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Abstract: This paper proposes a novel undersampling method, for dealing with imbalanced
datasets. The proposal is based on a novel instance importance measure (also introduced in this
paper), and is able to balance hybrid and incomplete data. The numerical experiments carried
out show the proposed undersampling algorithm outperforms others algorithms of the state of
art, in well-known imbalanced datasets.
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1 Introduction

Imbalanced datasets are a challenge for supervised classifiers. Several datasets
contain imbalance between classes, and usually the minority class is the interest class
(whose incorrect classification is less desirable) [Fernandez et al., 18]. For instance,
let us suppose that we have 1000 persons, 10 of which are HIV positive. A classifier
with a 99% accuracy, misclassifying the persons with HIV, is not useful at all. As in
the example, many applications are imbalanced by nature, such as the diagnosis of
some diseases [Bagby et al., 19; Fotouhi et al., 19; Rajesh and Dhuli, 18], credit
assignment [Cleofas-Sanchez et al., 16; Garcia et al., 19; Yu et al., 18], and many
others.

Many of these applications also have associated additional complexity, because
the attributes can be hybrid or mixed [Hu et al., 06; Kim and Hong, 17], and in
addition, there can be absences of information in the attribute values [Cheng at al., 12;
Li et al., 16; Reznakova et al., 17; Ruiz-Shulcloper, 08]. The sum of these three
factors (imbalance, hybrid attributes and lack of information) complicates the
classification task, and affects the performance of the classifiers [Fernandez et al.,
18].

There are several ways to deal with the three factors mentioned above, which are
summarized in data-level solutions, algorithm-level solutions and cost-based
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classification [Lopez et al., 12]. The solutions at the data level to coping with hybrid
attributes and lack of information, consist of unifying the type of the attributes (either
by discretizing the numerical attributes or by digitizing the categorical attributes) and
by completing the absences of information by means of imputation of values
techniques. On the other hand, solutions at the algorithm level consist in managing the
mixed attributes and the lost values as part of the training and classification phases.

In the case of imbalance, the solutions at the level of algorithms consist
fundamentally in modifying the operation of the classifiers to consider the imbalanced
data [Galar et al., 13]. In addition, these solutions usually use cost techniques to
weigh errors differently, so that the classifiers are robust to the imbalance; favoring in
this way the correct classification of the minority class [Lopez et al., 12].

Several researchers have proven the usefulness of instance selection to improve
classifier performance [Carbonneau et al., 16; Leyva et al., 15; Li et al., 14]. That is
why, on the other hand, data-level solutions to attack the imbalance consist of
balancing the data set by undersampling the majority class, oversampling the minority
class, or a combination of both sampling techniques [Fernandez et al., 18]. The
oversampling techniques are based on the creation of artificial instances that are
"similar" to the original ones, as it does the well-known SMOTE [Chawla et al., 02]
and other algorithms [Castellanos et al., 18; Saez et al., 16]. Carrying out this task is
very difficult when dealing with mixed attributes and with absences of information,
because the techniques for oversampling create artificial instances by subtracting and
multiplying the values of the original instances. Another drawback of oversampling is
the additional computational cost coming from creating artificial instances. That is
why we consider that, in the presence of data with mixed attributes and absences of
information; it is preferred to use undersampling techniques.

However, there is no algorithm capable of outperforming all existing methods in
the state of the art in all possible scenarios, so the problem of selecting instances for
class balancing is still valid. In addition, many of the algorithms proposed for
undersampling perform a random sampling of the majority class, or of the instances
close to the decision boundaries [Batista et al., 04; Kubat and Matwin, 97; Yen and
Lee, 06]. Thus, the distribution of the samples in the majority class is not considered,
which leads to losses in the performance of the classifiers.

That is why in this article we present a new approach, which is based on the
recently proposed Maximal Similarity Granular Rough Sets, and in a new measure of
instance importance, for the balancing of instances by undersampling. The new
measure is presented for the first time in this paper and provides conceptual support to
the new approach. Our idea is to structure the majority class, and later, to use a new
merging approach and the proposed importance measure to select the instances of the
majority class. In this way, we guarantee that the selected instances are representative
of the majority class, thus ensuring the correct classification of as many instances as
possible.

The two fundamental contributions of this article are:

1. The proposal of a new measures to estimate the importance of objects.
2. The proposal of a new algorithm for the selection of instances by
undersampling, based on the proposed measure.

The article is structured as follows: section 2 reviews existing methods for
undersampling imbalanced data, section 3 details the proposed measure for instance



700 Camacho-Nieto O., Yanez-Marquez C., Villuendas-Rey Y.: Undersampling ...

importance, and the proposed undersampling algorithms. The experimental
comparisons made on imbalanced data sets are given in section 4, and they show that
our proposal obtains better results with respect to other algorithms of the state of the
art. Finally, conclusions and references are included.

2 Data balancing by undersampling

Undersampling algorithms aim at matching the quantities of instances in each class,
by sampling the majority classes [Fernandez et al., 18]. Thus, instances that are
considered less relevant are eliminated, so that all classes have approximately the
same number of objects. Next, we briefly review some of the undersampling
algorithms in the literature.

The first condensing algorithm proposed in the literature is the CNN (Condensed
Nearest Neighbor) rule, by Hart [Hart, 68]. Although it is not designed for diminish
the effects of data imbalance, it is still used in several experimental comparisons.
Similarly, the Tomek's modification of CNN, named as TL (Tomek’s Link) [Tomek,
76], is also a dated algorithm for instance selection. In this method if two instances
form a TL, then one of them is noise or the two instances are on the border. Prior to
the application of the CNN, this method obtains a set of objects that contains only the
objects near the decision boundaries.

One Sided Selection (OSS) [Kubat and Matwin, 97] is probably the first
undersampling method, designed specifically to deal with class imbalance. In this
method, all the instances belonging to the minority class are selected, and the
instances of the majority class participating in a Tomek link are removed.

