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Abstract: Curve network reconstruction from a set of unorganized points is an impor-
tant problem in reverse engineering and computer graphics. In this paper, we propose
an automatic method to extract curve segments and reconstruct curve networks from
unorganized spatial points. Our proposed method divides reconstruction of curve net-
works into two steps: 1) detecting nodes of curve segments and 2) reconstructing curve
segments. For detection of nodes of curve segments, we present a principal component
analysis-based algorithm to obtain candidate nodes from unorganized spatial points
and a Euclidean distance-based iterative algorithm to remove peripheral nodes and
find the actual nodes. For reconstruction of curve segments, we propose an extraction
algorithm to obtain the points on each of curve segments. We present quite a num-
ber of examples which use our proposed method to reconstruct curve networks from
unorganized spatial points. The results demonstrate the effectiveness of our proposed
method and its advantages of good automation and high reconstruction efficiency.
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1 Introduction

Curve reconstruction, sometimes known as curve fitting, plays an im-

portant role in reverse engineering and computer graphics. According

to whether reconstructed curves pass through unorganized points or

not, curve reconstruction can be separated into two types: connecting

nearby points to generate a curve [Figueiredo and Miranda Gomes 1994,

Amenta et al. 1998, Dey et al. 2000, Parakkat and Muthuganapathy 2016,

Ohrhallinger and Mudur 2013] and finding an approximate curve from point

sets [Wang et al. 2006, Khanna and Rajpal 2015, Cheng et al. 2005]. According

to whether unorganized points are two dimensional or three dimensional, curve

reconstruction can be also divided into 2D curve reconstruction and 3D curve

reconstruction.

Although there are significant advances in 2D curve reconstruction [Dey 2006],

there is a tiny amount of research in 3D curve reconstruction. Since 2D curve

reconstruction is an ill-posed problem, adding a new dimension by 3D curve

reconstruction will aggravate the inherent ill-posedness. Due to this problem,

most of the existing work on 3D curve reconstruction only rebuilds a simple 3D
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curve from point data [Lee 2000, Liu et al. 2006, Kumar et al. 2004]. In order to

tackle this problem, we will propose a new method to automatically reconstruct

a curve network consisting of multiple 3D curve segments from unorganized spa-

tial points, as shown in Figure 1.

Figure 1: (a) The unorganized spatial point set of a knot model. (b) Recon-

structed curve network using our method.

Curve network reconstruction is an essential step in curve network-

based surfacing [Pan et al. 2015, Zou et al. 2015, Abbasinejad et al. 2011,

Zhuang et al. 2013] from unorganized spatial points. It also can be used

in constructing 3D models from laser range data and stereo measurements

[Amenta et al. 1998]. Curve network-based surfacing, acting as an advanced

modelling technique, is becoming increasingly popular [Zhuang et al. 2013].

With this method, a complicated geometric shape can be described by a compli-

cated curve network which involves hundreds of 3D curve segments. Reconstruct-

ing such a complicated curve network from unorganized spatial points without

connectivity information is very difficult. Although human may visually detect

every curve segment when they look at the unorganized spatial points, the ac-

tual reconstruction process of these curve segments is very time-consuming and

involves many tedious manual operations. The automatic method proposed in

this paper addresses this issue. It significantly shortens the process and greatly

raises the efficiency of curve network reconstruction.

Due to the following reasons, automatically reconstructing curve segments

from unorganized spatial points is a challenging task. First, different segmenta-

tion criteria will lead to different segmentation results for a same set of unor-

ganized spatial points. For example, the segmentation criterion based on sharp

points and the one based on nodes, where one curve segment joins others, will

lead to quite different quantities of curve segments. Second, it is difficult for a

computer to judge whether a curve segment is good or bad. For example, Fig-
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ure 2(a) shows a set of unorganized spatial points which define the eye of a dog’s

head in Figure 6. Although human can easily see that there are three curve seg-

ments between two end vertices, as shown in Figure 2(b), a computer may find

different curve segments such as those shown in (c) and (d) which are two typical

types of wrong curve segments.

