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Abstract: This work deals with a question in the mathematical modelling for the
temperature evolution in a bar, for a long time linked as an inverse problem. The one-
dimensional model is the parabolic partial differential equation ut = αuxx , known
as the heat diffusion equation. The classic direct problem (DP) involves this equation
coupled to a set of constraints: initial and boundary conditions, in such a way as to
guarantee existence of a unique solution. The data completion (DC) problem hereby
considered may be described as follows: the temperature at one of the bar extreme
points is unknown but there is a fixed interior point where it may be measured, for all
time. Finite difference algorithms (FDA) were tested to approximate the solution for
such a problem.

The important point to be emphasized is that FDA may show up distinct performances
when applied to either DP or DC, which is due to the way the discrete variables follow
up the mesh steps – advancing in time, for the first case, on the space direction, for
the other.
Key Words: Inverse Problem, Data Completion, Diffusion Equation, Heat Conduc-
tion, Finite Differences
Category: G.1.8, J.2, J.6

1 Introduction

Consider a homogeneous heat insulated one-dimensional bar. Representing by

u(x, t) the temperature at time t of its particle with coordinate x, the bar tem-

perature evolution can be modelled, cf. [Cannon 1984], by the equation

ut = αuxx , α a constant.
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The so-called direct problem associated to this model corresponds to deter-

mining a function – which describes the bar temperature state – that satisfies the

above equation as well as fixed constraints, namely: its behaviour at the initial

time and at the bar extreme points are assigned – it should be said, previously

known. Take 0 and 1 as the bar extreme points coordinates. It is a basic fact

from differential equations that, as long as the initial condition u(x, 0) = φ(x)

and, for i = 0 and 1, the boundary conditions, i.e. either

(a.) u(i, t) = αi(t)

or

(b.) ux(i, t) = βi(t)

fulfill convenient hypotheses, one can guarantee the existence of a unique solution

to this problem1 [Friedman 1964].

Many problems may be considered for this model equation that fall into the

class of inverse problems, cf. [Kirsch 1996], [Moura-Neto 2014], [Alifanov 1994]

and [Wikströml 2006], like the one to be studied in the sequel, namely: knowl-

edge of the state at the right end of the bar will be lacking, but the temperature

value at an interior point x0 will somehow be known, cf. [Shidfar 2007]. The

solution will be proven to be unique and we show that it can be retrieved from

the knowledge of this intermediate point temperature value, besides the temper-

ature values at the left of x0, and for all time instants under consideration. This

study was previously known as an inverse problem but nowadays it is coined as

a data completion – DC – problem.

In order to numerically calculate the temperature value at the right of x0, we

will apply two finite difference algorithms: Crank-Nicolson and leap-frog, both

modified in their implementations, following the results in [Negreiros 2010]. The

leap-frog scheme performance for this problem brings a surprise, when compared

with the way it behaves for the DP. This somehow confirms Peter Lax saying

in [Lax 2013]: “[We] claim that the theory of difference schemes is much more

sophisticated than the theory of differential equations”.

It is worth quoting some additional approaches to deal with other inverse

problems for this model, as [Cannon 1998], [Frankel 1996] and [Pasquetti 1995].

This paper is organized as follows. Next section is devoted to the formula-

tion of the data completion problem, plus the proof of its solution uniqueness; in

the third section, the way the finite difference procedures implementation were

carried out is explained; the following section mentions a conditionally stable nu-

merical method for the DC-problem, and exhibits a simpler proof for its claimed

behaviour; numerical tests are described in the fifth section; to close the paper,

a discussion is presented and final conclusions are outlined.

1 We could also require (a.) at right and (b.) at left or vice-versa.
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2 Mathematical model

This section considers the problem of heat diffusion in a bar of length L:

ut = αuxx, 0 ≤ x ≤ L, t ≥ 0 , (1a)

u(x, 0) := f(x), 0 ≤ x ≤ L , (1b)

u(0, t) := l(t), t ≥ 0 , (1c)

u(x0, t) := i(t), t ≥ 0 , (1d)

where α is a constant related to the material characteristics and 0 < x0 < L.