Another undersampling method is the NCL (Neighbourhood Cleaning) rule
[Laurikkala, 01], which uses the ENN (Edited Nearest Neighbor) rule [Wilson, 72] to
remove objects from the majority class. ENN removes any instance whose class
differs from the class of at least three of its five closest neighbors.

In 2004, Batista et al. [Batista et al., 04] carried out a study of sampling
techniques to deal with class imbalance. In such study, they proposed the RUS
(Random Under Sampling) and the CNNTL (CNN + TL) algorithms. RUS randomly
selects the desired number of instances from the majority class, while CNNTL applies
first the CNN algorithm, followed by the TL algorithm.

To overcome the drawbacks of the previous undersampling techniques, several
authors have use clustering algorithm to better represent the majority class. One of
such proposals is the Class Purity Maximization (CPM) algorithm [Yoon and Kwek,
05]. In this method, two instances of both the minority and the majority class are
selected as centres. The other instances are distributed in two subsets according to
their closest centres, with at least one subset that has a high class purity. This process
is recursively repeated for each of the two subsets until it can no longer form two
groups, with at least one class of higher purity than the parent group. Only the
instances belonging to a non-pure subset are passed to a decision tree committee to
decide if they are removed from the set.

Another algorithm based on clustering is SBC (under-Sampling Based on
Clustering) [Yen and Lee, 06]. SBC clusters the data into k clusters (k is a user
parameter), and then it selects a suitable number of majority class instances from each
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cluster by considering the ratio of the number of majority class instances to the
number of minority class instances in the cluster.

All the previously mentioned methods have, to a lesser or greater extent, managed to
solve the problems of data imbalance by applying undersampling techniques;
however, they do not guarantee a good representation of the majority class, in terms
of the distribution of their instances, which leads to poorly represented classes. This
motivated us to invent the new measure of importance of the instances, using the
Maximal Similarity Granular Rough Sets, to propose a new approach, which will be
described in the next section.

3 Proposed method

Our proposal, which we have named as Balanced by Rough Importance Selection
(BRIS), uses a clustering-based approach for undersampling. However, it
differentiates from previous proposals in several aspects:

1. We separate the majority classes, and then we cluster each of them.

2. We do not predefine the number of initial clusters.

3. We successfully deal with multi-class (having more than two classes)

data.

4. We also deal directly with hybrid as well as with incomplete data.

We first detect which the minority class is, among all classes. We consider the
number of instances in the minority class as min. Then, we separate each of the non-
minority classes, and we design a procedure to select, from each of those classes, a
number of representative instances equal to min.

Section 3.1 details the procedure to compute the importance of instances, which

later are used to select the representative ones (we select the most important instances
as representatives of their classes).
Section 3.2 faces the procedure to preserve the distribution of the non-minority
classes, in a way such that all regions are represented by the more important
instances. Section 3.3 gives the overall procedure of the proposed algorithm for data
balancing by undersampling

3.1 Measuring instance importance

One of the greatest challenges in undersampling techniques is to obtain a good
representation of the majority class. For doing so, we design a strategy of measuring
the importance of the instances, based on the recently proposed Maximal Similarity
Granular Rough Sets (MSGRS) [Villuendas-Rey, 19].

3.1.1 Some definitions of Rough Sets

This subsection is strongly based on [Villuendas-Rey, 19]. In Rough Set Theory, an
Information System (IS) is a pair (U, A) where U is a universe of instances, cases or
examples, which are described by a set of attributes or features A. If we add a decision
attribute d to the pair, we have a new pair (U, A U {d}), named Decision System
(DS). According to Rough Set Theory, we can approximate a concept X € U by
means of two sets: lower and upper approximations. To do so, we use a relation
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among instances. Let (U, A) be an IS, let B € A be a subset of attributes, let x,y € U
be two instances, and let x; and y; be the values of the attribute A; € B on instances x
and y, respectively. In classic definitions of Rough Sets, the indiscernibility relation
R € U x U with respect to B is denoted as Rz and it is defined as xRgy < VA; €
B, x; = y;. The equivalence class of an instance x with respect to Ry is denoted as
B(x) and is defined as B(x) = {y € U: yRpx}.

Considering the equivalence classes, a set X has two approximations: lower and
upper. The lower approximation is denoted as LOWg_(X) = {x € U: B(x) < X} and
the upper approximation is UPPRB(X) = {x € U: B(x) N X # @}.

3.1.2 MSGRS and instance importance

Different from classical Rough Sets, MSGRS has the advantage of dealing with
hybrid as well as with incomplete data, and they do not need any parameter for the
construction of the approximations, except a similarity function. In MSGRS, MS is
defined as a maximum similarity operator as follows [Villuendas-Rey, 19]:

Definition 1. Let (U, A) be an Information System, let B € A, let x € Uy be any
instance in the universe U described only by the attributes in B, denoted as Up and let
simg(x,z) be any similarity function between two instances belonging to Ug. The
maximum similarity operator is defined as the application of the max operator over
the similarity function simg:

MSg(x) = max (simg(x,2)) €))
z€UpR,z¥*x

Thus, the similarity class and the lower and upper approximations of MSGRS
given aset X € Ug, X # @ are defined by the expressions 2 - 4:

Rp(x) = {y € {Up — {x}}: MSp(x) > 0} U {x} )
LOWg, (X) = {x € Ug: Rg(x) € X} (3)
UPPRB(X) = {x € Ug: Rg(x) N X # @} 4

As shown, in a MSGRS, the instances in the lower approximation has in their
similarity class, instances only from its decision class (fulfilling condition MSg(x) >
0). However, we can rewrite the maximum similarity operator of an instance x, to
know how many instances from its same decision class are closer than the most
similar instance from another decision class. We consider the more instances are in
the similarity classes, the more important the instance is.

Definition 2. Let (U, A) be an Information System, let B € A, let x € Uy be any
instance in the universe U described only by the attributes in B, denoted as U, and let
X be the decision class of the instance x. The maximum competitor similarity
operator is defined as the application of the max operator over the similarity function
simg:

MCSp(x) = Zegga};ex(simg (x,2)) (5)

By using definition 2, we introduce the friendly similarity class of an instance,
which is the first contribution of this paper.