Figure 2: An example of unorganized spatial points (blue circles): (b), (c) and

(d) shows three different types of curve segments obtained from the same 3D

points in (a).

To solve these problems, we present a novel method to automatically obtain

a correct curve network from unorganized spatial points. Our method is based

on following two assumptions [Amenta et al. 1998]. (a) The input unorganized

spatial point set is “clean”, which means it have no self-intersections and short

branches. (b) The unorganized spatial points are uniformly sampled point sets,

and the sampling density is everywhere great enough to resolve the detail of the

curve segments. Except for manually extracting curve segments from unorga-

nized spatial points, we are unaware of any research activities on this topic. The

contributions made in this paper are as follows.

– A principal component analysis-based algorithm to find candidate nodes

from unorganized spatial points.

– A Euclidean distance-based iterative algorithm to remove peripheral nodes

and find actual nodes from the candidate nodes.

– An inner point identification algorithm to extract all the inner points be-

tween two nodes of a curve segment.

– Integration of the above algorithms to develop the first method of automat-

ically reconstructing curve network from unorganized spatial points.

The remaining parts of this paper are organized as follows. In Section 2, we

briefly review related works on detection of nodes, curve reconstruction, and

surfacing. Then, we give an overview of our proposed method and introduce
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the algorithms of automatically reconstructing curve network from unorganized

spatial points in Section 3. After that, we test our method with various sets of

unorganized spatial points in Section 4. Finally, we discuss and conclude our

work in Section 5.

2 Related Works

Our proposed method is related to detection of nodes, curve reconstruction, and

surfacing. In this section, we briefly review the most related work in these fields.

2.1 Detection of nodes

The problem of detecting the nodes among curves is an active research area,

such as finding the nodes of Bézier curves [Manocha and Krishnan 1997], B-

spline curves [Mørken et al. 2015] and NURBS curves [Rajab and Piegl 2014].

However, their work aims to detect nodes of planar and parametric curves. For

unorganized points, [Wolin et al. 2008] proposed a simple algorithm for finding

planar polyline corner. They resampled the points of the stroke and found the

corners with the minimum straw distance. In particular, [Li et al. 1994] apply a

distance accumulation method to detect corners on 3D space curves. Although

their studied object is also spatial points, detecting curve corners is totally dif-

ferent from reconstructing curve segments from unorganized spatial points to be

investigated in this paper. We have not found any publications which addressed

this issue.

2.2 Curve reconstruction

A large body of research addresses curve reconstruction from unorganized planar

points. To deal with noise-free point data, various methods have been developed

by using Delaunay Triangulations such as Crust [Amenta et al. 1998] and NN

Crust [Dey et al. 2000]. [Parakkat and Muthuganapathy 2016] presented a sim-

ple Delaunay triangulation based algorithm for non-parametric curve reconstruc-

tion from planar point set with different features like sharp corners, outliers and

multiple objects. [Ohrhallinger and Mudur 2013] treated curve reconstruction as

a minimization problem and developed an algorithm to reconstruct closed curves

from a sparse point set and detect sharp corners.

Except for connecting nearby points to generate curves, fitting curves to

noise point data is also an active area of research. [Wang et al. 2006] computed

a planar B-spline curve to approximate an unorganized and noisy point cloud

by using squared distance minimization. [Khanna and Rajpal 2015] developed

an approach for curve reconstruction from a noisy point cloud based on fuzzy

logic and ant colony optimization. [Cheng et al. 2005] proposed an algorithm
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to reconstruct polygonal closed curves from noisy samples drawn from a set of

smooth closed curves.

Most of existing methods regard 3D curve reconstruction as an extended ap-

plication of the algorithms of 2D curve reconstruction. [Lee 2000] investigated

an algorithm to approximate a set of unorganized points with a simple curve

by ordering the points with a regression line and a specified radius. The algo-

rithm is also useful in reconstructing a 3D curve. [Kumar et al. 2004] presented

an approach based on growing self-organizing maps for curve and surface recon-

struction from an unorganized point cloud which can be extended to data points

in 3D. [Liu et al. 2006] developed a least-squares projection algorithm which can

thin a 3D point cloud and obtain a clean curve. All these research studies deal

with a simple open 3D curve. The problem to be tackled in this paper is to recon-

struct multiple 3D curve segments and obtain a curve network from unorganized

spatial points. Existing research studies do not investigate this problem.

