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Abstract: In this paper we de�ne and study public data structures, which are con-
current data structures in the shared memory environment, which enable access to an
unknown (and possibly in�nite) set of identical processes. Speci�c cases of such data
structures (like counting networks and concurrent counters) have been studied recently,
and such data structures seem to model concurrent systems like client-server applica-
tions, in which the identities of the clients, and sometimes also their number, are not
known apriori.
Speci�cally, we study the relation between wait-free and bounded wait-free public data
structures - the former guarantees that every operation performed on the data structure
always terminates, regardless of the relative speed of the processes; the latter guarantees
that every such operation is terminated within a �xed number of steps. We present an
example of a public data structure which is wait-free but not bounded wait-free, and
then we show that if all the concurrent objects of the data structure are periodic, then
wait-freedom implies bounded wait-freedom.

1 Introduction

The subject of concurrent data structures has been the focus of several recent
works, which are motivated by the development of new parallel computers. A
traditional implementation of a (sequential) data structure consists of the codes
for all the operations the data structure supports, which behaves correctly when
all the operations are executed one after the other in a sequential fashion. An
implementation of a concurrent data structure gives a code which must behave
correctly even when executed by many processes concurrently.

Of particular interest are wait-free concurrent data structures, which guaran-
tee that any operation by a process is completed within a �nite number of steps,
regardless of the behavior of other processes (such as abnormal termination).
In implementing concurrent structures, one usually assumes that the total num-
ber of processes in the system, as well as the identities of these processes, are
known. However, this assumption is not always valid: for instance, in common
client-server applications, the identities of the clients, and in some cases also
their number, are not known a priori. Hence we de�ne the notion of a public
data structure. A public data structure is a concurrent data structure that is re-
quired to work correctly for any �nite number of concurrent processes { nothing
is assumed in advance about the number or the identity of the processes that
might access it. Among the data structures studied in the literature, counting
networks and concurrent counters [AHS91, MTY95] are public data structures.
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In this work we distinguish between two wait-freedom requirements: A weaker
one, which requires that every operation on the data structure always ter-
minates within a �nite number of steps, and a stronger one, which requires
that every such operation always terminates within a �xed and pre-determined
number of steps. A data structure which satis�es the latter property is called
bounded wait-free, and a wait-free data structure which is not bounded wait-
free is called unbounded wait-free. Bounded wait-freedom is superior to (possibly
unbounded) wait-freedom for both practical and theoretical reasons. Counting
networks [AHS91], and other types of concurrent counters [MTY95], are ex-
amples of bounded wait-free data structures. In [BMT95] we use the fact that
wait-free concurrent counters must be bounded wait-free, to show that a concur-
rent counter which counts modulo m may be constructed from counters which
count modulo b1 � � � ; bn respectively, only if every prime factor of m is also a
prime factor of one of the bi's.

The relation between wait-freedom and bounded wait-freedom in concurrent
data structures was �rst studied in [Her91a], where a hierarchy of wait-free
classes is given. In particular, [Her91a] brings an example of an unbounded wait-
free data structure, which is de�ned by the approximate agreement task. The
example in [Her91a] is based on the fact that the corresponding data structure
has in�nitely many initial states. It should be noted that if a data structure (a)
has �nitely many initial states, (b) can be accessed by a bounded number of
processes, and (c) each process may perform a bounded number of (non-atomic)
operations, then being wait-free is equivalent to being bounded wait-free, as can
be shown by the In�nity Lemma [K�on36]. A well known example of such case
is the consensus problem [FLP85, CIL87]. We present in this paper a simple
example that shows that this is not the case for public data structures. Then
we show that if the shared objects used by a protocol satisfy certain conditions,
wait-freedom becomes equivalent to bounded wait-freedom also in public data
structures.

1.1 The computational model

Our model of computation consists of a collection of fully asynchronous identi-
cal deterministic processes that communicate via atomic concurrent objects. We
model atomic concurrent objects by Mealy machines [HU79], where the input
alphabet is the set of operations applicable to the object, and the output alpha-
bet is the set of output values returned by the object. The objects are atomic
in the sense that in every execution all the accesses to a given object are totally
ordered in time.

1.2 Related Work

The area of concurrent and distributed data structure is relatively new, but has
already drawn the attention of many researchers. While the term concurrent data
structure, refers to a data structure that is stored in shared memory, the term
distributed data structure refers to a collection of local data structures stored at
di�erent processors in a message passing system. We will not try to review all
the relevant work here, but rather give just few pointers to the literature.

Few works have introduced general methods for transforming a given se-
quential implementation (one that works for just one process) into a wait-free
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concurrent one [Her91b, Plo89]. These results are mainly of theoretical inter-
est since the constructions involved are too ine�cient to be practical. Other
transformations are introduced in [Her90] for a large class of structures using
the compare-and-swap synchronization primitive; in [Her91b] using the load link
and store conditional primitives; and in [AT93] using timing assumptions.