Definition 3. Thus, the friendly similarity class Fg(x) of the instance x is given
by:

Fg(x) = {y € X:simg(x,y) > MCSg(x)} (6)
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Definition 4. Let x € Uy be any instance in the universe U described only by the
attributes in B, let X € Uy be a decision class, and x € X. The importance of the
instance x with respect to the attribute set B € A is denoted as Ig(x), and will be
computed as the number of instances related with x by Fp, belonging to the same
decision class of x:

Ig(x) = |Fg(x)| (7

Thus, the greater Iz (x) the more important the instance x is. Figure 1 shows the
pseudocode for the procedure to compute the importance of an instance.

Algorithm # 1: Rough Importance
Inputs: Instance x, Universe of instances U, Set of attributes B, Similarity function
simg
Output: Importance of the instance x denoted as Iz (x)

Steps:
1. Let X be the decision class of the instance x
2. Foreachinstance z € Ug,z & X
2.1. Compute the similarity as (simg(x, z)
3. Find the maximum competitor similarity of x as MCSg(x) =

max (simg(x,z
zeUB,zex( 5(*,2))

4. Fp(x)=0
5. Foreachy € X

5.1. If (simg(x,y) > MCSg(x) then Fg(x) « Fg(x) U {y}
6. Ig(x) = |Fg(x)|// The| | is the cardinality of a set operator
Return I (x)

Figure 1: Algorithm to compute the importance of an instance.

Definition 4 is one of the most important contributions of this paper, due to it
allows us to introduce, by using definition 3, the concept of instance importance, key
for the posterior development of the proposed undersampling algorithm.

3.2  Preserving distribution of non-minority classes

A challenge of undersampling methods is to obtain good representations of the
majority class, using few instances (usually, just the number of instances in the
minority class). Several density-based clustering algorithms can be used for these
purpose, such as DBSCAN [Ester et al., 96], however, they have the inconvenient of
dealing only with numeric or with categorical data, and no with hybrid data.

3.2.1 [Initial preservation of data distribution

To address this issue, we opted for using a clustering algorithm from the Logical
Combinatorial Approach to Pattern Recognition [Ruiz-Shulcloper, 08], able to deal
with hybrid data, and designed to preserve the structure of the data. The Compact Set
Structuralization (CSS) [Trinidad et al., 00] has as parameter a similarity function
between instances and a minimum similarity threshold (S,) usually set to zero. CSS
first computes a Maximum Similarity Graph of the instances (each instance is
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connected to its most similar instances, if such maximum similarity overpasses the
threshold), and then return the Compact Sets, which are the connected components of
the Maximum Similarity Graph computed. Formally, a Compact Set is defined as
follows:

Let U be a set of instances, 3, be a similarity threshold, B € A be an attribute set
describing the instances, is and simg(x,y) a similarity function among instances
x,y € U. A subset cs # @ of U is a B,-compact set if and only if:

rgeag({simB (x,2)} =simg(x,y) = By

Z#X
DI €U X € N | maetsimy 2,0} = sima(y,%) = By )| 7Y €
Z#X
[ X=x;Ay =xqAVp{l,-,q— 1} ]
rgleal;({simB(xp,z)} =simB(xp,xp+1) > By |
b)Vx,y € cs, 3xq,+,Xq € CS z#xyp

I
| vrgeal;({simg(xpﬂ,z)} =simB(xp+1, xp) > Bol
| 1]
c)Every fy-isolated instance (not connected with other instance) is a degenerated
Compact Set.

The main drawback of the CSS is that the number of clusters is unknown, and it
is usually much greater than the number of instances in the minority class, min. To
solve this problem, we designed an agglomerative approach, in a way such that we are
able to return the desired amount of instances from each non-minority class. After
computed the CSS of each non-minority class, we proceed to merge the Compact
Sets, following an agglomerative approach. Our merging strategy (figure 2)
differentiates from other in the literature in the following:

It uses the importance of instances (Iz(x), section 3.1) to select the cluster
representatives (we use the words cluster representative instead of cluster center, due
to we are dealing with hybrid data, and thus we have no centroids. Instead, we
selected from of the available instances the most important one).

It merges all most similar clusters at once, by using the similarity between cluster
representatives as inter-cluster similarity. By doing so, we avoid order dependence,
and we diminish the computational cost associate with agglomerative strategies for
instance clustering. In addition, using the similarity between cluster representatives as
inter-cluster similarity also reduces computational cost, due to the similarity matrix
between instances is computed only once, and then, the values are used.

Note that, if the number of initial clusters in the non-minority class is lower than
the number of instances in the minority class, the proposed algorithm compensates the
difference by randomly selecting instances from the non-minority class clusters.
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Algorithm # 2: Cluster Merging

Inputs:

Compact Sets CS of the class to cluster
Number of clusters to obtain (min)
Universe of instances U

Set of attributes B

Similarity function simp

Output: Set of remaining clusters RC

1. RC«CS
2. If (|RC| < min)
2.1. Do

2.1.1. R« 9

2.1.2. Foreach cluster cs € RC
2.1.2.1. Randomly select an instance x € cs
2.122. R<RU{x}
Until |RC| + |R| = min
22. RC<RCUR
3. While (|RC| > min)
3.1. Foreach cluster cs € RC
3.1.1. Foreach instance x € cs, compute its importance as
Rough Importance(x,U, B, simg).
//The detailed pseudocode of the Rough Importance algorithm is given in
Figure 1.
3.2. Select as cluster representative the instance with greater importance.
3.3. Merge all most similar clusters in cs, using as inter-cluster similarity the similarity
between cluster representatives
3.4. Foreach cluster cs € RC
3.4.1. Update cluster representatives
4.  Return RC

Figure 2: Algorithm to merge the clusters of a non-minority class.

3.2.2  Selecting representatives of the non-minority classes

After obtained the desired amount of clusters of the non-minority classes, and by
maintaining as much as possible the data distribution, our proposal will select a
representative instance from each cluster. As clusters were merged according to the
similarity of the most important instances of each cluster, now we want to select an
instance similar to all instances in the cluster.