2.3 Surfacing

Surfacing is an important part of the design process. [Abbasinejad et al. 2011]

developed a system to generate piecewise-smooth patches from unorganized 3D

curves using a greedy algorithm.[Zhuang et al. 2013] proposed a novel rout-

ing system for finding cycles in a 3D curve network and creating surfaces.

[Zou et al. 2015] investigated an algorithm to obtain a triangulation of mul-

tiple and non-planar 3D polygons. In order to make better surface shapes,

[Pan et al. 2015] presented a surfacing method of curve networks by aligning

the principal curvature directions with flow line. Since the aim of this paper

is to reconstruct curve segments from unorganized spatial points, we only ap-

ply existing mature surfacing techniques to visualize and test our reconstructed

curve network.

3 Algorithms

In this section, we first overview our proposed method. Then we investigate how

to detect candidate nodes, determine the actual nodes, and use the actual nodes

to reconstruct curve segments from unorganized spatial points.

3.1 Overview of proposed method

To avoid the poor results as shown in Figure 2(c), the correct end points of curve

segments need to be detected at first. Generally, the two end points of a curve

segment are two nodes in a curve network. Thus, we need to determine nodes

from unorganized spatial points.
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Figure 3: Pipeline of the proposed method. (a) An input set of unorganized

spatial points (b) Detected and grouped candidate nodes shown in the square.

(c) Obtained actual node in the square after iterative computations. (d) Recon-

structed curve segments where different curve segments are shown in different

colours. (e) The surface model after surfacing.

Our method includes three steps. The first step is detection of nodes which is

elaborated in Subsection 3.2. In this step, we first propose a principal component

analysis-based algorithm to find the candidate nodes and divide them into groups

according to l2 distance. Then we remove peripheral nodes in each group by

iterative computations and finally obtain the actual nodes. The second step is

curve reconstruction which is detailed in Subsection 3.3. In this step, we propose

four inner point identification criteria: nearest point, point removal, minimum

angle, and reverse search, and use them to extract all inner points and obtain a

curve segment between two nearest nodes. The last step is surfacing. It is used to

verify and visualize the result of the reconstructed curve segments. In this step,

the curve network which has been reconstructed with our proposed method is

input into a surfacing tool to produce a complete surface model.

The pipeline of our proposed method is illustrated in Figure 3. First, a set of

unorganized spatial points of a bunny model shown in Figure 3(a) is input into

our system. Then, the principal component analysis-based algorithm is used to

detect candidate nodes from the unorganized spatial points which are grouped as

depicted in Figure 3(b). Next, an iterative algorithm is proposed to remove the

peripheral nodes and find the actual nodes indicated in Figure 3(c). After that,

the inner point identification algorithm is introduced to find all the inner points

and generate a network of curve segments presented in Figure 3(d). Finally,

the network of curve segments is changed into a 3D surface model given in

Figure 3(e) by surfacing for visualization and verification of the reconstruction

result.

3.2 Node detection

A node in a curve network is a joining point of several curve segments. Unlike

curve corners, nodes might not have sharp features which can be detected by
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using geometrical information. In order to identify these nodes, we introduce cur-

vature variation based on the observation: the surrounding points of a node have

a higher curvature variation than adjacent continuous points on a same curve be-

cause the surrounding points of the node, which lie on different connected curves,

have different curvatures. Inspired by the work of [Pauly et al. 2003] where prin-

cipal component analysis was used to estimate surface variation, in this paper,

we apply principal component analysis to find the points with high curvature

variation, and named this algorithm as a principal component analysis-based

algorithm.

Given a set of unorganized spatial points P in R3, we take an arbitrary point

Pi ∈ P and and let A be the set of its k neighbour points. The covariance matrix

of A is defined as

Cov(A) =
1

k
([A] − Pi)

T ([A] − Pi) (1)

The point variation is given as

δ(Pi) =
λ0

λ0 + λ1 + λ2

(2)

where λ0 ≤ λ1 ≤ λ2 are the eigenvalues of Cov(A).