More e�cient (though not necessarily wait-free) constructions for speci�c
data structures have been proposed. Peterson [Pet83] and Lamport in [Lam86b,
Lam86a] study wait-free implementation of reading and writing to atomic regis-
ters. Many constructions of concurrent B-trees, have been implemented mainly
for use in databases, see for example [BS77, LY81, Sag85]. AVL trees, 2-3 trees,
and a distributed extendible hash �le have been implemented in [Ell80a, Ell80b,
Ell85]. A distributed dictionary structure is studied in [Pel90]. A wait-free im-
plementation of a queue where one enqueuing operation can be executed concur-
rently with one dequeuing operation is given in [Lam83]. An implementation of a
queue that allows an arbitrary number of concurrent queuing and dequeuing op-
erations is given in [HW87], the implementation is deadlock-free but allows star-
vation of individual processes. A wait-free implementation of union-�nd struc-
tures is described in [AH91]. An e�cient wait-free implementation of a priority
queue is given in [IR93]. These data structures are not public data structures,
as they all assume a �xed and known set of processes which may access the data
structures.

Aspnes, Herlihy and Shavit [AHS91] have implemented a counter which
is a public data structure. They named the implementations they have found
counting networks. Counting networks have been further investigated in [AA92,
AHS91, HLS92, HSW91, KP92]. Another related public data structure, called
concurrent counter, was introduced in [MTY95] and later studied in [MT93,
BMT95].

Most of the works on wait-free protocols do not explicitly distinguish be-
tween wait-freedom and bounded wait-freedom. For example the de�nition of
wait-freedom in [AHS91, IR93, MTY95] corresponds to our de�nition of bounded
wait-freedom. The de�nition of wait-freedom in [Her91b] corresponds to our def-
inition of wait-freedom, and is distinguished from bounded wait-freedom. Specif-
ically, [Her91b] presents bounded wait-free implementations of concurrent object
X using concurrent object Y , and proves impossibility results using the (weaker)
wait-freedom requirement.

1.3 Preview

In the next section we provide the de�nitions used in the paper. Then we present
a very simple public data structure, which uses two atomic bits, which is wait-free
but not bounded wait-free. The following sections are devoted to presenting the
main result of the paper, which present conditions, in terms of properties of the
atomic objects used, which guarantee equivalence of wait-freedom and bounded
wait-freedom for public data structures. First we de�ne periodic data structures,
and prove that periodic data structures satisfy an interesting property, called the
reconstruction property. We then use this last result to show that every periodic
wait-free data structure which has �nite memory, must be bounded wait-free.
We conclude by presenting some extensions of our main result, and by showing
that further generalization of it might not be easy.
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2 De�nition and Notations

2.1 Concurrent Data Structures

A concurrent system consists of a shared memory and a collection of processes.
The shared memory is modelled by a collection of atomic objects, and the pro-
cesses are in�nite state machines, de�ned by the set of procedures they can
perform.

An atomic object is a basic memory unit, which enables processes to perform
prede�ned atomic operations on it. Formally, an atomic object r is de�ned by a
triple (Gr; Dr ; Or) where:

Dr is a set of the states of the atomic object.
Or is a set of output values which can be returned by the object.
Gr is a set of atomic operations de�ned on the atomic object; each operation

op in Gr is de�ned by a pair (�; �), where � is the transition function of op
and � is the output function of op, as follows:
� : Dr ! Dr de�nes the new state of the object, as a function of its current

state.
� : Dr ! Or de�nes the value returned by the object, as a function of its

current (i.e., old) state.

For example, a v-valued read-modify-write (rmw) register, which may hold values
froma set V of v elements, is an atomic object r de�ned by r = (Drmw ; Ormw; Grmw),
where Drmw = Ormw = V , and Grmw consists of the vv functions from V to
itself. If r is a read/write register over the same set of values V , then it has the
same sets of states and output values as above, but its operation set consists
of only v + 1 operations: a read operation and v write operations (one write
operation for each value in V ).

A Concurrent data structure over a concurrent system is a data structure
that enables several processes to perform simultaneously non-atomic operation
on it. Formally, a Concurrent data structure DS is a tuple (R; I;A; P ) where:

R = (r1; r2; � � �) is a sequence of atomic objects, ri = (Gri ; Dri ; Ori).
I = fv1;v2; � � �g is a set of vectors which de�ne the possible initial states of the

atomic objects. Each vector vj = (vj1; v
j
2; � � �) 2 I maps each atomic object

ri 2 R to a state vjri 2 Dri .
A = fa1; � � � ; ang is a set of procedures for performing the operations of the

data structure.
P = fp1; p2; � � �g is the set of processes that can access the data structure.

A state vector of a data structure DS = (R; I;A; P ) is a description of
the states of the atomic objects in a given moment, and is given by a vector
v = (v1; v2; � � �), where vi 2 Dri denotes the state of ri in v. DS has a �nite
memory if it has �nitely many state vectors (this is equivalent, in some precise
sense, to the requirement that it has �nitely many objects, each of which has
�nitely many states).

For example, if the data structure is a queue, then A includes the remove
procedure, and an insert a procedure for each element a which can be inserted
to the queue; each of these procedures consists of internal operations, and of
atomic operations on the atomic objects of the underlying concurrent system.
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Informally, a process executes a procedure by executing a sequence of atomic
steps. Each such step is composed of two parts:

1. Activating an atomic operation op on an atomic object r.
2. Changing the process' state according to its current state and the value

returned by the atomic operation op.

Formally, a procedure a is de�ned by its operation tree Ta = (Va; Ea). The
set of vertices Va is the set of states of a, where the root is the initial state of
a. The set of edges Ea is the set of the atomic steps that may be executed in
a. Each such edge e is identi�ed by a 5-tuple (s; op; r; `; t), denoting the process'
old state s, the operation op, the atomic object r on which op was executed,
the value ` returned by the operation, and the process' new state t;1 the edge
e above is directed from the vertex s to its son t. The out-degree of a vertex
s 2 Ta is the number of the distinct values ` that can be returned by op, that
is { the cardinality of range(�). In particular, for every possible ` 2 range(�)
there is an edge leaving the vertex s. A leaf in the tree corresponds to a state
which terminates the execution of procedure a.