To do so, we will compute the average similarity of each instance with respect
other instances in its cluster, and we will select the instance with greater average
similarity (Figure 3).
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Algorithm # 3: Representatives

Inputs:

Set of remaining clusters RC of a non-minority class

Set of attributes B

Similarity function simp

Output: Set of representative instances Rl of a non-minority class

1. RI<9®
2. Foreach cluster cs € RC
2.1. Foreach instance x € cs, compute its average similarity with

respect other instances as Avg(x) = avg(simg(x, 2)).
ZECcs
2.2. Select as cluster representative the instance with greater average

similarity, as y = argmax Avg(x).

XECS
2.3. RI < RIU{y}
Return R/

Figure 3: Algorithm to select representative instances of a non-minority class.

3.3  Overall procedure of BRIS algorithm

Let (U,A U {d}) be a Decision System, let B © A, where the attributes in A can be
continuous, categorical or with missing values. Let x € Uz be any instance in the
universe U described only by the attributes in B, denoted as Ug, and let the decision
attribute d be multi-valued, and let U = U}, X;, where the decision class X; is
formed by the instances having value d; in the decision attribute d, and let |X;| the
cardinality of the i-th decision class. The minority class of the Decision System will

be noted as X,,,, and defined as X,,, = argmin|X;]|.
i=1.n

We will consider all other classes, with i # m, as non-minority, and therefore,
majority classes. We consider the number of instances in the minority class as
min = |X,,|. The proposed undersampling procedure works as follows:

First, we separate the minority and non-minority classes. Automatically, the
instances in the minority class will be selected. For each non-minority classes, we
compute its Compact Sets [Trinidad et al., 00]. Each Compact Set is considered as a
cluster initially. Then, the importance for each of the instances in each compact is
calculated. The instance that has the greater value (potentially further away from the
decision boundaries), is selected as the representative of the cluster. Then, to obtain
min clusters to represent the class, we use an agglomerative process, according to the
merging algorithm presented in figure 2, which is based in an instance importance
measure (whose computation is described in figure 1).

The algorithm selects the most similar clusters (taking as similarity between
clusters the similarity between representatives) and merges them. The algorithm
merges all the most similar groups in one step, avoiding order dependency and
making clusters faster. The agglomerative process continues until the desired number
of groups is obtained (number of objects of the minority class, min). Later, we will
select a representative instance of each cluster, to form the representative instance set
for the corresponding non-minority class. The overall undersampling procedure is
drafted in figure 4.
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Figure 4: Overall scheme of the proposed undersampling algorithm.

4 Experimental comparisons

The experimental study was conducted on a computer with AMD Sempron SI-42
processor at a speed of 2.1 GHz, and usable RAM of 2.75 GB. This computer was not
destined exclusively to the run of the algorithms, which always were executed with
priority below normal. This is why it was not possible to perform a study of the
execution time used by them.

4.1 Experimental framework

We decide using the Area under the ROC curve (AUC) and Matthews Correlation
coefficient (MCC) as classifier performance measure. Considering the two classes
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confusion matrix of figure 5, the AUC is computed as [Sokolova and Lapalme, 09],
and MCC [Matthews, 75] as:

1
AUC = =

McCC

tp

tp

N

Gt
2\tp+fn tn+fp

S«*P

- JP*S*x(1—=S)*(1—P)
N=tp+tn+fp+fn

S =
_tptfp

P

N

N

tp+ fn

®)

)

In addition, we compute the Imbalance Ratio (IR) of the undersampling
algorithms, measure as the instance ratio between the majority and minority classes.

Data class | Classified as positive | Classified as negative

positive true positive (tp) false negative (fn)

negative | false positive (fp) true negative (tn)

Figure 5: Confusion matrix.

Dataset Atts | Instances | IR Dataset Atts Instances | IR
abalonel9 8 4174 129.44 | pageblocksl3 vs 4 | 10 472 15.86
abalone918 8 731 16.40 | pima 8 768 1.87
ecoli0_vs 1 7 220 1.86 segmentQ 19 2308 6.02
ecoli0137 vs 26 7 281 39.14 | shuttlecOvsc4 9 1829 13.87
ecolil 7 336 3.36 shuttlec2vsc4 9 129 20.50
ecoli2 7 336 5.46 vehicleQ 18 846 3.25
ecoli3 7 336 8.60 vehiclel 18 846 2.90
ecoli4 7 336 15.8 vehicle2 18 846 2.88
glass0 9 214 2.06 vehicle3 18 846 2.99
glass0123 vs 456 | 9 214 3.20 vowel0 13 988 9.98
glass016 vs 2 9 192 10.29 | wisconsin 9 683 1.86
glass016 vs 5 9 184 19.44 | yeast05679 vs 4 8 528 9.35
glassl 9 214 1.82 yeastl 8 1484 2.46
glass2 9 214 11.59 | yeastl vs 7 8 459 14.30
glass4 9 214 15.47 yeast1289 vs 7 8 947 30.57
glass5 9 214 22.78 | yeastl458 vs 7 8 693 22.10
glass6 9 214 6.38 yeast2 vs 4 8 514 9.08
haberman 3 306 2.78 yeast2 vs 8 8 482 23.10
irisO 4 150 2.00 yeast3 8 1484 8.10
newthyroid1l 5 215 5.14 yeast4 8 1484 28.10
newthyroid2 5 215 5.14 yeast5 8 1484 32.73
pageblocks0 10 5472 8.79 yeast6 8 1484 41.40

Table 1: Description of the datasets used.
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We use the 5-fold-cross validation procedure. We also use non-parametric tests
(Friedman test [Friedman, 37; Friedman 40] and Holm post hoc test [Holm, 79]) for
statistical comparisons [Garcia and Herrera, 08].

We used 44 imbalanced datasets from the KEEL repository [Alcala-Fernandez et
al., 11], which are described in table 1. Their imbalance ratio (IR) ranges between
1.82 and 129.44, and their instance number ranges between 150 and 5472. The
attribute number (Att) ranges between four and 19.