Since the eigenvector with λ0 defines the least-squares plane through the set

A of neighbour points, it approximates the normal of the surface which is formed

by the set A. The point variation is to measure the deviation variation along

the surface normal compared with the tangent plane at point Pi. Therefore, the

point variation gives an estimation of curvature. We introduce a threshold ε for

the point variation. If δ(Pi) > ε, Pi is the point with high curvature variation and

is selected as a candidate node. After calculating all input unorganized spatial

points, we obtain a set of candidate nodes.

Since candidate nodes consist of actual intersections and their own surround-

ing points, they are presented in the form of different groups in the set of unor-

ganized spatial points as shown in Figure 3(b). To obtain the actual node in each

group, all groups of candidate nodes need to be detected at first. To this end,

we introduce a user’s specified distance τS . If the Euclidean distances between a

random candidate nodes and the rest of candidate nodes are less than τS , these

candidate nodes are divided into a same group and the nodes in the group is

denoted as Ki.

After dividing the obtained candidate nodes into different groups, we use the

following algorithm called the Euclidean distance-based iterative algorithm to

remove peripheral nodes and find the actual nodes from the candidate nodes

in each group. The algorithm is applicable to the nodes with different valences,

such as valences of 3, 4, 5 and 6.
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Figure 4: An example of the iterative process for finding an actual node: a group

of candidate nodes (blue circles) are surrounded by green dashes. The peripheral

node (red dash circle) from a centroid (red circle) is removed in the first iteration

(#1) and second iteration (#2) and the actual node is obtained in the third

iteration (#3).

Algorithm 1 Nodes Detection

Require: unorganized spatial points P

Ensure: nodes by matrix C

1: for each point Pi ∈ P do

2: compute l2 distance d(Pi, Prest) and store k nearest points from Pi in set

Ai

3: calculate the λi of Cov(Ai)

4: if δ(Pi) > ε then

5: Pi is a candidate node and stored in set I

6: end if

7: end for

8: while I 6= φ do

9: for a random candidate node Ii ∈ I, compute d(Ii, Irest)

10: if d(Ii, Irest) ≤ τS then

11: store these candidate nodes in group K and remove them from I

12: compute the amount n of candidate nodes in K

13: while n > 4 do

14: Find the centroid of K and remove the peripheral candidate node

from the centroid, and n = n− 1

15: end while

16: store the nearest candidate node from the centroid of K in matrix C as

an optimal node, and empty K

17: end if

18: end while

The algorithm consists of two steps. If one group has n nodes Ki (i =

1, 2, ..., n), we first calculate the centroid En of the n nodes with En = 1

n

∑n

i=1
Ki.
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The second step is to calculate the l2 distance between the centroid and each

of the n nodes and remove a node according to arg maxi=1,2,...,n d(En,Ki)

where d(·) is the standard l2 distance and Ki is the ith intersection in the

group. The centroid of the remaining n − 1 intersections is calculated again

in the first step where n is replaced by n − 1, and a new node according to

arg maxi=1,2,...,n−1
d(En−1,Ki) is found in second step by changing n into n−1

and removed.

The above process is repeated until four nodes are left and the nearest node

from the last centroid is an actual point (see Figure 4). The pseudo-code for

the above process of detecting candidate nodes and iteratively removing the

peripheral nodes to find the actual nodes is given in Algorithm 1.

3.3 Curve reconstruction

We reconstruct a smooth curve segments by connecting neighbour points from a

node to another node through the following inner point identification algorithm.

This algorithm consists of four inner point identification criteria. They work

together to find the right points on a same curve segment. The first criterion

is the nearest point. It requires the point Pi to be identified as the nearest

neighbour point to point Pi−1 which has already been identified. This criterion

ensures that every point will not be missed and the reconstructed curve segment

is an original and real curve segment of the set of unorganized spatial points.