A process p is a state machine, de�ned by a set of procedures Ap � A which
it may perform. When all the processes are identical, then Ap = A for every
process p 2 P . The set of states of p is the union [a2Ap

Va [ fidleg. p is in
the idle state when it is not involved in the execution of any procedure. p can
perform the following state transitions, for each procedure a 2 Ap:

(a) begin(a): Moving from the idle state to the initial state of a, which corre-
sponds to the root of Ta,

(b) end(a): Moving from a terminal state, which corresponds to a leaf in Ta, to
the idle state, and

(c) Any step which corresponds to an edge in Ea.

2.2 Public Data Structures

In this work we are interested in special concurrent data structure where the set
of processes performing operations on it is an in�nite set of identical processes.

De�nition1. Public data structure DS = (R; I;A) is a concurrent data struc-
ture DS0 = (R; I;A; P ) where the set of processes P is an in�nite set of identical
processes, and the set of procedures that each process p 2 P can perform is A.

From now on when we refer to a data structure we mean a public data
structure.

2.3 Runs Over Public Data Structures

Informally, a run x over a data structure DS = (R; I;A) is a pair (v; S) where v is
a state vector which denotes the contents of the shared memory at the beginning
of x (v is not necessary in I), and S is a (�nite or in�nite) sequence of events
taken by processes from P during x, where an event is a state transition of one

1 Observe that s and ` de�ne the remaining three components of an atomic step, which
are added only for convenience.
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of the types (a){(c) above. An event which is not an end(a) or a begin(a) event
will be denoted by step(op; �; �; r; v; v0), where op = (�; �) is the atomic operation
that was performed in the step, r is the atomic object on which op was applied,
v is the state of the atomic object before the step was taken and v0 = �(v) is
the state of the atomic object after the transitions function was activated (the
parameters �; � and v0 are redundant for the de�nition, but convenient to use).
Note the di�erence between step in a run and step of a procedure, de�ned in
Section 2.1.

At the beginning of a run x = (v; S), all the processes in P are in the idle
state, and the sequence of events S consists of events taken by various processes,
according to the procedures which de�ne them. A process p excecutes a procedure
a in a run by following a path in the operation tree Ta which de�nes a; this path
always begins at the root, and each atomic step of p corresponds to an edge e
leaving the current vertex in Ta to one of its sons, where e is determined by the
value returned by atomic operation executed by p. When the sequence of events
S is �nite, we say that the run is �nite. The state vector v is called initial(x),
and when the run is �nite, the state vector u which represents the contents of
the shared memory at the end of x is called final(x). We say that x is a run
from v to u if initial(x) = v and final(x) = u.

Let x = (v; S) and y = (v; S0) be two runs with the same initial vector. The
run y is a pre�x of x (and x is an extension of y) if S0 is a pre�x of S. The run
x is denoted as the concatenation x = y � z, where z = (x � y) is the su�x of
S obtained by removing S0 from S. The sequence of events z is denoted as a
partial run. (v; null), where null is an empty sequence, denotes an empty run.
A run x is a legal run of a data structure if v belongs to I.

A process p is involved in a run x if it is not idle in x (i.e., if it has started
some procedure a 2 A but has not completed it yet).

Through this work we use the following notation, that de�nes the next op-
eration a given process is going to take in a given run.

De�nition2. A process p is (�; r)�loaded in a run x if it is in a state in which it
is going to perform the operation op = (�; �) on the atomic object r = (G;D;O),
for some op 2 G.

2.4 Wait-Free Public Data Structures

We require from any public data structure that it satis�es the wait-freedom
property, which is: if a process p is activated in�nitely often in a legal run x,
then p completes the execution of any procedure that it starts during x.

As we show later, there are wait-free public data structures in which there is
no upper bound on the number of steps that a process may execute in order to
complete the execution of a given procedure. A data structure which does not
have this unpleasant property is called bounded wait-free data structure.

De�nition3. A data structure DS = (R; I;A) is bounded wait-free if there
exists a constant h such that in any run x over DS, every procedure is completed
within at most h steps.

A wait-free data structure which is not bounded is called an unbounded wait-
free data structure.
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3 An Example of an Unbounded Wait-free Data Structure

In this section we present an example of an unbounded wait-free data structure,
denoted DSub, which uses only two binary atomic objects. DSub = (R; I;A)
where:

{ R consist of two identical atomic objects, r1 and r2, de�ned by the triple
(G;D;O) where:
The sets of states and output values are given by D = O = f0; 1g.
The atomic operations are G = fread; set 1; incg where:

inc = (�inc; �inc), where �inc(v) = v + 1(mod 2) and �inc(v) = v.
read = (�read; �read), where �read(v) = v and �read(v) = v.
set 1 = (�set 1; �set 1), where �set 1(v) = 1 and �set 1(v) = v.

{ I = f(0; 0)g (That is, there is a single initial state vector in which both
objects are in state 0.)

{ A = fafg, where the procedure af is described in �gure 1 in a Pascal like
language (the translation of the procedure to an operation tree is immediate).

