchronisation levels.

This leaves us with the question: \When is the decoder able to establish that

a boundary with respect to a set S(k1;k2;:::;ki)(p1;p2;:::;pi)
also a boundary with respect to a

set S
(k1;k2;:::;ki;:::;kj)
(p1;p2;:::;pi;:::;pj )

at a higher T-augmentation level j?" Instead, we may ask

\when is a boundary with respect to a set Sk:jp:j also a boundary with respect

to a set S
(k1;k2;:::;kj;kj+1)
(p1;p2;:::;pj;pj+1)

at the next T-augmentation level?", where j � i. The

initial question may then be answered by induction.

The set S
(k1;k2;:::;kj)
(p1;p2;:::;pj)

, j � i, shares all but one of its codewords (the T-pre�x

pj+1) with the set S
(k1;k2;:::;kj+1)
(p1;p2;:::;pj+1)

. The remaining codewords in S
(k1;k2;:::;kj+1)
(p1;p2;:::;pj+1)

,

when read as messages over S
(k1;k2;:::;kj)
(p1;p2;:::;pj )

, also all end in one of these shared

codewords | with the exception of the codeword p
kj+1+1
j+1 , the only codeword

in S
(k1;k2;:::;kj+1)
(p1;p2;:::;pj+1)

that ends in pj+1. Moreover, the T-augmentation algorithm en-

sures that all S
(k1;k2;:::;kj)
(p1;p2;:::;pj)

-codewords boundaries inside a S
(k1;k2;:::;kj+1)
(p1;p2;:::;pj+1)

-codeword

are boundaries following the T-pre�x pj+1.

Thus, if the decoder can exclude the possibility that the S
(k1;k2;:::;kj)
(p1;p2;:::;pj )

-codeword

stream preceding the S
(k1;k2;:::;kj)
(p1;p2;:::;pj )

-codeword boundary in question ends in pj+1,

781Guenther U.: Data Compression and Serial Communication with Generalized T-Codes



this boundary is de�nitely also a valid boundary with respect to S
(k1;k2;:::;kj+1)
(p1;p2;:::;pj+1)

.

The decoder can then switch (at least) to synchronisation level j + 1. If the

decoder cannot unambiguously exclude the possibility that the S
(k1;k2;:::;kj)
(p1;p2;:::;pj )

-

codeword stream might or does end in the T-pre�x pj+1, the decoder cannot
switch to synchronisation level j+1: we have a situation that we will refer to as
a blocking condition.

In the case of a blocking condition, the S
(k1;k2;:::;kj)
(p1;p2;:::;pj)

-boundary may be either

\in the middle" of an S
(k1;k2;:::;kj+1)
(p1;p2;:::;pj+1)

-codeword following a T-pre�x pj+1, or at

the end of an S
(k1;k2;:::;kj+1)
(p1;p2 ;:::;pj+1)

-codeword (i.e., at a valid codeword boundary with

respect to S
(k1;k2;:::;kj+1)
(p1;p2;:::;pj+1)

). However, the decoder lacks the necessary information

to determine which of these two cases it has encountered. To get this information,

it must decode at least one more codeword over S
(k1;k2;:::;kj)
(p1 ;p2;:::;pj )

before it can switch

to synchronisation level j + 1 or higher. (The blocking condition replaces the
\pre�x" and \su�x" conditions used earlier, e.g., in [Titchener 1986]).

For the practical implementation of a decoder, it is of interest to investigate
the circumstances under which the decoder might encounter a blocking condi-
tion. Consider a decoder that has decoded the last codeword s at synchronisation
level i, i.e., s 2 Sk:ip:i . Furthermore, let us presume that the decoder has not en-
countered any blocking conditions with respect to the pre�xes pi+1; : : : pj, i < j,
as a result of decoding s. If this decoder is to encounter a blocking condition with
respect to pj+1, the following necessary condition, referred to as the blocking
pre-condition, must be satis�ed:

pj+1 �
Sk:i
p:i

s; (10)

i.e., the last codeword decoded, s 2 Sk:ip:i , either equals pj+1, or is a su�x of pj+1
if pj+1 is decoded as a string over Sk:ip:i . It simply means that unless the last
codeword s matches the end of pj+1, we do not have a blocking condition. The
blocking pre-condition stated above is stricter than that formulated by Titchener
[Titchener 1986], insofar as we require that s be a su�x of pj+1 not only over
S, but also over Sk:ip:i . The justi�cation for this is that pj+1 is a codeword in

Sk:jp:j , and that it thus has a unique spelling (decoding) in Sk:jp:j and all lower sets,

including Sk:ip:i . This unique decoding over S
k:i
p:i must end in s in case of a blocking

condition.

