
The Effects of Platforms and Languages on the Memory

Footprint of the Executable Program: A Memory Forensic

Approach

Ziad A. Al-Sharif, Mohammed I. Al-Saleh

Yaser Jararweh, Luay Alawneh, Ahmed S. Shatnawi

(Jordan University of Science and Technology, Irbid, 22110, Jordan

{zasharif, misaleh, yijararweh, lmalawneh, ahmedshatnawi}@just.edu.jo)

Abstract: Identifying the software used in a cybercrime can play a key role in estab-
lishing the evidence against the perpetrator in the court of law. This can be achieved
by various means, one of which is to utilize the RAM contents. RAM comprises vi-
tal information about the current state of a system, including its running processes.
Accordingly, the memory footprint of a process can be used as evidence about its us-
age. However, this evidence can be influenced by several factors. This paper evaluates
three of these factors. First, it evaluates how the used programming language affects
the evidence. Second, it evaluates how the used platform affects the evidence. Finally,
it evaluates how the search for this evidence is influenced by the implicitly used en-
coding scheme. Our results should assist the investigator in its quest to identify the
best amount of evidences about the used software based on its execution logic, host
platform, language used, and the encoding of its string values. Results show that the
amount of digital evidence is highly affected by these factors. For instance, the mem-
ory footprint of a Java based software is often more traceable than the footprints of
languages such as C++ and C#. Moreover, the memory footprint of a C# program is
more visible on Linux than it is on Windows or Mac OS. Hence, often software related
values are successfully identified in RAM memory dumps even after the program is
stopped.

Key Words: Digital Forensics, Memory Forensics, Runtime Behavior, RAM Dumps

Category: H.2, H.3.7, H.5.4

1 Introduction

Criminal’s actions may involve computer programs to perform or cover their

misdeeds. Locating the software on their machine’s hard disk might not be suf-

ficient to establish the confidence in its potential usage. Often, a definite Dig-

ital Evidence (DE) is needed to prove that the perpetrator has actually used

the software [Salajegheh et al., 2018, Al-Sharif, 2016]. This DE can be found in

several places, one of which is the volatile main memory (RAM). Thus, RAM

contains vital information about the current state –often recent states– of a sys-

tem such as the used processes; including parts of their instructions and data.

This ensures the importance of Memory Forensics (MF) and its value in the

investigation of cybercrimes [Schatz and Cohen, 2017, Case and Richard, 2017,

Bobowska et al., 2018, Montasari and Hill, 2019].

Journal of Universal Computer Science, vol. 25, no. 9 (2019), 1174-1198
submitted: 22/12/18, accepted: 9/7/19, appeared: 28/9/19  J.UCS



Generally, different software varies in their dependency on memory, CPU,

disk I/Os, and networks [Sitaraman and Venkatesan, 2005, Ligh et al., 2014]. A

software source-code and its execution behavior, including its control and data

flow, might depend on various variables and their values that are stored in differ-

ent RAM locations. MF of a software that is developed using an object oriented

language can be based on variable’s scopes, access modifiers, execution states and

their lifetimes. A variable’s scope and access modifier determine the visibility of

its value and where it can be accessed within the program’s source-code. Accord-

ingly, a variable’s storage (i.e. stack and heap) determines the duration in which

the values are allocated and/or deleted [Pridgen et al., 2017, Yang et al., 2007].

For example, constant variables cannot be modified once are initialized, most of

which are often set with literals that might be unique to the running program

and its execution path. Moreover, many of the non-constant variables are of-

ten initialized with literals too. Thus, variables’ values can be retained in RAM

dumps and used to establish the DE about the software usage and its distinct

execution path [Tien et al., 2017, Al-Sharif et al., 2017].

Assuming no information is available from the OS; only raw RAM dumps.

This paper identifies the DE that can be employed to confirm the software

usage and its association with the crime [Butler, 2016, Subedi et al., 2018]. In

order to verify our research methodology, different experiments and scenarios

are assumed, for each of which a RAM dump is created and various variables’

scopes and memory types are analyzed.