The second criterion is the point removal. It means that once an inner point Pi is

used to produce a curve segment, the point is removed immediately and will not

be used in the following inner point identification processing. This criterion is

useful because an inner point should not be identified more than once to produce

a wrong curve segment, and this criterion can effectively prevent the mistakes

occurring during the process of identifying inner points of a curve segment.

The third criterion is the minimum angle. With this criterion, the vector angle

θP0
determined by three continuous points excluding the node must be greater

than an obtuse angle θ. This criterion can prevent us finding a wrong point from

other curve segments (e.g. Figure 2(d)). The three criteria can be mathematically

represented as
arg min
Pi∈P

d(Pi−1, Pi)

s.t. θPi−1
≥ θ, Pi 6∈ Pused

(3)

where Pi is an arbitrary inner point and Pused is a group of already identified

points. θPi−1
= 6 (

−−−−−−→
Pi−2Pi−1,

−−−−→
Pi−1Pi) where Pi−2 and Pi−1 are identified points,

and θ is the users specified obtuse angle which can be set between 100◦ and 150◦.
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Algorithm 2 Curve Reconstruction

Require: : nodes C and unorganized spatial points P

Ensure: curve segments by matrix F

1: for each node Ci ∈ C do

2: remove all candidate nodes from P , and rank P in ascending sort order

according to d(Ci, P )

3: Initialize j = 1 and F
i,j
1

= Ci {F
i,j
k is kth point of jth curve staring from

Ci}

4: while d(Pj , Ci) < τS do

5: initialize k = 2

6: if Pj 6∈ F i then

7: F
i,j
k = Pj and k = k + 1

8: else

9: j = j + 1, continue

10: end if

11: while F
i,j
k = Pj 6∈ C do

12: find the nearest point Pn in P from F
i,j
k−1

13: if Pn 6∈ C and θ
F

i,j

k−1

≥ θ then

14: F
i,j
k = Pn,k = k + 1 and remove Pn from P

15: else if Pn 6∈ C and θ
F

i,j

k−1

≤ θ then

16: then find next nearest point Pn

17: else

18: F
i,j
k = Pn ∈ C and k = k + 1

19: end if

20: end while

21: j = j + 1

22: end while

23: end for

24: for each curve F i,j ∈ F do

25: if F i,j 6= φ then

26: find the same curve F is,js and replace the points next to the ending

node of F i,j with the points next to the starting node of F is,js , and

remove F is,js from F

27: end if

28: end for

If two curve segments meet at a same node and are close together as shown

in Figure 5(a), the second criterion may not work properly, i. e., the point on

another curve may be identified and selected when the identification process of

a curve segment is near finish as shown in Figure 5(b). In order to avoid this
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problem, we introduce the fourth criterion, i. e., the reverse search. It requires a

same curve segment to be searched from two opposite directions, and the point

next to the ending node identified during the search from the right to the left

shown by the bottom one in Figure 5(c) should be replaced by the point next

to the starting node identified during the search from the reverse direction, i.

e. from the left to the right shown by the top one in Figure 5(c), to obtain the

correct curve segment shown in Figure 5(d).

Figure 5: An example of the reverse search process. (a) Two nodes; (b) Two curve

segments between two same nodes (the green line means the growing direction

of the curve, and the top curve is from left to right and the bottom curve is

from right to left); (c) The point next to the ending node of the bottom curve is

replaced by the point next to the starting node of the top curve; (d) Final curve

segment.

The pseudo-code for the inner point identification algorithm is given in Al-

gorithm 2. It is combined with Algorithm 1 to automatically reconstruct curve

network from the unorganized spatial points.

4 Results

We implemented our algorithms in MATLAB. In order to help visualize the

results of curve reconstruction, we use the surfacing tool of [Zhuang et al. 2013]

to create surface models from the reconstructed curve networks of unorganized

spatial points with our proposed curve reconstruction method. We demonstrate

our method on a large number of unorganized spatial point sets sampled from
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curve networks provided by surfacing work [Pan et al. 2015, Zhuang et al. 2013].

All the experiments were carried out on a 3.5 GHz PC with 32 GB memory.

Figure 6: Test results of examples. Each example includes unorganized spatial

points (top), curve network (middle) and surface model (bottom).