Informally, a process executes the procedure af as follows: it starts by reading
r1; if the value read is 0, then it increments r2 by 1 (mod 2), writes 1 in r1, and
terminates. Otherwise (i.e., the value read in r1 is 1), it reads r2 repeatedly, and
it terminates after it reads the same value in two successive read operations.

In order to prove the properties of the above data structure, we observe the
following:

1. A process that reads 0 in r1 terminates the execution of procedure af in
three steps: reading r1, incrementing r2, and writing 1 in r1.

2. Only processes that read 0 in r1 increments r2.
3. Once the value of r1 is changed to 1, it remains so forever. Hence, in each run

x in which some process writes 1 in r1, there is a �xed number of processes,
Mx (Mx depends on x), which read 0 in r1.

Lemma 3.1 The data structureDSub de�ned above is a wait-free but not bounded
wait-free data structure.

Proof. First we prove that the data structure DSub is a wait-free and then we
prove that it is not bounded wait-free.

To show that DSub is wait-free, we must show that in each run x, each
execution of af terminates. Consider such an execution of af by a process p,
which does not terminate within three steps. Then by 1 above, p has read 1
in r1, and hence p starts reading r2 repeatedly, and it terminates when it gets
identical values in two successive read operations.

By 3, only Mx processes read 0 in r1 for some constant Mx, and hence by
2 the value of r2 is incremented at most Mx times in the run x. The proof is
completed by observing that, between any two successive reads of r2 by p (except
for the last one), r2 must have been incremented - and hence p reads r2 at most
Mx + 2 times in x, and thus p must terminate after at most Mx + 3 steps.

Next we prove thatDSub is not bounded wait-free data structure, by showing
that for every given L, there is a run xL in which some process p take at least
L steps in order to complete the execution of af .

Let H = fq1; � � � ; qLg be a set of L idle processes, p 62 H. We construct the
run xL in the following way:

8 Brit H.; Moran S.: Wait-Freedom vs. Bounded Wait Freedom in Public Data Structures



1: begin

14: end;

/* any change? */

/* read-operation r1*/

/* inc-operation r2 */

/* write operation r1 */

/* read-operation r2 */

/* read-operation r2 */

/* read-operation r2 */

2: c1 := r1;

3: if c1 = 0

4: r2 := r2 + 1(mod2);

5: r1 := 1;

7: c1 := r2;

8: c2 := r2;

9: while (c1 6= c2)

10: c1 := c2;

11: c2 := r2;

12: end;

13: end;

6: else

Figure 1: The procedure af

1. Initially, each of the processes in H reads 0 in r1.
2. Then, the process q1 completes performing its procedure (and in particular,

it writes 1 in r1).
3. Next, process p reads 1 in r1, and then it reads the value of r2 (in line 7).
4. Now, for i = 1 � � �L, process qi increments r2, and then process p reads r2

(observe that in any two successive read operations of r2, p will always read
two di�erent values).

Since the number of processes in H is L, the process p takes L + 2 atomic
steps in xL before it completes executing af . ut

In the next sections we will de�ne and study a class of public data structures
in which wait-freedom is equivalent to bounded wait-freedom. In particular, we
de�ne periodic data structures, and prove that a periodic wait-free data structure
with �nite memory must be bounded wait-free.
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4 Periodic Data Structures

Let � be a transition function and v a state. For n � 0, �n(v) is de�ned by:
�0(v) = v, and for n > 0; �n(v) = �(�n�1(v)).

De�nition4. Let � be a transition function and let v be a state. Then order(�; v),
the order of � on v, is the minimum positive integer d s.t. �d(v) = v. If for
each d > 0; �d(v) 6= v then order(�; v) = 1. For an operation op = (�; �),
order(op) = maxvforder(�; v)g.

Examples: In the data structure DSub, the order of the read operation is 1,
the order of the inc operation 2, and the order of the set 1 operation is 1. The
order of an increment operation in a b-valued atomic counter, which increments
the value of the counter by 1(modb), is b, and the order of the read operation in
such a counter is 1.

De�nition5. Let r = (G;D;O) be an atomic object. Then r is periodic if for
each v 2 D and op = (�; �) 2 G, order(�; v) is �nite.

Examples: A b-valued atomic counter is periodic, while the atomic objects in
the data structure DSub are not, since the order of set 1 is 1.

De�nition6. A data structure DS = (R; I;A) is periodic if all the atomic
objects in R are periodic.

The following theorem is the main result of this paper.

Theorem 4.1 Let DS = (R; I;A) be a wait-free data structure. If DS is peri-
odic and has �nite memory, then DS is bounded wait-free.

The above theorem implies that any wait-free data structure which uses only
a �nite number of atomic counters (like counting networks and their variants)
must be bounded wait-free. It also implies that the use of the atomic operation
set 1 in the data structure DSub is essential for making it an unbounded wait-
free data structure, since it is the only operation in that data structure whose
order is 1.

5 The Reconstruction Property

As a �rst and main step towards the proof of Theorem 4.1, we prove in this
section that a periodic data structure satis�es the reconstruction property; in-
formally, this property guarantees that if there is a run x over DS which starts
when the state vector is v and ends when the state vector is u, then there is
another run, x0, which starts when the state vector is v, reaches an intermediate
state in which the state vector is u, and terminates when the state vector is
again v.