Our results show that regardless of whether the process is active or just

stopped, the Memory Investigator (MI) can employ knowledge about the pro-

gram’s source-code such as class level (i.e. static) and instance level variables and

their potential values to confirm the actual usage of the software. Furthermore,

results show that values of instance variables are successfully located when their

corresponding stack frames are active and beyond. Additionally, literal values,

static variables and local variables of static methods have longer duration in

memory than the instance related values. Furthermore, in most cases, dynam-

ically allocated values (object level) can be identified in memory dumps even

after the Garbage Collector (GC) is explicitly invoked or even after the program

is terminated. Thus, whenever the original source code is not available, reverse

engineering and disassembling tools can be applied on the binary to obtain its

equivalent source code or at least its assembly. Obviously, the success of this

process depends on various factors, including the binary itself and the language

used [Kruegel et al., 2004, Bauman et al., 2018].

The rest of this paper is organized as follows: Section 2 presents the moti-

vation of this research whereas Section 3 presents some of the fundamentally

needed background knowledge. Section 4 presents our investigation model that

employs information available in the program’s source-code and binary-code to

1175Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



confirm its usage. Section 5 describes our experiments whereas our results are

presented in Section 6. The results are explained on three levels; subsection 6.1

compares the DE between three languages, subsection 6.2 compares the DE be-

tween three platforms, and finally subsection 6.3 compares the DE between two

different encoding schemes. These comparisons are intended to guide the MI dur-

ing the investigation process in order to help them obtain the best results based

on the used platform and programming language. Section 7 presents the related

work. Finally, our overall discussions and planned future work is presented in

Section 8 whereas Section 9 concludes our work.

2 Motivation

This paper investigates the differences in program’s execution traces in RAM

and its utilization in MF and the DE collection process. The goal is to identify

the presumed software that is used in the cybercrime. These types of DE can

be easily influenced by the host platform and the used programming language.

Our approach is to experiment with different implementations of three of the

most widely used mainstream languages: Java, C++, and C# and to compare

the execution footprints of similar programs that run on the same and different

platforms. For instance, Java and C++ are supported on all of Windows, Mac

OS, Linux, and more. Whereas C# is increasingly becoming a cross-platform

language by its support from the open-source cross-platform Mono framework 1.

Interestingly enough, these three languages are highly different in their under-

lying support and memory management. In particular, Java is supported by

the JVM and its runtime system whereas C++ depends heavily on the host

platform and its memory management. In contrast, the rigorous implementa-

tion of the cross-platform open-source Mono project increasingly supports C#

to become a cross-platform language. This Mono framework replaces C# sup-

port by the native Microsoft .Net framework on different platforms such as Mac

OS and Linux in addition to the MS Windows. This motivates us to investi-

gate these languages and find the impact of using software written in any of

them on different platforms and the effect of these combinations on the MF case

and the DE that can be identified in RAM. Often cybercrimes involving soft-

ware [Leukfeldt et al., 2017]; this research is aims at assisting the MI in its quest

to ensure the actual software usage by the perpetrator.

3 Background

A software process may employ various variables (memory storage). In OOP

languages, variables can be classified into class level and method level. Class

1 Open-source Cross-platform .Net framework, www.Mono-project.com

1176 Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



level variables can be further categorized into instance and static. Most of the

time, a variable’s type defines the duration of its value in RAM. For example,

static data is allocated by the runtime system for a program before instances are

created. These variables might be initialized with default values whenever they

are not explicitly initialized by the programmer.

However, unlike instance variables, the duration of static variables does not

depend on the objects created from that class. Furthermore, static values are

shared by all objects; all point to the same value. Instance variables’ visibility is

limited to the object instantiated from that class; each object has its own set of

values. Often, local variables (method level) are allocated on the stack and their

visibility is limited to their methods or code blocks. Typically, most operating

systems provide services to programs they run. For example, in a UNIX based

system, when the Kernel executes a C/C++ program, a special routine (known

as the startup routine) is automatically invoked to set up the command line

arguments and the environments. Then, the main() function is called.