The su�cient condition in [Theorem 7] demands that the T-pre�xes at every
T-augmentation level should occur with a probability of less than 1. This en-

sures that when such additional decodings are made over S
(k1;k2;:::;kj)
(p1;p2;:::;pj)

as a result

of a blocking condition, the decoder will eventually encounter a S
(k1;k2;:::;kj)
(p1;p2;:::;pj )

-

codeword other than pj+1. This codeword will not satisfy the blocking pre-
condition, thus permitting the decoder to switch to synchronisation level j + 1
or perhaps further. By induction, the decoder will thus eventually reach the �nal
synchronisation level n. This concludes the proof of [Theorem 7].2
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For transparency, we may write the synchronisation mechanism for Sk:np:n in
pseudo-code:

<START>
j = 0; d = �; status=unsynchronised;

LABEL1: s = DecodeNextWord(Sk:jp:j );
d = Concatenate(d; s);

LABEL2: if (blocking condition for pj+1) goto LABEL1;
j = j + 1;
if (j < n) goto LABEL2;
status=synchronised;

<END>

In this code, the variable j indicates the synchronisation level that the de-
coder operates at. The string of already decoded symbols is stored in d.

When testing for the occurrence of a blocking condition, it is probably easier
in a practical implementation to �rst test for the occurrence of a blocking pre-
condition. As we shall see, this requires fewer comparisons. In practice, most
codewords s 2 Sk:ip:i , i > 0, tend not to cause blocking conditions and tend not
to satisfy the blocking pre-condition. Hence it may be prudent for a decoder to
test the last decoded word s for blocking pre-conditions rather than for blocking
conditions. The associated pseudo-code may be written as:

<START>
j = 0; d = �; status=unsynchronised;

LABEL1: s = DecodeNextWord(Sk:jp:j );
i = j;
d = Concatenate(d; s);

LABEL2: if (pj+1 �
Sk:i
p:i

s) then

f
if (blocking condition for pj+1) goto LABEL1;

g
j = j + 1;
if (j < n) goto LABEL2;
status=synchronised;

<END>

Note that we have introduced a new variable i into the program. It records
the T-augmentation level at which the last codeword s was decoded.

Whenever a blocking pre-condition is encountered, the decoder must deter-
mine whether there is in fact a blocking condition. In this process, the decoder
may encounter three mutually exclusive cases in which a blocking condition ex-
ists:

{ Case 1: s = pj+1. This is the trivial case and the only type of blocking
condition that its possible between adjacent levels, i.e., when j = i.
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{ Case 2: d �
S
pj+1 �

Sk:i
p:i

s, i.e., pj+1 is a su�x (over S) of the symbol stream

d received since the beginning of the synchronisation process, and pj+1 is
longer than s. This is only possible if the number of symbols in S received
since the beginning of the synchronisation process is greater than or equal
to the length of pj+1: jdj � jpj+1j.

{ Case 3: pj+1 �S
d �

S
s, i.e., the symbol stream d received since the start

of the decoding is a su�x (over S) of pj+1, and pj+1 is longer than s. This
is only possible if the number of symbols received since the beginning of
the synchronisation process is less than the length of pj+1: jdj < jpj+1j. In
this situation, it is possible that \lost" symbols prior to the start of the
synchronisation process would have complemented the received symbols to
give pj+1, and we have a blocking condition.