The functions f(x), l(t) and i(t) are known and u(x, t) in (1a) is the function to

be determined.

The approach to the DC-problem is carried out in two steps. In the first

one, the bar, being considered to occupy the interval [0, x0], generates an initial

and boundary value formulation – a direct problem – in the corresponding slab

[0, x0] × [0, T ], with time up to t = T .

The second step considers the bar full length, i.e., [0, L], which leads to

the non-classical problem of requiring the determination of a function u which

satisfies (1a-1c), plus a corresponding constraint (1d), now for L replaced by

x0. We emphasize, that essentially it amounts to determine the solution values

at the right-end border x = L. As mentioned above, for a long time this was

refereed as an inverse problem. Here, we often will keep this terminology.

Theorem1. The solution u(x, t) of the DC-problem described by conditions

(1a)-(1d) is unique in the domain ΩL := {(x, t)| 0 ≤ x ≤ L, t ≥ 0}, no matter

the value for x0, a previously fixed point inside the size L bar.

Proof. Existence and uniqueness holds, as regards to equations (1a)-(1d), when

considering the slab

Ωx0
:= {(x, t) | 0 ≤ x ≤ x0, t ≥ 0} .

As mild assumptions on data guarantee analiticity, on the interior of the slab,

for the solution of such mixed value problem, the principle of analytic extension

implies uniqueness for the DC-problem.

3 Numerical Procedures

The finite differences method consists of first replacing the domain of the un-

known function by a discrete one [Burden 2011]. Thus consider the heat diffu-

sion equation (1a) in the domain ΩLT := {(x, t)| 0 < x < L, 0 < t < T}, L and

T positive constants. The computational mesh is given by

xi := i∆x = ih, i = 0, 1, 2, . . . ,M, L = M∆x ,
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tj := j∆t = jk, j = 0, 1, 2, . . . , N, T = N∆t ,

where M an N are integer numbers. In the already discretized domain, equation

(1a) is then written, throughout the generated nodes, according chosen finite

difference approximations to the relation

∂u(xi, tj)

∂t
= α

∂2u(xi, tj)

∂x2
. (2)

3.1 Regressive differences

Regressive differences is the first of two algorithms we have applied to DC. It

turns out to be an unconditionally stable implicit method with local truncation

error of order O(h2+k). For DP, i.e., 0 ≤ xi ≤ x0 and 0 ≤ tj ≤ M , the scheme

description follows. Denote by U j
i the approximation to be found for u(xi, tj), by

means of the algebraic relation that simulates the differential equation, coupled

to the values assigned to U j
i in correspondence to initial and boundary values:

U j+1

i − U j
i

k
= α

U j+1

i+1
− 2U j+1

i + U j+1

i−1

h2
, (3a)

u(x, 0) := f(x), 0 ≤ x ≤ x0 , (3b)

u(0, t) := l(t), 0 ≤ t ≤ T , (3c)

u(x0, t) := i(t), 0 ≤ t ≤ T. (3d)

On the inverse problem the same algorithm of the direct problem is applied

in x0 ≤ xi ≤ M and 0 ≤ tj ≤ N ,

U j+1

i − U j
i

k
= α

U j+1

i+1
− 2U j+1

i + U j+1

i−1

h2
, (4a)

u(x, 0) := f(x), x0 ≤ x ≤ M , (4b)

u(x0, t) := i(t), 0 ≤ t ≤ T . (4c)

However, due to the lack of information on the right border an adaptation must

be carried out.

The diffusion equation is simulated by (4a) on x0, in j = 1 level,

U1
x0

− U0
x0

k
= α

U1
x0+1 − 2U1

x0
+ U1

x0−1

h2
. (5)

The nodes U1
x0

and U0
x0

are given by i(t) and U1
x0−1 has been calculated in the

direct problem. Consequently, we obtain an approximation for the U1
x0+1 node,

which is an inverse problem node. Repeating this procedure until reaching the

node U1
M−1

, we obtain the vector

U1 = (U1
x0+1, U

1
x0+2, . . . , U

1
M−1, U

1
M ).
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Advancing up to level j = N and repeating the same procedure above, we obtain

approximations for all nodes in the inverse problem.