Modern high level programming languages, such as Java and C#, are sup-

ported by runtime systems, frameworks, or virtual platforms. In particular, C# is

supported by the Microsoft .Net framework 2, which is a software layer that sets

on top of the Windows OS. This .Net framework supports a Common Language

Runtime system (CLR), which allows C# programs to compile and execute on

Windows Machines. This .Net framework supports its own intermediate lan-

guage called Microsoft Intermediate Language (MSIL). The compiler reads the

C# source-code and produces MSIL (the .exe program). When this executable

runs, the Just-In-Time (JIT) compiler that is part of the .Net framework reads

the MSIL code and produces an executable application in memory. Even though

the MSIL code is stored in a .exe file, this file does not contain native executable

code; it contains information needed by the JIT compiler to build the executable

code [Esposito and Ciceri, 2016]. Additionally, C# is increasingly becoming a

cross-platform mainstream language supported by the rigorous implementation

of the open-source cross-platform Mono project, which replaces the native .Net

framework on other platforms such as Mac and Linux.

By contrast, Java programs are loaded and executed by the Java Virtual

Machine (JVM), which is an abstract computing machine with its own instruc-

tion set. It internally manipulates various memory areas at run time. Sim-

ply, it loads class files and execute their bytecodes. The internals of JVM’s

execution engine can vary based on different implementations and host plat-

forms [Lindholm et al., , Schildt, 2014].

However, in general, the OS Kernel manages software processes, each of which

is provided a dedicated memory space in RAM. When the executable starts,

various sections are allocated and loaded into RAM, the starts and ends of

2 Microsoft .Net, https://docs.microsoft.com/en-us/dotnet/

1177Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



these sections are independent of the RAM page limits [Stevens and Rago, 2013].

During execution, different variables are stored in RAM into various logically

classified segments such as heap and stack [Bovet and Cesati, 2005]. Heap is a

memory segment that provides dynamic memory allocation for variables and

their values as needed during execution. Program’s data that lives in heap can

be referenced outside the function scope. In languages such as Java and C#,

the heap memory allocations and deallocations are automatically managed by

the runtime system and its Garbage Collector (GC) whereas in C/C++, the

programmer writes a dedicated code to ensure the correct memory management

for these dynamically allocated variables and objects. Thus, often an explicit

request can be triggered to release the unused memory to the system using

special calls to the GC.

On the other hand, stack is a memory segment allocated when the program

starts. When the program’s execution stack is not managed by the OS Kernel, it

is automatically managed by the Virtual Machine (VM) or the runtime system of

the used language. Usually, a stack consists of blocks called activation records or

frames, each of which represents a call to a function and provides storage for its

corresponding local and formal parameters. The lifetime (duration) of variables

allocated on the stack is same as the scope in which they are declared; mostly

the method and its stack frame [Nadi and Holt, 2014, Josey et al., 2004]. Hence,

the MI can utilize the memory of various variables’ scopes, types and values to

locate a DE and infer the actual software usage.

3.1 Encoding of Literal Strings: UTF8 vs. UTF16

Compilers and interpreters translate program’s source-code into an equivalent

form of executable binary format. For example, translating a Java program gen-

erates a cross-platforms binary called bytecode, whereas translating a C++ pro-

gram generates native machine level instructions that are heavily depend on

the physical architecture and the host OS. Nonetheless, our experimentation

methodology employs a bit-by-bit copy of the complete RAM of the used ma-

chine. For potential values to be successfully identified within RAM dumps, the

MI needs to respect their encoding schemes; internal representation. For exam-

ple, to identify potential string values, the UNIX based strings 3 command is

used to pre-process the memory dumps and extract all of the readable char-

acters in both UTF8 and UTF16 formats. By default, this command looks for

sequences of at least 4 printable characters that are terminated by a null, other

options can be used to find characters in other formats Thus, during our experi-

mentation, each memory dump is preprocessed and all source-code/binary-code

related values are identified using various encoding schemes; including UTF8

and UTF16.
3 GNU Binutils, www.gnu.org/software/binutils/

1178 Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



Figure 1: Investigation Model. The MI examines the digital crime scene. Step 1 :

a memory dump is captured. Step 2 : the MI analyzes the presumed software

(source-code and/or binary-code). Step 3 : software related literals and unique

values are identified. Step 4 : values are located in corresponding RAM dumps.