If none of the three cases holds, there is no blocking condition and the decoder
may switch to synchronisation level j + 1 or even further. Accordingly, we may
re�ne our pseudo-code above:

<START>
j = 0; d = �; status=unsynchronised;

LABEL1:

s = DecodeNextWord(Sk:jp:j );
i = j;
d = Concatenate(d; s);

LABEL2:
if (pj+1 �

Sk:i
p:i

s) then

f
if (s = pj+1) then goto LABEL1;
if (d �

S
pj+1 �

Sk:i
p:i

s) then goto LABEL1;

if (pj+1 �S
d �

S
s) then goto LABEL1;

g
j = j + 1;
if (j < n) goto LABEL2;
status=synchronised;

<END>

It should now be apparent why it is prudent to test for the blocking pre-
condition �rst: each test for a blocking condition requires four comparisons,
whereas a test for a blocking pre-condition requires only a single comparison.

Let us consider an example:

Example 5 . [T-Code self-synchronisation]. Assume that the following bitstream

is taken from a message encoded with the binary T-Code set S
(1;1;3)
(1;10;0) from the

table on page 7. The bitstream starts at an arbitrary point, such that the decoder
has no initial synchronisation information above the bit level:

: : :11010111000101001010010001001010100101001010110 : : :
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The decoder now starts in synchronism with S = f0; 1g, i.e., at synchronisation
level 0 and �nds the �rst codeword boundary at that level, marked by a dot:

: : :1:1010111000101001010010001001010100101001010110 : : :

The codeword decoded over Sk:0p:0 = S, a 1, is also the T-pre�x p1 = 1 for S
(1)
(1) ,

so we have a blocking condition according to Case 1: it is unclear at this stage

whether the 1 is the second bit of the codeword 11 in S
(1)
(1) = f0; 10; 11g or whether

it is the �rst bit of the codewords 10 or 11 in that set. Thus it is ambiguous as
to whether the decoder has found a codeword boundary in a higher set, i.e., it
cannot switch beyond S for the time being. The decoder now detects the next
codeword in S, in this case the next bit:

: : :1:1:010111000101001010010001001010100101001010110 : : :

This is also a 1, which still doesn't allow the decoder to unambiguously decide

whether it has found a codeword boundary in S
(1)
(1) or a higher set. Either, the

�rst two bits that it decoded are a 11 codeword in S
(1)
(1) , or the �rst bit is a 11

with the leading 1 missing, and the second 1 is the �rst bit of a 10 or 11 (at this
stage, the decoder does not know that the next bit is a 0). The decoder keeps
on decoding in S and \peels" the next bit o�:

: : :1:1:0:10111000101001010010001001010100101001010110 : : :

This time, it has clearly found a codeword boundary in S(1)(1) | a 0 always marks

the end of a codeword in S
(1)
(1) . More formally, 0 6= p1. For the decoder, this

means that it is now in synchronism with respect to S
(1)
(1) , i.e., it has reached

synchronisation level 1. The decoder may now check whether it can go to a
higher synchronisation level. The last codeword decoded in S, s = 0, is a su�x
of the level 2 T-pre�x p2 = 10, i.e., we have a blocking pre-condition because
10 �

S
0. The level 2 T-pre�x p2 is also a su�x of previously received symbol

stream d = 110, and thus we have a blocking condition according to Case 2

above. The decoder is con�ned to S
(1)
(1) for decoding, and it decodes a 10 as the

next code word:

: : :1:1:0:10:111000101001010010001001010100101001010110 : : :

As the 10 is the T-pre�x for the next T-augmentation, we have another blocking

condition which prevents the decoder from switching to S
(1;1)
(1;10), and S

(1)
(1) remains

the set over which the next codeword is decoded:

: : :1:1:0:10:11:1000101001010010001001010100101001010110 : : :

The 11 marks a codeword boundary in S
(1;1)
(1;10). Thus the decoder is now de�nitely

in synchronism with respect to S(1;1)(1;10). The 11 does not cause a blocking condition

with respect to p3 = 0 either, which means that the decoder may switch to
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synchronisation level 3, i.e., it is now fully synchronised with respect to S
(1;1;3)
(1;10;0).

The remaining codeword boundaries are

: : :1:1:0:10:11:100:01010:01010:0100:0100:1010:100:1010:01010:11:0 : : :

In this case, we have lost 7 bits to the synchronisation process.