We tested our proposal (BRIS) against six undersampling algorithms: CNNTL,
CPM, NCL, OSS, RUS, and SBC, all of them described previously in section 2.
These undersampling algorithms are available at KEEL software [Alcala-Fernandez,
09; Alcala-Fernandez, 11] in its release 3.0.

We maintain the default parameter values for all of the compared algorithms. We
use the Nearest Neighbor [Cover and Hart, 67] (NN) classifier as base classifier.

Dataset Atts | Instances | IR Dataset Atts Instances | IR
abalonel9 8 4174 129.44 | pageblocksl3 vs 4 | 10 472 15.86
abalone918 8 731 16.40 pima 8 768 1.87
ecoli0 vs 1 7 220 1.86 segment( 19 2308 6.02
ecoli0137 vs 26 7 281 39.14 shuttlecOvsc4 9 1829 13.87
ecolil 7 336 3.36 shuttlec2vsc4 9 129 20.50
ecoli2 7 336 5.46 vehicleO 18 846 3.25
ecoli3 7 336 8.60 vehiclel 18 846 2.90
ecoli4 7 336 15.8 vehicle2 18 846 2.88
glass0 9 214 2.06 vehicle3 18 846 2.99
glass0123 vs 456 | 9 214 3.20 vowel0 13 988 9.98
glass016 vs 2 9 192 10.29 wisconsin 9 683 1.86
glass016 vs 5 9 184 19.44 yeast05679 vs 4 8 528 9.35
glassl 9 214 1.82 yeastl 8 1484 246
glass2 9 214 11.59 yeastl vs 7 8 459 14.30
glass4 9 214 15.47 | yeast1289 vs 7 8 947 30.57
glass5 9 214 22.78 yeast1458 vs 7 8 693 22.10
glass6 9 214 6.38 yeast2 vs 4 8 514 9.08
haberman 3 306 2.78 yeast2 vs 8 8 482 23.10
irisO 4 150 2.00 yeast3 8 1484 8.10
newthyroidl 5 215 5.14 yeast4 8 1484 28.10
newthyroid2 5 215 5.14 yeast5 8 1484 32.73
pageblocks0 10 5472 8.79 yeast6 8 1484 41.40
Table 1: Description of the datasets used.
4.2  Results

Tables 2 and 3 show the AUC and MCC results for the compared undersampling
algorithms. In the first column we present the value obtained with the NN classifier in
the original datasets, without having applied any instance selection algorithm.
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Dataset NN | CNNTL | CPM | NCL | OSS | RUS | SBC | BRIS
abalonel9 0.52 | 0.50 0.51 0.50 | 0.50 | 0.51 0.20 | 0.63
abalone918 0.63 | 0.52 0.59 |0.63 | 054 | 0.55 | 0.54 | 0.73
ecoli0 vs 1 0.97 | 0.89 094 096 |093 | 095 | 0.18 | 0.97
ecoli0137 vs 26 0.72 | 0.42 0.64 0.67 0.54 | 0.55 | 0.01 | 0.79
ecolil 0.84 | 0.76 0.74 0.81 0.78 | 0.80 | 0.25 | 0.85
ecoli2 0.85 | 0.67 0.85 086 [ 0.72 | 0.76 | 0.08 | 0.90
ecoli3 0.71 | 0.68 0.69 |0.72 | 0.72 | 0.68 | 0.05 | 0.82
ecoli4 0.86 | 0.72 0.81 0.86 | 0.83 | 0.72 | 0.03 | 0.95
glassO 0.78 | 0.74 0.74 0.80 [0.75 ] 0.78 | 0.16 | 0.79
glass0123 vs 456 0.89 | 0.80 0.93 0.92 0.88 | 092 | 091 | 0.93
glass016 vs 2 0.59 | 0.58 0.57 0.61 0.64 | 0.55 | 0.04 | 0.60
glass016 vs 5 0.83 | 0.74 0.80 | 0.76 | 0.76 | 0.65 | 0.02 | 0.92
glass] 0.70 | 0.72 0.70 | 0.70 | 0.73 | 0.76 | 0.27 | 0.77
glass2 0.61 | 0.61 0.59 0.59 0.61 | 0.56 | 0.04 | 0.62
glass4 0.79 | 0.66 0.65 0.78 0.74 | 0.67 | 0.03 | 0.89
glass5 0.86 | 0.86 0.89 | 0.81 | 0.81 | 0.63 | 0.02 | 0.92
glass6 0.86 | 0.69 090 |0.93 |0.77 | 0.89 | 0.07 | 0.93
haberman 0.55 | 0.59 0.53 0.56 | 0.57 | 0.58 | 0.55 | 0.58
irisO 1.00 | 1.00 1.00 1.00 1.00 | 1.00 | 0.17 | 1.00
newthyroid1 095 1] 095 0.95 096 (095|094 | 0.08 | 0.99
newthyroid2 0.95 | 0.89 0.92 0.96 | 093 | 0.92 | 0.08 | 0.99
pageblocks0 0.82 | 0.70 083 |[0.83 | 076 |0.78 | 0.70 | 0.83
pageblocks13 vs 4 | 0.89 | 0.86 0.87 096 | 095 |0.70 | 0.03 | 0.96
pimaimb 0.67 | 0.63 0.62 0.69 | 0.67 | 068 | 0.67 | 0.69
segment0 097 | 0.96 0.95 0.98 096 | 094 | 0.07 | 0.99
shuttlecOvsc4 1.00 | 1.00 1.00 1.00 | 1.00 | 1.00 | 0.03 | 1.00
shuttlec2vsc4 0.90 | 0.77 1.00 1.00 | 1.00 | 0.83 | 0.02 | 1.00
vehicle0 0.86 | 0.84 0.86 | 0.87 | 0.86 | 0.85 | 0.12 | 0.92
vehiclel 0.65 | 0.63 0.61 0.66 | 0.63 | 0.61 0.13 | 0.66
vehicle2 0.89 | 0.83 0.89 0.91 0.86 | 0.87 | 0.38 | 0.93
vehicle3 0.66 | 0.66 0.66 | 0.70 | 0.68 | 0.66 | 0.13 | 0.73
vowel0 0.92 | 0.99 0.94 1.00 | 0.99 | 0.85 | 0.05 | 0.99
wisconsin 0.96 | 0.94 0.92 097 [ 096 | 096 | 0.17 | 0.97
yeast05679 vs 4 0.68 | 0.62 0.68 0.71 0.65 | 0.63 | 0.05 | 0.75
yeastl 0.64 | 0.62 0.59 0.65 0.63 | 0.62 | 0.14 | 0.67
yeastl vs 7 0.59 | 0.56 0.58 0.62 | 0.59 | 0.56 | 0.03 | 0.69
yeast1289 vs 7 0.58 | 0.52 0.54 | 0.56 | 0.51 | 0.52 | 0.02 | 0.66
yeast1458 vs 7 0.52 | 0.52 0.55 0.56 | 0.51 | 052 | 0.02 | 0.60
yeast2 vs 4 0.83 | 0.65 0.75 0.83 0.72 | 0.74 | 0.05 | 0.88
yeast2 vs 8 0.72 | 0.55 0.64 0.77 0.57 | 0.55 | 0.02 | 0.81
yeast3 0.84 | 0.67 0.72 0.79 10.73 | 0.71 | 0.05 | 0.87
yeast4 0.62 | 0.55 0.60 | 0.65 | 0.58 | 0.56 | 0.02 | 0.79
yeast5 0.79 | 0.74 0.73 0.81 0.77 | 0.66 | 0.01 | 0.93
yeast6 0.73 | 0.53 0.61 0.69 0.54 | 0.55 | 0.01 | 0.80