4 Investigation Model

Our threat model assumes that the perpetrator uses a software to perform the

offense [Kälber et al., 2013] or to hide its remnant [Conlan et al., 2016]. Figure 1

shows our investigation model, in which the MI points at the presumed software

and assumes its source-code, if possible, otherwise, a reverse engineering tool

can be used to disassemble the binary-code and obtain its original source-code

or at least its assembly format (or logically equivalent); this can assist in com-

prehending the execution logic and identifying used literals. Hence, many reverse

engineering tools are available for languages such as Java [Mesbah et al., 2017,

Sen and Mall, 2016, Moser et al., 2017] and C# [Jensen et al., 2017].

For instance, to some extent, it is relatively easy to reverse the Java bytecode

into its original source-code. Additionally, the MSIL used by C# simplify the

reverse engineering process. However, native machine code obtained from lan-

guages such as C and C++ are often harder to reverse back to their originals, but

it is often feasible to get its equivalent assembly code, infer its execution logic and

obtain its dynamic data structures [Rupprecht et al., 2017, Haller et al., 2016,

Schwartz et al., 2018]; free and shareware tools are available such as IDA pro 4.

4 IDA, www.hex-rays.com/products/ida/

1179Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



The MI goal is to validate whether the subject software is (or was) used

on the captured machine. This can be reached by various means, one of which

is to search the contents of the RAM for objects, execution states, or unique

variables’ values that can be used to confirm the actual software usage. These

identified states and unique values can be considered a contributing DE towards

the legal proof that the software is actually used by the criminal [Craiger, 2005,

Thomas et al., 2013, Sali and Khanuja, 2019, Kao et al., 2019].

Three different languages are used to prepare three versions of the same

program 5, all of which are semantically identical with respect to the syntactic

language differences; all programs have the same behavior (i.e. coding structure,

control flow, data flow, etc). These programs and corresponding memory dumps

are designed to build a comparison based on various factors such as the execution

scenario (state) and the host platform.

Furthermore, our analysis explores the DE and its influence by the software

implementation including the: 1) member access modifier, 2) level in which the

variable is defined, 3) class and method type and usage, 4) allocation and deal-

location of objects that are instantiated from a base or derived class and their

number, 5) and whether the program is still running or just terminated.

5 Experiments

In order to validate our investigation model, a set of experiments are designed

to investigate the footprints of various execution behaviors of an object oriented

program in RAM. Our methodology aims to find a DE related to the execution

state based on information and variables’ values from the program’s source-code

or its disassembled binary. A total of 12 different variables’ types (scopes) are

defined and experiments are prepared to inspect their potential values; see Ta-

ble 1. During the investigation process, 21 different scenarios are outlined. These

scenarios are based on the possible usage of object oriented features including

variables’ types, levels or scopes, and object states; see Table 2. All experiments

assume no information is provided by the OS about the investigated process.

A memory dump is captured for each of the 21 execution states, each state is

tested within each of the three investigated languages and on each of the three

investigated platforms. For programs written in C# and running on Windows,

one set of experiments is performed using the .Net framework and the same set

is repeated using the Mono framework. A combined total of 210 distinct mem-

ory dumps are created. Then, each of these dumps is analyzed and searched for

potential values related to the execution states of the presumed program; see

Figure 2. Results are presented in Section 6.

5 Programs, https://github.com/zasharif/MemoryForensics--OS-Language

1180 Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



Table 1: The investigated scopes.