Therefore, when the finite difference algorithm is applied to the inverse prob-

lem, it is no longer an implicit scheme as it has occurred on the direct problem,

but it is now an explicit scheme. Being r := h2/(αk) in (3a), this follows from

U j+1

i+1
= r(U j+1

i − U j
i )− U j+1

i−1
+ 2U j+1

i . (6)

Theorem2. The method of regressive differences is unconditionally unsta-

ble when applied to the current inverse problem.

Proof. Expression (6) is equivalent to

U j+1

i+1
= (r + 2)U j+1

i − rU j
i − U j+1

i−1
,

which can be written, in matrix form, as

















U1
i+1

U2
i+1

U3
i+1

...

UT
i+1

















=

















r + 2 0 0 0 · · · 0 0

−r r + 2 0 0 · · · 0 0

0 0 −r r + 2 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 −r r + 2

















×

















U1
i

U2
i

U3
i

...

UT
i

















− r

















U0
i

0

0
...

0

















−

















U1
i−1

U2
i−1

U3
i−1

...

UT
i−1

















where Ui+1 = AUi + V, with A = (r + 2)I +N, being N a nilpotent matrix:

A =

















r + 2 0 0 · · · 0 0

−r r + 2 0 · · · 0 0

0 −r r + 2 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −r r + 2

















=

















r + 2 0 0 0 · · · 0

0 r + 2 0 0 · · · 0

0 0 r + 2 0 · · · 0
...

...
...

...
...

...

0 0 0 0 · · · r + 2

















+

















0 0 0 0 · · · 0

−r 0 0 0 · · · 0

0 −r 0 0 · · · 0
...

...
...
...

...
...

0 0 0 0 −r 0

















.
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Denoting by v any eigenvector of A, we have

Nv = λv − (r + 2)v = (λ− (r + 2)) v.

As N is nilpotent, there is a natural k such that Nk = 0. Consequently

Nkv = (λ− (r + 2))
k
v = 0 ⇒ (λ− (r + 2))

k
= 0 ⇒ λ = r + 2.

Thus, the only eigenvalue of A is r + 2, with multiplicity n. As r is positive, all

eigenvalues of A have absolute value greater than 1, so the method is unstable.

3.2 Crank-Nicolson and leap-frog

We have taken the choice to employ the Crank-Nicolson algorithm for the di-

rect problem, the leap-frog scheme to the inverse problem, cf. [Forsythe 1960].

The relevant distinction between these two methods as regards to the regressive

differences is the local truncation error: both present order O(k2 + h2), thus

exhibiting an efficiency greater than the regressive differences method, which

is limited to O(k + h2). It should be mentioned the option to reach for this

equation a fully quadratic truncation error, even with a two-level scheme, see

[de Moura 1993].

The Crank-Nicolson algorithm coupled to progressive differences is performed

by replacing (3a) by the following scheme:

U j+1

i − U j
i

k
=

α

2

(

U j
i+1

− 2U j
i + U j

i−1

h2
+

U j+1

i+1
− 2U j+1

i + U j+1

i−1

h2

)

. (7)

The algorithm with local truncation error of order O(k2+h2) which generated

the best results when applied to the inverse problem was the leap-frog. However,

it may be remarked that its application differs from the way the other ones are

treated, due to the advance of the variables now in space rather than in time.

The structure of the inverse problem approach is done by replacing (4a) by the

scheme
U j+1

i − U j−1

i

2k
= α

U j
i+1

− 2U j
i + U j

i−1

h2
. (8)

The leap-frog algorithm, which proved to be very precise and consistent in

several computational tests, is applied to the inverse problem as follows:

U j
i+1

= s(U j+1

i − U j−1

i ) + 2U j
i − U j

i−1
, (9)

with now s := h2/(2αk).