De�nition7. A data structure DS satis�es the reconstruction property if the
following holds for any pair of vectors v and u:
If there is a run x where initial(x) = v and final(x) = u, then there is a run
x0 = y � z, such that initial(x0) = initial(y) = v, final(y) = u, and final(x0) =
final(y � z) = v.

10 Brit H.; Moran S.: Wait-Freedom vs. Bounded Wait Freedom in Public Data Structures



Note that the data structure DSub does not satisfy the reconstruction property:
there is a run x over DSub from the vector v = (0; 0) to u = (1; 0), but there
is no run x0 from vector v to itself through u, since there is no operation that
changes the state of r1 from 1 to 0.

Lemma 5.1 (The Reconstruction Lemma) Let DS = (R; I;A) be a peri-
odic data structure. Then DS satis�es the reconstruction property.

Proof. Let x be a given run from v to u. We have to prove that there is a run
x0 = y � z, such that initial(x0) = initial(y) = v, final(y) = u, and final(x0) =
final(z) = v. This is trivial if v = u, so assume that v 6= u.

Let x = x1x2 � � �xL, where xi is (a partial run consisting of) the i-th event
in x. We construct the run x0 = y � z, where:

1. y is a run from v to u de�ned by the concatenation y = y1 � � �yL, such that
initial(yi) = initial(xi) and final(yi) = final(xi).

2. z is a partial run from u to v de�ned by z = zL � � � z1, where initial(zi) =
final(xi) and final(zi) = initial(xi),

as described in Figure 2.

y1 y2 yL

z2 zL�1 zLz3z1

x2 x3 xL�1 xL u
x1

yL�1

v

y3

Figure 2: Construction of the run x0 = y � z

Let P = fp1; � � � ; p`g be the set of processes which are involved in the run
x, and let D = maxforder(�; v)j the operation op = (�; �) is applied on state
v during x by some process p 2 Pg (D is �nite since the data structure DS is
periodic and x is a �nite run).

The run y is constructed by induction in the following way: at stage i, 1 < i �
L, we extend the run y1 � � �yi�1 which was constructed in the previous stage to
the run y1 � � �yi. For i = 1; � � � ; L, each of the runs y1 � � �yi satis�es the following
requirements:

1. initial(xi) = initial(yi) and final(xi) = final(yi):
2. For each process q 2 P there is a set of processes Hi

q, such that at the end

of yi, all the processes in Hi
q are in the same state as q in the end of run xi,

and D(D + 1)L�i divides jHi
qj.

3. If xi contains an event in which some process performs the atomic step
step(op; �; �; r; v; v0), then at the end of yi there is a set U i of at least D
processes, which are (�; r) � loaded.
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Base of induction: We construct the run y1 and the corresponding set of
processes U1 and H1

q for each q 2 P .

U1 is the empty set, and for each q 2 P ,H1
q is a set of D(D+1)L�1 processes

which are initially in the idle state.
Let p be the process which performed the event in the run x1. Since it is the

�rst event in x, it is an event of the type begin(a), for some procedure a 2 A.
The run y1 is de�ned as follows: initial(y1) = v, each process fromH1

p performs
the event begin(a) in y1, and no other events are taken in y1.

It is easily veri�ed that (a) initial(x1) = initial(y1) = final(x1) = final(y1),
and (b) for each q 2 P , at the end of y1 all the processes in H1

q are at the same
state as process q at the end of x1. Thus the induction hypothesis holds for i = 1.
Induction step: Suppose we have constructed the partial run yi�1, and for each
q 2 P the sets Hi�1

q , such that conditions 1-3 hold for i � 1. We now describe
the construction for i.

Let p be the process which performs the event in the partial run xi. Then
for each process q 6= p in P , we set Hi

q = Hi�1
q . It remains to de�ne the sets Hi

p

and U i, and the partial run yi. We distinguish between two cases:
Case 1: The event in xi is a begin(a) or an end(a) event, for some procedure
a 2 A. In this case we let Hi

p = Hi�1
p and U i = ;. The partial run yi is

constructed by letting each of the processes in Hi
p perform its next step, which

is the same event that p performs in xi (i.e., a begin(a) or an end(a) event).
For each process q 6= p, the set Hi

q satis�es the induction hypothesis since Hi�1
q

satis�es it for i� 1, and since q does not take a move in xi and no process in Hi
q

takes a move in yi. Each process in Hi
p takes in yi the same step that p takes

in xi, and hence the induction hypothesis holds for Hi
p too. Finally, condition 1

holds for i since it holds for i� 1 and no atomic object was modi�ed during the
partial runs xi and yi.
Case 2: The event in the partial run xi is an atomic step step(op; �; �; r; v; v0),
taken by p. This means that at the end of the partial run xi�1 the process p is
(�; r)-loaded, and hence, by the induction, each process in Hi�1

p is (�; r)-loaded

at the end of yi�1. The sets U i and Hi
p are de�ned as follows: Partition the set

Hi�1
p into D + 1 sets of equal size, Gi

1; � � � ; G
i
D and U i. Thus, jU ij = jGi

jj =
jHi�1

p j

D+1
; 1 � j � D, and by the induction we have that D(D + 1)L�i+1 divides

jU ij and jGi
jj (1 � j � D). The set Hi

p is the set G
i
1.

By the above, each process in U i is (�; r)-loaded at the beginning of yi, and
jU ij � D. Thus, U i satis�es the induction hypothesis, provided that no process
in U i takes a move in yi.