See [Titchener 1986] and [Titchener and Hunter 1985] for an introduction to
the synchronisation process for simple T-Codes, and [Titchener 1995] for an
extension of this theory to generalized T-Codes. The paper by [G�unther and
Titchener 1995b] presents a method of calculating the expected synchronisation
delay of a given generalized T-Code set, while [Higgie 1991] o�ers a comparison
of the synchronisation performance of simple T-Code sets based on simulations.

4.2 Error Echo and Error Bound

As we have seen, the T-Code self-synchronisation mechanism depends on a se-
quence of switching processes to higher synchronisation levels, i.e., correct word
alignment with respect to T-Code sets at higher T-augmentation levels. A syn-

chronisation process with respect to a set S
(k1 ;k2;:::;kn)
(p1 ;p2;:::;pn)

starts at T-augmentation

level 0 and carries the decoder through to T-augmentation level n. During the
process, a decoder at synchronisation level j may switch to level j+1 or further
unless it decodes the T-pre�x pj+1 (a Case 1 blocking condition). A synchronis-
ing string in S+ is therefore of the form [see Titchener 1995]:

p?1p
?
2 : : : p

?
ns; (11)

where s 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. The expression p?j represents a series of zero or more

successive T-pre�xes pj. A series of pj may contain successive p
kj+1
j -codewords,

and may be written as (p
kj+1
j )?plj, where 0 � l < kj + 1. A decoder operating

over S
(k1;k2;:::;kj)
(p1;p2;:::;pj )

, but synchronised only with respect to S
(k1;k2;:::;kj�1)
(p1;p2 ;:::;pj�1)

and not

with respect to S
(k1 ;k2;:::;kj)
(p1 ;p2;:::;pj )

, will nevertheless decode the correct sequence of

p
kj+1
j -codewords. Decoding errors may only occur at the end of the series, where
the decoder may be in error by presuming that the following non-pj-codeword
has exactly l T-pre�xes pj . This happens because any T-pre�xes pj preceding the
series are \obscured" to the insu�ciently synchronised decoder. However, they

may have been part of a previous p
kj+1
j -codeword preceding the start of the de-

coding/resynchronisation. Any synchronising sequence, according to [Equation
11], consists of at most n such T-pre�x series. Presuming that the end of each of
these series causes a separate character error at their end, the maximumnumber
of character errors due to synchronisation is n. Together with a possible decod-
ing error at the start of the synchronisation process (due to missing or corrupted
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symbols prior to the symbol with which the decoder starts synchronising), this
yields an error bound of at most n+ 1 wrongly decoded characters.

An intriguing aspect of this is the so-called \error echo", where character
errors may occur long after the actual symbol error in the symbol stream, with
correct decoding in between. It is best demonstrated in an example:

Example 6 . [Error Echo]. As a very simple case, consider the set S(1)
(1) = f0; 10; 11g

and the bitstream
: : :111111111111100 : : : ;

with the code assignments a = 0, b = 10 and c = 11. The decoding of the correct
bitstream is \ccccccba". With the �rst bit in error, the bitstream becomes

: : :011111111111100 : : : ;

and decodes as \accccccaa". We see that there is a decoding error at the point
where the bit error occurs, followed by a number of correctly decoded T-pre�x-
T-pre�x words, and �nally another error | the so-called \error echo".

5 Matching T-Codes to an Information Source

In the previous sections, we have focussed on the structure and properties of T-
Code sets without paying any attention to the statistics of an information source
that we may wish to encode using T-Codes. However, this is of signi�cance for
practical implementations, in particular where good compression is required. We
presume here that our information source is memoryless and that each of the
m source characters xj, j = 1; : : : ;m, occurs with a certain probability P (xj).
The encoding of xj, E(xj), is a codeword from a variable-length code based on
a �nite alphabet S.