Var # Description
V1 Static base class level variables
V2 Variables of a currently active static method
V3 Variables of a never active static method
V4 Instance base class level variables
V5 Variables of a currently active base class instance method
V6 Variables of in a never active base class instance method
V7 Instance derived class level variables
V8 Variables of a never used overridden base class method
V9 Variables of an overridden virtual method when its override is active
V10 Variables of a never used override of a derived class method
V11 Variables of an override currently active method of a derived class
V12 Variables of a new currently active method of a derived class

Table 2: The investigated runtime states.

State. Description
S1 Program is currently running, but the investigated class is not referenced yet
S2 A static variable of the base class is used (referenced)
S3 A static method is being used (called and currently active)
S4 The static method is returned (returned and currently inactive)
S5 An instance reference of a base class is defined but not allocated yet
S6 An instance reference of a derived class is defined but not allocated yet
S7 An instance of the base class is allocated
S8 An instance variable of the base class is used (referenced)
S9 A method of the base class is being called (called and currently active)
S10 The method of the base class is returned (returned and currently inactive)
S11 Derived class instant is allocated and assigned to a variable of the same type
S12 An instance variable of the derived class is used (referenced)
S13 A new method of the derived class is being called (called and currently active)
S14 The new method of the derived class is returned (currently inactive)
S15 Derived class instant is allocated but up-casted to a reference of the base class
S16 Virtual method of the derived class is being called (called and currently active)
S17 The virtual method of the derived class is returned (currently inactive)
S18 The second instance of the derived class is not referenced any more
S19 References are null and the GC (or delete ) is invoked explicitly
S20 All objects are out of scope and not accessible any more
S21 The program is terminated

5.1 Experimentation Setup

Figure 3 shows the configurations of three different Virtual Machines (VMs)

that are used during our experiments. These VMs are prepared using Oracle’s

VirtualBox that is hosted on a Fedora Linux machine. VM1 runs Windows 10

Pro (64-bit), VM2 runs Mac OS 10.11.6 (El Capitan), and VM3 runs Fedora 26

(64-bit). The RAM settings of these VMs are kept to the minimum hardware

requirements that are recommended for each platform. In particular: 2GB of

RAM for each of Windows and Mac OS and 1GB for Fedora Linux. Moreover,

1181Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



1182 Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



In all three programs, the 21 specific scenarios presented in Table 2 are used to

capture the core dumps for each program independently. A machine restart is

applied before each run.

6 Results

Results are discussed at three different levels. Level 1 : Language based compar-

ison. Level 2 : OS based comparison. Level 3 : Encoding based comparison.

6.1 Level 1: Language Based Results

This level compares between the DE from the same language on three platforms.

6.1.1 Java Based Results

Figure 4a presents the heatmap with the number of occurrences for each vari-

able’s value Vi on each state Si, which represents the memory dumpi that was

obtained for the same Java program when it was running on all of Windows

(the upper part), Mac OS (the middle part) and Fedora Linux (the lower part),

respectively. Additionally, the same set of values is identified using UTF8 and

UTF16 encoding schemes; left versus right sides respectively.

Looking at the left side of Figure 4a that represent the number of successfully

identified occurrences of the values obtained from the subject program’s source-

code using the UTF8 formats, we find that in all 12 types of variables, the

MI have a good chance locating uniquely identified values that belongs to the

subject program’s source-code and its execution states on all three investigated

platforms. Even though each of these values are appeared only once in the subject

program’s source-code, most of these identified values (Vi) in the corresponding

RAM dumps are successfully located. Additionally, the left side of this figure

shows that the number of occurrences for all variable types V1 to V12 are always

greater than 1; even after the program is terminated, this applies for all execution

states (scenarios S1 to S21) and on all platforms. Knowing that each of these

values only appeared once in the subject program’s source-code, this is a very

promising finding to the MI; especially the occurrences of values in the UTF8

format that are obtained from the Windows machine.