To this end, we de�ne the partial run yi. Let d = order(�; v). The run yi
involves only the processes from the sets Gi

1; � � � ; G
i
d, in such a way that each

process from the set Hi
p = Gi

1 performs the event step(op; �; �; r; v; v0) { the same
event that the process p performs in the partial run xi.

yi is constructed in a cyclic way by activating processes from the sets Gi
1; � � � ; G

i
d

in the following way: activate a process form Gi
1 so that it performs its next

step, which by the induction hypothesis is step(op; �; �; r; v; v0); then activate in
a similar manner a process fromGi

2, and so on till Gi
d; this procedure is repeated

jGi
1j � 1 times. Note that the above construction guarantees that each process
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in Hi
p = G1

i except one takes in yi the atomic step step(op; �; �; r; v; v0), which is

the same step taken by p in xi. yi is completed by letting the only process in Gi
1

that was not activated yet take its next step, which is also step(op; �; �; r; v; v0).
We now show that the induction requirements are ful�lleded. As mentioned

above, the set U i satis�es the induction requirements. It is clear from the con-
struction that the processes in Hi

q for each q 2 P are in the same state as q in

the end of run xi and D(D+1)L�i divides jHi
qj. Thus conditions 2 and 3 hold. It

remains to show that 1 holds too. The induction assumption for i�1 implies that
initial(yi) = initial(xi), so it remains to show that final(xi) = final(yi). In the
partial run xi only the event step(op; �; �; r; v; v0) was performed, thus the state
of r was changed from v to v0 = �(v), and the states of all other objects remain
unchanged. In the partial run yi the function � was applied Kd + 1 times on r,
for K = jHi

pj � 1. Thus the state of r was changed to �kd+1(v) = �(v), and the
state of no other object was changed. We conclude that final(xi) = final(yi).

At the end of run yL we get final(y) = final(yL) = final(xL) = u.
We now complete the proof of the lemma by constructing the partial runs

zi described at the beginning of this proof. For each L � i � 1, only processes
from U i are activated in zi.

In the construction of the partial run zi; L � i � 1 we distinguish between
two cases according to the type of the event in the partial run xi. In the �rst case
the event is a begin(a) or an end(a) event, which does not change the state of any
object. In that case zi is an empty run and it is clear that initial(zi) = final(xi)
and final(zi) = initial(xi).
In the second case the event in the partial run xi is an atomic step step(op; �; �; r; v; v0).
According to the construction of yi, there is a set U i of at least D processes
which are (�; r)-loaded. Let d = order(�; v). The partial run zi is constructed
by letting d� 1 processes from the set U i perform their next atomic step (note
that U i contains at least D � d processes). Since each process in U i is (�; r)-
loaded, we get that at the end of zi the state of r is �d�1(v0) = v, and hence
final(zi) = initial(xi), as claimed.

To conclude, we have that the partial run z = zL � � � z1 satis�es initial(z) =
initial(zL) = u and final(z) = final(z1) = v, which completes the proof. ut

6 Proof of the Main Theorem

Let a 2 A be a given procedure of a data structure DS = (R; I;A). If height(Ta),
the height of the tree Ta, is ha, then each execution of a terminates within ha
steps. In particular, if for every procedure a 2 A it holds that height(Ta) < h

for some constant h, then DS is bounded wait-free. In this section we show that
a slightly weaker property than the one described above holds for any wait-free
periodic data structure with �nite memory. Later we use this result to prove
that every such data structure must be bounded wait-free, which completes the
proof of Theorem 4.1. First we need some de�nitions.

Let v be a given state vector. Vreach(v) is the set of state vectors which are
reachable from v in DS:

Vreach(v) = fu j there is a run from v to ug:
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For each atomic object r = (Gr; Dr; Or); Dr(v) is the set of states which r
gets in Vreach(v):

Dr(v) = fc j 9u 2 Vreach(v); the state of r in u is cg:

Finally, for each atomic operation op = (�; �) 2 Gr, Or(v; op) is the set of
values returned by applying op when the state of r is in Dr(v):

Or(v; op) = f` j 9c 2 Dr(v); �(c) = `g:

It is clear that for each v it holds that Dr(v) � Dr , and for each op,
Or(v; op) � Or.

Let a be a procedure and v be a state vector. Ta(v), the operation tree of
the procedure a induced by v, is a sub-tree of the operation tree Ta, which does
not include state transitions which result in output values ` which are never
achievable in runs that start at v. Formally, Ta(v) is de�ned as follows:
Initially let Ta(v) = Ta. Then scan the vertices of Ta(v) ordered according to
their height (i.e., the root is �rst, then all the sons of the root and so on2). Upon
scanning a non-leaf vertex s do the following for each son t of s: Let (s; op; r; `; t)
be the step de�ning the state transition from s to t. Then if ` =2 Or(v; op), delete
from Ta(v) the vertex t and all its descendants.

The legal operation forest of procedure a in a data structure DS = (R; I;A),
denoted Fa, is de�ned as the union of all the operation trees induced by initial
state vectors:

Fa = [v2ITa(v)

For a forest F , let height(F ) denote the maximal height of the trees in F
(height(F ) =1 if there is no such maximal height). In order to prove Theorem
4.1 it is su�cient to show that there exists a constant h such that for every
a 2 A, it holds that height(Fa) < h. Since A is �nite and for each a 2 A the
number of trees in Fa is �nite, such an h exists if for each a 2 A and v 2 I, the
height of Ta(v) is �nite (note that the height of Taf ((0; 0)), the operation tree of
the procedure af of the data structure DSub induced by the initial vector (0,0),
is 1). The main step in proving this last claim is the following lemma.