Table 2: AUC of the undersampling algorithms. Best results in bold.
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The next six columns (CNNTL, CPM, NCL, OSS, RUS, and SBC) contain the
values obtained with the NN classifier, after applying the corresponding
undersampling algorithm to the data banks of our experimental study. Finally, in the
BRIS column we present the value obtained with the NN classifier, after applying our
proposal.

Dataset CNNTL | CPM | NCL | OSS | RUS | SBC | BRIS
abalonel9 0.02 0.03 0.01 0.01 | 0.06 | 0.02 | 0.05
abalone918 0.14 0.23 034 | 0.13 | 0.19 | 0.17 | 0.27
ecoli0 vs 1 0.10 0.52 0.54 | 0.25 | 0.26 - 0.26
ecoli0137 vs 26 0.78 0.83 0.88 | 0.81 | 0.86 - 0.94
ecolil 0.55 0.41 0.66 | 0.59 | 0.67 - 0.66
ecoli2 0.45 0.69 0.73 | 0.53 | 0.60 - 0.71
ecoli3 0.50 0.38 048 | 0.57 | 0.52 - 0.48
ecoli4 0.60 041 0.74 | 0.69 | 0.65 - 0.73
glassQ 0.65 0.84 0.88 | 078 | 0.84 | 0.86 | 0.83
glass0123 vs 456 0.24 0.26 0.17 | 0.28 | 0.19 - 0.10
glass016 vs 2 0.49 0.57 0.65 | 057 | 0.46 - 0.68
glass016 vs 5 0.52 0.46 0.65 | 0.50 | 0.58 - 0.55
glassl 0.38 0.47 035 | 044 | 0.54 - 0.54
glass2 0.41 0.25 022 | 0.23 | 0.23 - 0.13
glass4 0.57 0.32 0.56 | 0.63 | 0.56 - 0.60
glass5 0.75 0.72 0.78 | 0.74 | 0.48 - 0.55
glass6 0.51 0.66 0.89 | 0.52 | 0.82 - 0.83
haberman 0.18 0.02 0.16 | 0.15 | 0.19 | 0.11 | 0.14
irisQ 1.00 1.00 1.00 | 1.00 | 1.00 - 1.00
newthyroidl 0.94 0.87 096 | 0.95 | 0.93 - 0.93
newthyroid2 0.81 0.81 095 | 0.89 | 0.88 - 0.97
pageblocks0 0.82 0.75 090 | 0.87 | 0.56 - 0.73
pageblocks13 vs 4 | 0.56 0.69 0.72 | 0.62 | 0.66 | 0.54 | 0.66
pimaimb 0.26 0.24 040 | 036 | 0.35 | 033 | 0.34
segmentQ 0.95 0.90 097 | 095 | 0.94 - 0.95
shuttlecOvsc4 1.00 1.00 1.00 | 1.00 | 1.00 - 0.99
shuttlec2vsc4 0.55 0.83 0.83 | 0.83 | 0.47 - 1.00
vehicle0 0.76 0.71 0.76 | 0.76 | 0.76 - 0.77
vehiclel 0.30 0.19 036 | 0.27 | 0.24 - 0.30
vehicle2 0.72 0.78 0.85 | 0.76 | 0.77 - 0.79
vehicle3 0.36 0.34 045 | 0.39 | 0.36 - 0.40
vowelQ 1.00 0.90 1.00 | 1.00 | 0.80 - 0.89
wisconsin 0.91 0.82 094 | 093 | 092 - 0.93
yeast05679 vs 4 0.38 0.42 0.59 | 041 | 0.39 - 0.37
yeastl 0.09 0.14 0.10 | 0.08 | 0.09 - 0.11
yeastl vs 7 0.12 0.20 0.26 | 0.14 | 0.05 - 0.08
yeast1289 vs 7 0.23 0.30 033 | 033 | 0.24 - 0.20
yeast1458 vs 7 0.46 0.52 0.71 | 0.57 | 0.62 - 0.61
yeast2 vs 4 0.24 0.42 0.60 | 0.30 | 0.21 - 0.29
yeast2 vs 8 0.28 0.19 036 | 028 | 0.28 - 0.30
yeast3 0.52 0.51 0.67 | 0.62 | 0.58 - 0.55
yeast4 0.23 0.25 040 | 027 | 0.26 - 0.24
yeast5 0.60 0.55 0.74 | 0.62 | 0.54 - 0.53
yeast6 0.19 0.34 0.50 | 0.21 | 0.26 - 0.05

Table 3: MCC of the undersampling algorithms. Best results in bold.
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Note that, according to the AUC measure, BRIS defeats the six algorithms with
which it compares, in most of the datasets under study. It is important to note that we
do not codify categorical values; instead, we use the HEOM distance [Wilson and
Martinez, 97] to deal with hybrid datasets. The proposed undersampling algorithm,
which was able to obtain a good representation of the majority class, and therefore,
very good results according to AUC.