The equation (9) shows that the (i+ 1)-th step in space needs the values of

the i-th and (i− 1)-th steps in space, as illustrated by Figure 1.
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Figure 1: Mesh employed for Crank-Nicolson and leap-frog

algorithms

The Leap Frog Method As described in (8), the template for the method

amounts to

U j
i+1

= s(U j+1

i − U j−1

i ) + 2U j
i − U j

i−1
, s =

h2

2αk
.

In matrix form we have
















U1
i+1

U2
i+1

U3
i+1

...

UT
i+1

















=

















2 s 0 · · · 0

−s 2 s · · · 0

0 −s 2 · · · 0
...

...
... · · · 0

0 0 0 · · · 2

































U1
i

U2
i

U3
i

...

UT
i

















+

















−sU0
i

0

0
...

sUT
i

















−

















U1
i−1

U2
i−1

U3
i−1

...

UT
i−1

















,

but

















2 s 0 · · · 0

−s 2 s · · · 0

0 −s 2 · · · 0
...

...
... · · · 0

0 0 0 · · · 2

















=

















2 0 0 · · · 0

0 2 0 · · · 0

0 0 2 · · · 0
...
...
... · · · 0

0 0 0 · · · 2

















+

















0 s 0 · · · 0

−s 0 s · · · 0

0 −s 0 · · · 0
...

...
... · · · s

0 0 0 −s 0

















.
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That is, M = 2I+A, where I is the identity and A is an anti-symmetric matrix.

Since any vector of CIn is an eigenvector of 2I, with eigenvalue 2, if v ∈ CIn is an

eigenvector for A with eigenvalue λ ∈ CIn, so v is an eigenvector for M whose

eigenvalue is 2+λ. Recall that the eigenvalues of a real antisymmetric matrix are

all pure imaginary, and thus |2 + λ| ≥ 2. Having M an eigenvalue with absolute

value bigger than 1, the associated method is unstable.

Our leap-frog algorithm implementation has followed the steps described in

the sequel.

– Step 1 - the additional interval [T, T + η] where data will be needed in order

to perform the inverse problem part is estimated;

– Step 2 - approximations up to the limit T + η are obtained in the direct

problem;

– Step 3 - solution approximations for the inverse problem are reached by

calculating the vectors

Ux0+1 = (U1, U2, U3, . . . , UT+η−1) ,

Ux0+2 = (U1, U2, U3, . . . , UT+η−2) ,

up to

UN = (U1, U2, U3, . . . , UT ).

4 Numerical results

This section exhibits the numerical results generated with our chosen algorithm,

namely (CN + LF). All examples (5-1)–(5-4) below consider the heat equation

(1a) with α = 1, 0 ≤ x ≤ 1 and t ≥ 0, plus initial condition u(x, 0) = sin(x),

boundary condition u(0, t) = 0 and at the interior point u(x0, t) = sin(x0)e
−t.

Knowledge of this problem solution, namely u(x, t) = sin(x)e−t, has been em-

ployed towards the error data computing.

Example 1.

These test data allow to verify the relation between the point x0 location and

the computing errors at the boundary point x = 1.
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Figure 2: Temperature values u(1, t) calculated with (CN + LF)

The values obtained for the solution at x = 1 correspond to ∆x = 0.05 and

∆t = 0.02, with x0 at 0.3, 0.5 and 0.7.

It is clearly shown at the picture in Fig. 2 that the closer x0 gets to the right

boundary, the better the approximation values become.

Example 2.

The present test is intended to verify the relationship between the step length

∆t and the resulting error at u(x, 1).

Figure 3: Temperature values u(1, t) calculated by (CN + LF)
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Approximations for solution at x = 1 were reached by taking ∆x = 0.02 and

∆t = 0.02 - 0.01 - 0.005, with x0 = 0.5.

The graph at figure 3 confirms the method consistency, since as the step

length ∆t gets thinner, the corresponding error also gets smaller.

Example 3.

The aim for this test was to verify the relation between the location of the point

x0 with the error at the boundary point x = 1.

Figure 4: Values for the temperature u(1, t) calculated with (CN + LF)

The solution was obtained at x = 1 with 10 steps for the variable x and the

value x0 = 0.5.