The practical value of this variable-length code is at least partly determined
by the redundancy that is left in an encoded symbol stream. The redundancy of
the code with respect to the source is given by

r(E) =
mX
j=1

P (xj)
�
jE(xj)j+ log#S P (xj)

�
; (12)

where jE(xj)j is the length of the encoding of xj, measured as the number of
alphabet symbols in E(xj). Hu�man [Hu�man 1952] introduced the now well-
known algorithm for maximizing the coding e�ciency of memoryless information
sources, by deriving the code set directly from the probability distribution of the
source. No such direct algorithm is known for T-Code sets. To �nd the T-Code
set which best matches a given source, we may perform a search of all feasible
sets and pick one of those that minimize the redundancy.
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The search algorithm presented in this paper works recursively. In principle,
the routine takes a given T-Code set as input (initially the base alphabet S)
and runs through all feasible T-pre�xes and T-expansion parameters. It then
performs a T-augmentation for each of the combinations and calculates the re-
dundancy of the resulting T-augmented set. This redundancy is compared with
the lowest redundancy found so far, which is then updated if required. The
routine then calls itself with the T-augmented set as an input.

Before discussing the pseudo-code, it is prudent to �rst consider a few compu-
tational shortcuts. This is required because the number of possible T-pre�x/T-
expansion parameter combinations is unlimited, and we cannot possibly scan an
unlimited number of T-Code sets. As we shall see, the number of feasible sets,
i.e., sets that could possibly yield a minimumredundancy, is nevertheless limited.
It thus pays to consider carefully which T-pre�x/T-expansion parameter com-
binations are feasible and under which circumstances unnecessary computations
may be avoided.

Firstly, we notice that the redundancy depends on jE(xj)j rather than the
literal reading of E(xj). It is therefore su�cient to generate code length distri-
butions of T-Code sets rather than the full sets, an approach which we will call
\virtual T-augmentation". The code length distribution of a T-Code set Sk:i+1p:i+1

is easily calculated if ki+1, jpi+1j, and the code length distribution of Sk:ip:i are

known. Let N (Sk:ip:i ; l) be the code length distribution of Sk:ip:i , i.e., the number of

codewords of length l in the T-Code set Sk:ip:i, and de�ne N (Sk:ip:i ; l) = 0 for l � 0.

Furthermore, we de�ne N 0(Sk:ip:i ; l) as

N 0(Sk:ip:i ; l) =

�
N (Sk:ip:i ; l) : 0 < l 6= jpi+1j
N (Sk:ip:i ; l)� 1 : l = jpi+1j

(13)

It follows from [De�nition 2.3] that the code length distribution of Sk:i+1p:i+1 is given
by

N (Sk:i+1p:i+1 ; l) =

ki+1�1X
k0=0

N 0(Sk:ip:i ; l � k0jpi+1j) + N (Sk:ip:i ; l � ki+1jpi+1j): (14)

The �rst term on the right hand side of this equation accounts for the codewords
in the \�rst ki+1 copies of Sk:ip:i" if we use a T-augmentation table as in [Example
2.1]. The second term accounts for the \last copy" that has ki+1 T-pre�xes
attached to its codewords.

[Equation 14] gives rise to a second shortcut. Since N (Sk:i+1p:i+1 ; l) depends

only on jpi+1j, but not on pi+1 itself, the redundancy in T-Code sets depends
only on the length of the pre�xes chosen, but not on their literal reading. This
implies that two T-Code sets with identical T-expansion parameters and iden-
tical pre�x lengths have the same redundancy. Instead of performing virtual
T-augmentations for each T-pre�x, our routine will only have to consider vir-
tual T-augmentations for each pre�x length.
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The assignment between source characters and codewords is made in order of
the source characters' probabilities, such that for two arbitrary source characters
xj and xj0

P (xj) � P (xj0) () jE(xj)j � jE(xj0)j: (15)

If a T-Code set has more codewords than there are source characters, some
codewords will remain unassigned if they are above a certain length. A further
T-augmentation of this set using the T-pre�x p and the T-expansion parameter
k cannot yield a better redundancy unless we are able to encode at least one
characters with a shorter codeword after the T-augmentation than before. As
the T-augmentation itself removes a short codeword (the T-pre�x), we may
require that at least two new codewords be generated that satisfy the following
conditions:

{ both codewords must be generated by pre�xing an existing codeword with
the string pk, i.e., they must contain the maximum number of T-pre�xes p.
If this is not the case, codewords of equivalent or shorter length (and hence
the same or better contributions to the coding e�ciency) can be generated
in a T-augmentation with T-expansion parameters less than k.