Regarding the MCC measure, the SBC algorithm obtained the worst results, due
to MCC was undefined for most of the datasets. This is due to in such datasets, SBC
based classification do not obtain any True Positive (#p) values. Both CNNTL and
CPM obtained the best results according to MCC in four datasets, and OSS in five
datasets. RUS and the proposed BRIS were the best in seven datasets, and NCL was
the clear winner according to MCC, with the best results in 29 datasets.

Table 4 gives the Imbalance Ratios obtained by the algorithms. We also process
the results files given by KEEL software, in order to determine to what extent
majority and minority classes were preserved.

To do so, we analyze the files, and compute how many times of the 220 folds (44
datasets for 5 folds each) the majority class was the negative class, and how many
times the majority class was the positive one. The overall results of such analysis is
shown in figure 6.

As shown in Table 4, RUS and BRIS algorithms always obtained a perfectly
balanced dataset, with the same number of instances in the minority and majority
classes, and therefore, their results are not shown in figure 6.
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Figure 6: Folds in which the positive and negative classes were the majority ones.



Camacho-Nieto O., Yanez-Marquez C., Villuendas-Rey Y.: Undersampling ...

713

Dataset CNNTL | CPM | NCL | OSS | RUS | SBC | BRIS
abalonel9 1.68 6.60 124.84 | 2.88 1.00 | 1.27 | 1.00
abalone918 1.26 2.86 | 13.16 [ 1.50 | 1.00 | 1.72 | 1.00
ecoli0_vs 1 9.28 1.18 | 1.63 7.67 | 1.00 | 1.00 | 1.00
ecoli0137 vs 26 2.15 3.49 37.55 1.37 1.00 | 1.00 | 1.00
ecolil 3.86 1.30 2.65 2.48 1.00 | 1.16 | 1.00
ecoli2 1.83 2.50 4.90 1.46 1.00 | 1.00 | 1.00
ecoli3 1.73 1.67 | 7.44 1.19 | 1.00 | 1.00 | 1.00
ecoli4 1.24 3.03 | 1494 | 1.12 |1.00 | 1.00 | 1.00
glass0 3.21 1.59 1.32 1.90 1.00 | 1.00 | 1.00
glass0123 vs 456 6.13 1.05 2.64 3.70 1.00 | 1.81 | 1.00
glass016 vs 2 1.49 2.73 7.38 2.15 1.00 | 1.00 | 1.00
glass016 vs 5 1.87 236 | 1775 | 2.11 |1.00 | 1.00 | 1.00
glassl 3.37 1.18 | 1.07 201 |1.00 | 1.17 | 1.00
glass2 1.46 3.04 8.44 2.31 1.00 | 1.00 | 1.00
glass4 1.15 2.04 13.61 1.43 1.00 | 1.00 | 1.00
glass5 2.17 327 12082 | 256 | 1.00 | 1.00 | 1.00
glass6 3.23 227 | 532 2.00 | 1.00 | 1.00 | 1.00
haberman 2.24 142 | 1.13 1.37 | 1.00 | 1.93 | 1.00
irisO 9.20 1.20 2.00 6.67 1.00 | 1.00 | 1.00
newthyroid1 3.44 1.29 4.72 2.67 1.00 | 1.00 | 1.00
newthyroid2 3.48 1.29 | 4.74 2.82 | 1.00 | 1.00 | 1.00
pageblocks0 2.72 146 | 7.90 1.88 | 1.00 | 1.98 | 1.00
pageblocks13 vs 4 | 1.38 209 | 1507 | 148 |1.00 | 1.00 | 1.00
pimaimb 4.89 1.21 1.27 2.45 1.00 | 2.02 | 1.00
segment( 2.95 2.64 5.95 2.58 1.00 | 1.00 | 1.00
shuttlecOvsc4 18.37 1.80 | 13.83 | 16.40 | 1.00 | 1.00 | 1.00
shuttlec2vsc4 1.25 120 | 18.78 | 1.16 | 1.00 | 1.00 | 1.00
vehicle0 2.60 1.08 | 2.81 2.04 | 1.00 | 1.00 | 1.00
vehiclel 2.19 1.56 1.58 1.40 1.00 | 1.00 | 1.00
vehicle2 1.98 1.71 2.59 1.58 1.00 | 1.67 | 1.00
vehicle3 2.23 1.51 1.68 1.47 | 1.00 | 1.00 | 1.00
vowel0 1.30 1.65 | 9.85 1.30 | 1.00 | 1.00 | 1.00
wisconsin 31.64 1.73 1.74 17.82 | 1.00 | 1.00 | 1.00
yeast05679 vs 4 1.26 2.13 7.61 1.25 1.00 | 1.00 | 1.00
yeastl 2.87 1.45 1.17 1.70 1.00 | 1.00 | 1.00
yeastl vs 7 1.17 327 [ 1149 | 1.86 | 1.00 | 1.00 | 1.00
yeast1289 vs 7 1.59 451 2677 |236 |1.00 | 1.00 | 1.00
yeast1458 vs 7 1.66 4.25 1844 | 2.69 1.00 | 1.00 | 1.00
yeast2 vs 4 1.95 1.98 7.94 1.45 1.00 | 1.00 | 1.00
yeast2 vs 8 1.16 4.29 21.14 1.43 1.00 | 1.00 | 1.00
yeast3 2.08 1.84 | 7.06 1.29 | 1.00 | 1.00 | 1.00
yeast4 1.24 285 | 2555 | 190 |1.00 | 1.00 | 1.00
yeast5 1.08 1.72 31.65 1.26 1.00 | 1.00 | 1.00
yeastb 1.31 4.06 39.46 1.95 1.00 | 1.00 | 1.00

Table 4: Imbalance Ratio after applied the algorithms. Best results in bold
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The remaining algorithms but SBC, usually maintain more instances of the
negative (majority) class, with some exceptions in few folds, where the classes were
inverted, due to the positive class contained more instances than the negative class (2
folds out of 220 for NCL, 4 for CPM, 8 for OSS and 12 for CNNTL).