Example 4.

The present test purpose was to measure the relationship between the step length

∆x with the approximations at x = 1.
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Figure 5: Values for the temperature u(1, t) calculated with (CN + LF)

Approximations for the solution at x = 1 have been obtained with ∆t = 0.02

and x0 = 0.5, with ∆x = 0.1 and 0.02.

5 Conclusions

In the present work we have applied a finite difference algorithm for the so called

data completion problem. We have been restricted to a quite simple framework,

namely, the homogeneous one-dimensional heat equation with a constant dif-

fusion coeficient. The employed algorithm (CN + LF) has always shown its

consistency.

As should be expected, in the direct problem Crank-Nicolson classical method

has performed quite well. The special surprise was leap-frog good performance:

it is universally known that for the diffusion equation direct problem this is an

unconditionally unstable method. The good behavior we have met is certainly

due to the way the discrete variables pave their advance; here the space variable

holds the control, not the time variable, as in the direct problem. This surely

is a seminal point, despite not yet fully absorbed: numerical simulation of a

partial differential equation may turn out strongly dependent of the direction

the discretized variables advance.

Besides, from the performed tests we observe the obvious importance of the

placing of the point x0: the closer to the right boundary it lies, the better re-

sults are generated. Of course this is a constraint not easily fulfilled in practical

situations.

The ideas hereby described and tested certainly demand their employment in

more demanding models. Among them it is worth mentioning two-dimensional
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bodies, external heat sources as well as less restrictive equations, like the ones

considered in [Shidfar 2007].

Acknowledgement

One of the authors (CAdeM) was partially supported by a grant from FAPESP

– the Carlos Chagas Filho Rio de Janeiro State Foundation for Science Research

Support –, namely ref. E-26/202.500/2019.

References

[Alifanov 1994] O. M. Alifanov, Inverse Heat Conduction Problem. Springer-Verlag,
New York, 1994.

[Burden 2011] R. L. Burden, J. D. Fairies, Numerical Analysis, 9th ed. Cengage Learn-
ing, Boston, 2011.

[Cannon 1984] J. R. Cannon, The One-Dimensional Heat Equation. Addison-Wesley,
Boston, 1984.

[Cannon 1998] J.R. Cannon, P. Duchateau, Structural identification of a term in a
heat equation, Inverse Problem 14, 535-551 (1998).

[de Moura 1993] C. A. de Moura, An explicit, really quadratic 2-level scheme for the
diffusion equation, Journal of Computing and Information – Toronto, Canada –, 3
(1) 99-115 (1993).

[Forsythe 1960] G. E. Forsythe, W. R. Wasow, Finite Difference Methods for Partial
Differential Equations. J. Wiley, New York, 1960.

[Frankel 1996] J. I. Frankel, Residual-minimization least-squares method for inverse
heat conduction, Comp. Math. Appl. 332 (4), 117-130 (1996).

[Friedman 1964] A. Friedman, Partial Differential Equations of Parabolic Type.
Prentice-Hall Inc., Upper Saddle River, New Jersey, 1964.

[Kirsch 1996] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Prob-
lems, Applied Mathematical Sciences. Springer-Verlag, New York, 1996.

[Kouashi 2006] S. Kouashi, Eigenvalues and Eigenvectors of Tridiagonal Matrices.
Electronic Journal of Linear Algebra, 15, 115-133 (2006).

[Kouashi 2008] S. Kouashi, Eigenvalues and Eigenvectors of some tridiagonal matrices
with non-constant diagonal entries. Applicationes Mathematicae, 35 (1), 107-120
(2008).

[Lax 2013] P. D. Lax, Stability of Difference Schemes, pp.5-14, in C. A. de Moura,
C. S. Kubrusly (Eds.), The Courant-Friedrichs-Lewy (CFL) Condition. Birkhäuser,
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[Wikströml 2006] P. Wikström, A study of surface temperature and heat flux estima-
tions by solving an Inverse Heat Conduction Problem. Royal Institute of Technology,
School of Industrial Engineering and Management, Stockhölm, 2006.
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