{ both codewords must be shorter than the length of the longest codeword
used in the non-T-augmented set.

This is our third shortcut. It ensures that the search will terminate as it puts a
limit on both T-pre�x lengths and T-expansion parameters.

The memory and computing requirements of virtual T-augmentations may
be limited by truncating the code length distributions involved.We may truncate
them to an upper limit for the length of the longest codeword that could possibly
be assigned to a source character. For a source with m characters, this limit is
given by the longest codeword possible in a Hu�man code set of such a source:
for m source characters and the alphabet S, we can always Hu�man encode such
that, for all j,

jE(xj)j �

�
m � 1

#S � 1

�
; (16)

where the symbols d and e indicate that the expression enclosed is rounded up

to the nearest integer. This limit also holds for T-Codes: the T-Code set S
(k)
(p)

where p 2 S and k = d m�1
#S�1e permits such an encoding, and we thus have an

upper limit for our redundancy. If it is at all possible to encode more e�ciently,
the number of codewords that are shorter than m�1

#S�1 must be increased. A

T-augmentation that generates only codewords longer than this cannot yield
a lower redundancy. As a fourth shortcut, we may hence disregard codeword
lengths over d m�1

#S�1e.

A �fth shortcut arises from Nicolescu's paper on the uniqueness of T-Code

set prescriptions [Nicolescu 1995]. He shows that if pn+1 = p
(kn+1)
n ,

S
(k1;k2;:::;kn;kn+1;:::;kn0 )
(p1;p2;:::;pn;pn+1;:::;pn0 )

= S
(k1;k2;:::;k

0

n;kn+2;:::;kn0 )
(p1;p2;:::;pn;pn+2;:::;pn0 )

; (17)
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where k0n = (kn+ 1)(kn+1+ 1)� 1. Nicolescu's rule may be read in reverse: any
T-augmentation with an expansion parameter k0n may be split up into two or
more successive T-augmentations | as long as we can factorize k0n+1. We may
therefore restrict ourselves to virtual T-augmentations for which the T-expansion
parameter is one less than a prime number. All other T-augmentations create
distributions which are (if feasible) created as a matter of course anyway and do
not need to be scanned twice.

Last but not least, it is obvious that a particular T-Code set is only worth
investigating if the number of codewords in the set is su�ciently large to encode
the source.

A recursive program was written which performs searches according to the
above principles. Its pseudo-code is listed in [Figure 2]. A feasibility test is per-
formed on each T-pre�x/T-expansion parameter combination, using the short-
cuts described above.

The early versions of the program were implemented using MATLABR and
Perl. Lately, a C version of the routine has been written, which implements all of
the shortcuts described. In most practical applications, the source probabilities
are not known to a high precision, such that real numbers in the program may
be represented as oats rather than doubles. In its present version, the C routine
was tested on a 90 MHz DEC Alpha workstation. The following example gives
an indication of performance:

Example 7 . [T-Code versus Hu�man code]. For a test, a binary alphabet and a
source with 14 characters x0; x1; : : : ; x13 were chosen. The source characters had
the following probabilities of occurrence:

P (x1) = 0:15 P (x2) = 0:15 P (x3) = 0:14 P (x4) = 0:14 P (x5) = 0:13
P (x6) = 0:12 P (x7) = 0:1 P (x8) = 0:03 P (x9) = 0:02 P (x10) = 0:01
P (x11) = 0:005 P (x12) = 0:003 P (x13) = 0:001 P (x14) = 0:001

A binary Hu�man encoding of this source yields seven codewords of length
3, one each of lengths 4, 5, 6, 7, and 8, and two of length 9. The redundancy in
the encoding is approximately 0.035 bits with an achievable compression down
to about 79 per cent of the equivalent 4-bit block code. The T-Code matching
yields one codeword of length 2, four of length 3, three of length 4, one of length
5, one of length 7, and four of length 8, plus some longer codewords that remain
unused. The associated redundancy is approximately 0.1 bits, and compression
is achievable down to about 80 per cent. The associated T-Code set may be
constructed with T-pre�xes of lengths 1, 1, and 5 respectively, with k1 = 2,
k2 = 2, and k3 = 1. To obtain this result, 184509929 calls to the recursive
matching routine were required, which took 19130 seconds of CPU time on a 90
MHz DEC Alpha workstation.