Lemma 6.1 Let DS = (R; I;A) be a periodic wait-free data structure and let v
be an initial state vector of DS. Then for each a 2 A, the operation tree Ta(v)
does not contain an in�nite path.

Proof. We show that if Ta(v) contains an in�nite path then there is a legal run
x over DS in which some process p takes an in�nite number of steps during a
single execution of the procedure a, which contradicts the assumption that DS
is wait-free.

Let (s1; s2; � � �) be an in�nite path in the tree Ta(v), where s1 is the root of
the tree Ta(v). For i = 1; 2; � � �, let ei = (si; opi; ri; `i; si+1) be the atomic step
de�ned by the edge (si; si+1), which corresponds to the transition from si to
si+1.

The in�nite legal run x is de�ned as the limit of a sequence of �nite runs
(x1; x2; � � �), where xi+1 is the extension of the run xi, and each run xi satis�es
the follows:
2 Note that since the DS has a �nite memory, every vertex in Ta has only �nitely
many sons, and hence this is a total ordering of the vertices of Ta. It is possible to
de�ne such an ordering also when vertices of Ta may have an in�nite out-degree.
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1. During the run xi the process p executes the atomic steps e1; e2; � � � ; ei.
2. initial(xi) = final(xi) = v (i.e., xi is a run from v to itself).

First we construct the run x1, in which p performs step e1 = (s1; op1; r1; `1; s2):
By the de�nition of Ta(v), there is a vector u1 2 Vreach(v) such that the state
of r1 in u1 is c1, for some c1 2 Dr1 (v) satisfying �(c1) = `1. In particular, if we
let p start executing procedure a, and then take its �rst step in a when the state
vector is u1, then it will perform the step e1. Since u1 2 Vreach(v) there is a run
from v to u1. By Lemma 5.1 there is a run w1 = w1

1 � w
1
2 from v to itself such

that final(w1
1) = u1.

The run x1 is constructed by a concatenation of the runs x1 = w1
1 � z1 � w

1
2

where:
1. The run w1

1 as de�ned above satis�es initial(w1
1) = v; final(w1

1) = u1.
2. Let op1 = (�1; �1), and let d1 = order(�1; c1). The partial run z1 from u1

to itself is constructed by activating the process p so that it will take its �rst
atomic step in a, and then activating d1 � 1 idle processes so that each of them
also takes its �rst atomic step in a. Since (a) the �rst atomic step in a performs
the atomic operation op1 = (�1; �1) on r1, (b) the state of r1 in u1 is c1, and (c)
d1 = order(�1; c1), it follows that initial(z1) = final(z1) = u1.
3. The run w2

1 as de�ned above satis�es initial(w2
1) = u1; final(w2

1) = v.

Assume that we have constructed a run xi�1 satisfying the assumptions (i >
1). Now we show how to extend xi�1 to the run xi, in which p performs the step
ei = (si; opi; ri; `i; si+1).

By the de�nition of Ta(v), there is a vector ui 2 Vreach(v) such that the
contents of ri in ui is ci, for some ci 2 Dri (v) satisfying �(ci) = `i.

Since ui 2 Vreach(v), Lemma 5.1 implies that there is a run wi = wi
1 �w

i
2 from

v to itself where final(wi
1) = ui. The run xi is constructed as a concatenation

of the runs xi = xi�1 � yi �w
i
1 � zi �w

i
2 where w

i
1 and wi

2 are as de�ned above, and
yi and zi are de�ned below:
1. Let opi = (�i; �i), and let di = order(�i; ci). The run yi is a concatenation
of di � 1 copies of the run xi�1, where the sets of processes involved in each
such copy are mutually disjoint, and are also disjoint from the sets of processes
involved in wi. Therefore final(yi) = initial(yi) = v, and at the end of the run
yi there is a set Hi of at least di � 1 processes whose state at the end of yi is si
(if d = 1 then yi is an empty run).
2. zi is a partial run from ui to itself, constructed as follows: First we activate
process p so it takes its next step, and then we activate di � 1 processes from
the set Hi, such that each of them takes its next step, in which it executes the
atomic operation opi = (�i; �i) on ri. Since di = order(�i; ci), the partial run zi
satis�es final(zi) = intial(zi) = ui.

It is easily veri�ed that final(yi) = v, and at the end of yi the state of p
is si+1, thus the induction assumptions holds for i. This completes the proof of
the lemma. ut

Note that the proofs of lemmas 5.1 and 6.1 are valid also in the case that
DS is a periodic data structure which has an in�nite memory.

Corollary 6.1 Let DS = (R; I;A) be a data structure satisfying the assump-
tions of Lemma 6.1. Then for each a 2 A and for each v 2 I, the height of Ta(v)
is �nite.
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Proof. Let such a and v be given. Since DS has a �nite memory,R is �nite, and
for each object r = (Gr; Dr ; Or) 2 R the set Or is �nite. Since the out-degree of
each vertex in Ta is bounded by maxr2RfjOrjg, we have that the out-degree of
each vertex in Ta is �nite. Since Ta(v) is a sub-tree of Ta, the same holds also
for Ta(v).