However, the SBC algorithm inverted the classes in the 20% of the folds (9
datasets), although it obtained a perfectly balanced dataset in the remaining 35
datasets, but with no good majority class representation.

4.3  Statistical analysis

Despite the excellent results of the proposed algorithm, we use the Friedman test to
determine the existence of significant differences in the performance of the compared
algorithms. To do so, we again used the KEEL software [Alcala-Fernandez, 09;
Alcala-Fernandez, 11]. The test rejects the null hypothesis for all the measures. Table
5 shows the rankings obtained by the test, considering the Area under the ROC Curve,
the Matthews Correlation Coefficient, and the Imbalance Ratio measures.

After the rejection of the null hypothesis for all measures, we used the Holm post
hoc test, to determine between which pair of algorithms were the significant
differences in performance. Holm test was also computed by using the KEEL
software [Alcala-Fernandez, 09; Alcala-Fernandez, 11].

Tables 6 - 8 give the results of the Holm tests, comparing the best ranked
algorithms with respect all others, for AUC, MCC and IR, respectively.

AUC MCC IR
Algorithm | Ranking Algorithm Ranking Algorithm | Ranking
BRIS 1.4205 NCL 2.0114 RUS 1.8977
NCL 2.7045 BRIS 3.4432 BRIS 1.8977
NN 3.5568 0SS 3.4886 SBC 24773
0SS 4.625 RUS 3.8068 0SS 4.8068
CPM 4.7273 CPM 4.1364 CPM 5.1591
RUS 5.3295 CNNTL 4.3977 CNNTL 5.4432
CNNTL 5.8523 SBC 6.7159 NCL 6.3182
SBC 7.7841

Table 5: Friedman rankings the undersampling algorithms

1 Algorithm | Z p Holm

7 SBC 12.185436 | 0.000000 0.007143
6 CNNTL 8.486286 0.000000 0.008333
5 RUS 7.485339 0.000000 0.010000
4 CPM 6.332075 0.000000 0.012500
3 0SS 6.136237 0.000000 0.016667
2 NN 4.090825 0.000043 0.025000
1 NCL 2.458847 0.013938 0.050000

Table 6: Results of the Holm test, comparing the best ranked algorithm with others,
according to AUC. The hypothesis with p < 0.05 are rejected
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The Holm test confirm that BRIS had a significantly better performance than all
the compared undersampling algorithms, and also better than the original Nearest
Neighbor classifier, according to AUC. However, NCL obtained best results for the

MCC measure.

I Algorithm | Z p Holm

6 SBC 10.2147 0 0.008333
5 CNNTL 5.18137 0 0.01

4 CPM 4.613886 0.000004 0.0125

3 RUS 3.898364 0.000097 0.016667
2 0SS 3.207515 0.001339 0.025

1 BRIS 3.108822 0.001878 0.05

Table 7: Results of the Holm test, comparing the best ranked algorithm with others,
according to MCC. The hypothesis with p < 0.05 are rejected

I Algorithm | Z p Holm

6 NCL 9.597870 0.000000 0.008333
5 CNNTL 7.698035 0.000000 0.010000
4 CPM 7.081205 0.000000 0.012500
3 [ORN 6.316336 0.000000 0.016667
2 SBC 1.258333 0.208271 0.025000
1 BRIS 0.000000 1.000000 0.050000

Table 8: Results of the holm test, comparing the best ranked algorithm with others,
according to IR. The hypothesis with p < 0.05 are rejected

With respect IR, BRIS outperforms OSS, CPM, CNNTL and NCL, and has no

significant differences with RUS and SBC.

4.4 Discussion

As shown, the proposed method significantly improves the performance of the
Nearest Neighbor classifier using imbalanced datasets. These results show that it is
possible to increase the efficiency of the classification, by performing undersampling
strategies for classes balancing. With respect to the other compared algorithms, BRIS
had a very good performance, significantly surpassing all other algorithms according
to the Area under the ROC Curve, and been the second best according to Matthews
Correlation Coefficient. It is noteworthy that the BRIS achieves a perfect balance of
the classes, since it selects from the majority class, as many instances as the minority
class has, resulting in the imbalance ratio of equal to one in all cases.

5 Conclusions and Future Work

The experimental results clearly show that BRIS, the proposed undersampling
algorithm, enriches the state of the art in the treatment of class imbalance. On the one
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hand, by applying BRIS to each of the 44 imbalanced datasets, the performance of the
Nearest Neighbor classifier (the base classifier) is significantly improved, according
to AUC, which is the measure of performance chosen. And on the other hand, BRIS
overwhelmingly surpasses the performance obtained with the NN classifier, after
applying the corresponding undersampling algorithm (CNNTL, CPM, NCL, OSS,
RUS, and SBC) to the datasets of our experimental study. BRIs was also the second
best algorithm according to the MCC measure.

In addition, it is noteworthy that the BRIS achieves a perfect balance of the
classes; and the only one of the six comparison undersampling algorithms that
achieves something similar is RUS, while the others do not achieve the perfect
balance, reaching the point that the SBC algorithm inverted the classes in the 20% of
the folds (9 datasets).

The success of BRIS is due, in large part, to the proposal of an original measure
to estimate the importance of objects; and also, that the conceptual basis on which this
new measure rests are Maximal Similarity Granular Rough Sets and Compact Set
Structuralization, which are able to deal with hybrid data, and are designed to
preserve the structure of the data.

As future work, we propose the development of an oversampling procedure for
data balancing.
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