Our method successfully reconstructed curve networks from different unorga-

nized spatial point sets. Figure 6 shows 8 models among the original test samples.

Table 1 shows the running time, the numbers of nodes (Nn), curve segments (Nc)

and data points (Nd) ,and the applicable values of ε, τS and θ for the various spa-

tial point sets used in Figure 1, Figure 2 and Figure 6. As can be derived from

the reconstruction algorithm above, the increase in runtime is related to the
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model complexity, sampled interspace and the number of curve segments. The

results indicate that our proposed automatic reconstruction method is highly

efficient.

Table 1: Statistical data of test examples.

Model Nn Nc Nd ε τS θ(◦) Time(s)

Speaker 38 64 6884 2e-7 0.02 120 14

Doghead 33 67 14864 1e-4 0.01 120 55

Hand 150 281 25947 2e-7 0.01 120 111

Bunny 123 270 17638 1e-6 0.02 150 49

Enterprise 110 225 33721 1e-5 0.005 120 180

Mug 20 42 16777 1e-4 0.01 120 40

Car 75 132 15021 1e-7 0.01 150 82

Artwork 1 8 24 13668 1e-5 0.01 150 60

Artwork 2 20 48 18530 1e-5 0.01 150 44

Knot 24 48 2918 1e-4 0.1 120 3

Figure 7: The reconstructed curve networks with different threshold ε (the red

points represents nodes): (a) unorganized spatial point set. (b) ε = 2e − 6 . (c)

ε = 2e− 7 . (d) ε = 1e− 8 . (e) ε = 5e− 9 . (f) ε = 1e− 9.

The threshold ε in Table 1 ensures that the reconstructed curve network

exactly satisfies the actual structure of the original unorganized spatial point

set. Figure 7 shows the reconstructed curve networks of the speaker model with
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different threshold ε. When ε has a large value, the reconstruction is unsuccessful

and the curve network misses several curve segments (Figure 7(b)). When the

value of ε is reduced, the number of nodes will increase which leads to an increase

in curve segments (Figure 7(d-f)). Although the quantity of curve segments is

different from the actual curve network which is shown in Figure 7(c), these

increased curve segments have no influence on the actual structure, and the

reconstructed results (Figure 7(d-f)) are acceptable and can be used to generate

the surface model.

Algorithm 2 of our proposed method is applicable to reconstruction of 2D

curves. In order to demonstrate the applicability of Algorithm 2 in 2D curve

reconstruction, here we compare it with the method of Euclidean minimal span-

ning trees (EMST) which can correctly reconstruct differentiable arcs from suf-

ficiently dense samples as proved in [Figueiredo and Miranda Gomes 1994]. Fig-

ure 8 shows the comparison of curve reconstructions from 2D points between

Algorithm 2 of our proposed method and the EMST method. As shown in the

figure, Algorithm 2 of our proposed method reconstructs the two curves correctly.

In contrast, the EMST method gives wrong curve reconstruction results.

Figure 8: Comparison of curve reconstructions from 2D points (a) between our

method (b) and EMST method (c).

5 Conclusions

To the best of our knowledge, we have proposed the first automatic method for

reconstructing curve networks from unorganized spatial points. Our key insight

is to divide the reconstruction process into two parts: node detection and inner
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point identification. We first limit the search scope of curve segments by using

the principal component analysis-based algorithm to detect all candidate nodes.

Then we employ the Euclidean distance-based iterative algorithm to remove

peripheral nodes and obtain the actual nodes. Finally we find all inner points

between two nodes and extract the curve segments based on our proposed in-

ner point identification algorithm. The test results show that our method can

automatically and effectively process various unorganized spatial point sets and

obtain the networks of curve segments with good automation and high extraction

efficiency.

Despite its advantages, there are a several limitations in our method. First,

determination of the parameters ε, τS and θ is based on trial-and-error, and

could be obtained through optimization analysis. Second, the unorganized spatial

points are uniformly sampled which partly limits further applications of our

method. We have found that applying Delaunay triangulations can solve the

problem which will be investigated in our future work.
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