The execution time of the routine remains a concern. However, it is con-
ceivable that further shortcuts in program structure and the algorithm may be
found.
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<MAIN>
f
/* de�ne alphabet size and source character probabilities */
global const number of alphabet symbols;
global const source probability distribution;
/* initialize records of best matching set */
global best redundancy=INFINITY;
global best code distribution=();
global best set parameters=();
/* de�ne start values:

start distribution has number of alphabet symbols
symbols of length 1, and no parameters have been used so
far as no virtual T-augmentation has taken place yet */

local start code distribution=(number of alphabet symbols);
local start set parameters=();
/* call recursive matching routine */
recursive match(start code distribution,start set parameters);
/* print results */
print(best redundancy);
print(best code distribution);
print(best set parameters);

g

<SUBROUTINE> recursive match(base code distribution,base set parameters)
f
local p=minimum length(base code distribution);
/* use T-pre�x length only if feasible */
while(feasible(base code distribution,p,1))
f

local k=1; /* start with lowest k */
/* use T-expansion parameter only if feasible */
while(feasible(base code distribution,p,k))
f

/* perform virtual T-augmentation */
local new code distribution=t augment(base code distribution,p,k);
local new set parameters=(base set parameters,(p,k));
local new redundancy=redundancy(new code distribution);
/* does the new set have a lower redundancy? */
if (new redundancy<best redundancy)
f

best redundancy=new redundancy;
best code distribution=new code distribution;
best set parameters=new set parameters;

g
/* recursively try to match new set */
recursive match(new code distribution,new set parameters);
/* try a larger T-expansion parameter */
k=next prime minus one(k+1);

g
/* try a longer T-pre�x */
p=next length(base code distribution,p);

g
g

Figure 2: pseudo-code for the recursive matching routine.
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The fact that the choice of T-pre�xes for minimum redundancy is only re-
stricted to their length may permit to inuence other aspects of the code. This
could be used to, e.g., adapt the code to the requirements of a band-limited
channel.

6 String Decomposition of the Longest Codewords

After \playing" with a few T-Code sets, the reader would probably �nd some of
the properties of T-Code sets relating to their longest codewords:

{ there are always two of them if a binary alphabet is used. More general, an
alphabet with n characters results in T-Code sets with n longest codewords.

{ the n longest codewords are all identical, except for the last symbol in each
codeword. We call this last symbol the \literal symbol", or \literal bit" in
the binary case.

{ minimalT-Code sets have the shortest longest codewords for a given set size.

This is not coincidental. In fact, the de�nition of T-Code sets implies that the

longest codewords ŝc in a particular T-Code set S(k1;k2;:::;kn)(p1;p2;:::;pn)
include all n T-

pre�xes, i.e., that they are of the form

ŝc = p
kn
n p

kn�1
n�1 : : : pk11 c; (18)

where c 2 S is the \literal symbol". This may be seen if the right hand side
of the above equation is read from the right to the left: initially, our set is an
alphabet and hence all elements, including the literal symbol \c", are \longest
codewords". The maximum length string that can be pre�xed to any of these in
the �rst T-augmentation is pk11 , such that pk11 c is one of the longest codewords

in S
(k1)
(p1)

. The maximum length string that can be pre�xed pk11 c in the second

T-augmentation is in turn pk22 , and so forth.

Nicolescu [Nicolescu 1995] showed that the T-pre�x part of the longest code-

word, p
kn
n p

kn�1
n�1 : : : pk11 , de�nes the set S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

. Nicolescu called this part the

\T-handle" of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. In analogy with the vector notation used for T-Code

sets, it is also denoted ~p
~k, where the tilde indicates that the entries in the vec-

tors are in reverse order. This result may be used to derive a set from one of its
longest codewords ŝc as follows:

1. start at T-augmentation level 0 with the set S..
2. decode ŝc over the set at the current T-augmentation level.
3. if ŝc decodes as a single codeword, ŝc is the longest codeword in the set at

the current T-augmentation level. Stop.
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4. identify the second codeword from the right of the decoding of ŝc. This
codeword is the T-pre�x for the next T-augmentation level.