The proof is completed by noting that if the height of Ta(v) is not �nite, then
Ta(v) has in�nitely many vertices, which implies by the In�nity Lemma [K�on36]
that Ta(v) contains an in�nite path - but this contradicts Lemma 6.1. ut

Now we complete the proof of Theorem 4.1: By Corollary 6.1, for each
a 2 A and v 2 I, height(Ta(v)) is �nite. Since both A and I are �nite, it
means that there is a constant h such that for each such a and v, it holds that
height(Ta(v)) < h, hence each execution of a in a legal run of DS terminates
within at most h steps, and thus DS is bounded wait-free. ut

7 A Generalization of the Main Theorem

In this section we �rst generalize theorem 4.1, by showing that the requirement
of �nite memory can be replaced by two weaker requirements, and then we show
by counter examples that neither of these two requirements can be eliminated.

De�nition8. Let DS = (R; I;A) be a data structure. DS satis�es the �nite
output property if for each a 2 A and v 2 I, every vertex in Ta(v) has �nite
out-degree.

Example: If for each r 2 R, the set of output values Or is �nite, then DS
satis�es the �nite output property.

Theorem 7.1 Let DS = (R; I;A) be a wait-free public data structure. If DS
is periodic, I is �nite, and DS satis�es the �nite output property, then DS is
bounded wait-free.

Note that every periodic data structure which has a �nite memory satis�es
the assumption of Theorem 7.1, but the converse is not true.

Theorem 7.1 is proved along the same outline as the proof of Theorem 4.1,
by noting that the proof of Lemma 6.1 requires only that DS is periodic and
satis�es the �nite output property, and the proof of Corollary 6.1 requires, in
addition to these two requirements, only that I is �nite.

The example in Section 3 shows that being periodic is essential for a data
structure to satisfy Theorem 7.1. Next we show that each of the other two
properties are essential too, by showing that if for a given periodic data structure
DS = (R; I;A), either I is in�nite, or DS does not satisfy the �nite output
property, then wait-freedom does not necessarily imply bounded wait-freedom.

The �rst example is a data structure DSa = (Ra; Ia; Aa) which satis�es the
�nite output property, but jIaj = 1. The second example is a data structure
DSb = (Rb; Ib; Ab) in which Ib is �nite (in fact jIbj = 1), but the �nite output
property is not satis�ed.

DSa is given by:

{ Ra = (r1; r2; � � �) consists of an in�nite number of identical atomic objects,
de�ned by the triple (G;D;O), where D = O = f0; 1g, and G consists of a
single operation - the read operation de�ned earlier.
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{ Ia consists of in�nitely many initial vectors Ia = fvi j i > 0g where in vi
the states of all the atomic objects rj; j 6= i are 0 and the state of the atomic
object ri is 1.

{ Aa consists of a single procedure, which does the following: For i = 1; 2; � � �,
it reads ri until it reads the value 1 and stops.

It is obvious that when the initial vector is vi, each execution of the procedure
will terminate after i steps. Hence DSa is an unbounded wait-free data structure.

The data structure DSb = (Rb; Ib; Ab) is de�ned as follows:

{ Rb consists of a single atomic object r = (G;D;O), where D and O are the
set of the natural numbers, and G consists of three operations:
1. The read operation, which returns the state of the object r.
2. The inc0 operation, which increments the state of r if it is an even

integer, and decrements it if it is an odd integer.
3. The inc1 operation, which increments the state of r if it is an odd integer,

and decrements it if it is an even integer.
Note that order(inc0) = order(inc1) = 2, hence DSb is a periodic data
structure.

{ Ib consist of a single vector which initializes r to 0.
{ Ab = fa0; a1;mreadg, where:
The procedure a0 applies the operation inc0 on the atomic object r and
stops.
The procedure a1 applies the operation inc1 on the atomic object r and
stops.
The procedure mread reads the value of r, and if the value read is c, it
repeats reading it another c times and stops.

It is obvious that DSb is wait-free since the number of steps required to
complete any execution of a procedure in Ab is �nite.

In order to show that DSb is not bounded wait-free, we show that for each
integer n there is a run xn, at the end of which the state of r is 2n. This is
su�cient, since at the end of such a run xn, 2n steps are needed for performing
the procedure mread. Such a legal run xn is obtained by activating n processes
in a sequential order, letting each of them perform the procedure a0 �rst, then
perform the procedure a1 and stop.

8 Conclusion and Further Research

We introduced the concept of public data structure, and invetsigated the relation
between wait-freedom and bounded wait-freedom in such structures. In partic-
ular, we have shown that in data structures which use only periodic objects,
wait-freedom is equivalent to bounded wait-freedom.

While certain concurrent objects are periodic, there are common, simple
objects which are not periodic (e.g., read/write registers). We have used such
objects to show that, in public data structures, wait-freedom is not equivalent
to bounded wait-freedom. For comparison, this is not the case in �nite data
structures which are accessible to a bounded number of processes, each of which
may excecute a bounded number of procedures (non-atomic operations) in each
run; i.e., in this latter case wait-freedom is equivalent to bounded wait-freedom.

17Brit H.; Moran S.: Wait-Freedom vs. Bounded Wait Freedom in Public Data Structures



Public data structures allow access to in�nitely many processes. each of which
may perform arbitrarily many non-atomic operations in each execution. It is
interesting to know under what conditions wait-freedom implies bounded wait-
freedom in data structures which are accessible by a �nite number of processes,
each of which may execute arbitrarily many procedures in each run.
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