5. count the number of times that this T-pre�x appears in the decoding left of
the last codeword decoded. This is the T-expansion parameter for the next
T-augmentation level.

6. create the next level set using the T-pre�x and T-expansion factor found.
Make it the current T-augmentation level set and continue at step 2.

Any arbitrary string in S+ may be used as input for this algorithm.

Example 8 . [String Decomposition]. Consider the binary string

00101001001001001:

We �rst start decoding the string from the left, using S as our decoding alphabet:

0:0:1:0:1:0:0:1:0:0:1:0:0:1:0:0:1

Naturally, we decode single bits only at this stage. The (underlined) second
bit from the right, a \0", is the T-pre�x p1 for the �rst T-augmentation level.
Looking further to the left, we also see that this pre�x appears twice, and thus

k1 = 2. Hence our �rst level set is S(2)(0) = f1; 01; 000; 001g. We now use this set

to decode the string. As before we start on the left:

001:01:001:001:001:001

We can now see that p2 = 001 (underlined) is the second level pre�x. Looking to
the left, we see that it occurs k2 = 3 times. Thus the T-Code set at the second
T-augmentation level is

S
(2;3)
(0;001) = f1; 01; 000; 0011; 00101; 001000;

0010011; 00100101; 001001000; 0010010011;

00100100101; 001001001000; 001001001001g

The string is now decoded using this set:

00101:001001001001:

This gives us p3 = 00101 and k3 = 1, which leads to the �nal set:

S
(2;3;1)
(0;001;00101) = f1; 01; 000; 0011;001000;

0010011; 00100101; 001001000; 0010010011;

00100100101; 001001001000; 001001001001;

001011; 0010101;00101000;

001010011; 0010100101; 00101001000;

001010010011; 0010100100101;00101001001000;

001010010010011;0010100100100101;

00101001001001000; 00101001001001001g: (19)

In a practical application, string decomposition of the longest codewords permits
the communication of the entire structure of a T-Code set to a receiver.
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7 Discussion

As we have seen, T-Codes exhibit strong inherent self-synchronisation proper-
ties. This is an advantage over most Hu�man codes when used for encoding over
noisy or otherwise lossy communication channels. Hu�man codes may have to
be transformed in many cases to provide appreciable self-synchronisation prop-
erties [Ferguson and Rabinowitz 1984],[Takishima, Wada and Murakami 1994].
In many cases, Hu�man codes may be transformed into T-Codes with equivalent
redundancy, but improved synchronisation performance, or into codes that are
very similar to T-Codes [Titchener 1995]. The source matching algorithm pre-
sented in this paper provides a practical tool for �nding a suitable T-Code set for
a given source. While the present algorithm may be slow, it is conceivable that
further, less obvious \shortcuts" exist which may lead to a signi�cant reduction
in complexity of the source matching process and thus to a signi�cant increase
in speed.

The present state of research suggest that T-Codes in the form presented
might be most useful in applications where the primary goals are a high data
throughput (requiring compression) and a good long-term error performance.
Digital telephony, video, and storage of image, video and audio data come to
mind. While being self-synchronizing, the T-Codes introduced in this paper pro-
vide no immediate error correction or detection. However, in the applications
mentioned this is usually of secondary importance as the human ear and eye are
capable of integrating over short-term errors.

Having the choice between several T-Code sets with the same redundancy
seems to provide additional possibilities for practical applications, such as in-
uencing the spectral properties of the encoded bitstream. Nevertheless, the
general principle that improvements in synchronisation performance a�ect the
coding e�ciency by adding redundancy seems to hold: the best matching T-Code
sets generally exhibit more redundancy with respect to a given source than a
Hu�man encoding of the source. However, this is not always so, as the example
in the program in [Section 5] shows.

Finally the inherent beauty of the T-Codes and their recursive construction
suggests that many other aspects of T-Codes are yet to be discovered.
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