However, searching the same memory dumps for occurrences in UTF16 for-

mat shows the variables’ usage, in which there is a difference between the used

variable types and the occurrences of their values that are impacted by these

various execution states. The right side of Figure 4a shows the exact occurrences

for these values during each of the used states and on each of the investigated

platforms. For example, it is clear that there is a difference between the memory

footprint for the same Java program when it runs on different platforms. The

1183Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



1184 Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



(state). For example, only V1 and V2 are found after states S1 and S2, respec-

tively. Other variables’ values such as V4 and V5 are only found after states S6

and S8, respectively.

Additionally, Java results that are obtained from Mac OS and Linux ma-

chines are almost very similar. Whereas the results obtained from the Windows

machine are better in the number of occurrences than those that are obtained

from the other two platforms. This means, obtaining a DE from a Java program

a Windows machine is better than obtaining the same DE from the same Java

program on either Linux or Mac OS.

6.1.2 C++ Based Results

Figure 4b presents the heatmap with the number of occurrences for each variable

type V1 to V12 and execution state S1 to S21, each Si represents the dumpi on

all of Windows, Mac OS and Linux, respectively. The left sides of this heatmap

shows these successfully identified occurrences in UTF8 format whereas the right

side presents these found occurrence for the UTF16 format. It is clear that most

(not all) of the 12 types of variables provide the MI with a good chance of locating

uniquely identified C++ values using the UTF8 format. These values belong to

the presumed C++ program’s execution state on all three investigated platforms.

However, looking at the left side, we find that the number of occurrences for all

variables’ types (except V3 and V6) on the Windows machine is generally better

than those same corresponding occurrences for the same C++ program when it

runs on either of Mac OS or Linux machines. However, on Windows and Linux

platforms, both of V3 and V6 are unlikely to be found in all 21 execution scenarios

S1 to S21. In contrast, the number of occurrences for these V3 and V6 are getting

better for the MI after S14 on the Mac OS machine.

On the other hand, identifying these same values using the UTF16 shows

that it is highly unlikely to locate or identify any of the investigated variables

V1 to V12 during all of the execution scenarios S1 to S21 on both of Windows

and Linux machines; see the right side of Figure 4b. It is clear that the number

of occurrences obtained using the UTF16 format are all zeros on both of Win-

dows and Linux machines. However, the number of occurrences for these same

variables’ types are showing some potential availability on the Mac OS machine

after S13; except for variable type V2 that remains unlikely to be found in all

execution states. The number of occurrences in these states is ranging from 1 to

2, which can be considered a reasonable situation; knowing that the occurrences

of each variable in the subject program’s source-code is appeared only once.

Additionally, the number of occurrences obtained from Windows machine is

better for the C++ program than this same program that runs on the other two

platforms. However, its results obtained using the UTF16 is not promising at all

on both Windows and Linux machines.

1185Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



1186 Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



framework on Windows against its run on the same Windows machine with

the support from the Mono framework. Second, it compares between this C#

program when it runs with the support from the Mono framework on both Mac

OS and Linux machines. Finally, it compares this same C# program when it

runs with the support from Mono framework on a none Windows machine (Mac

OS and Linux) against its run on Windows with the support from the same

Mono framework. Results are discussed below.

6.1.3.1 First, C# with .Net vs. Mono on Windows:

Figure 5a shows the heatmap for the occurrences of the values obtained from

the same C# program on different platforms during various execution states.

The upper two parts of this heatmap show the difference between two different

runs of the same C# program on a Windows 10 Pro machine, once when it runs

with the support from the .Net and the other when it runs with the support

from the Mono framework (both on the same machine). The left side of this

heatmap shows the obtained results using the UTF8 format whereas the right

side shows the results of these occurrences using the UTF16 format. Thus, it is

clear that the number of occurrences of the UTF8 for the same C# program are

all zeros when it runs with the support from the native .Net framework and all

are ones when it runs with support from the Mono framework. Hence, knowing

that each of these values are only appeared once in the subject C# program’s

source-code, this means that these results form the Mono support is not that

bad. However, the right side of Figure 5a shows the number of occurrences using

the UTF16 format. It is clear that the results from the .Net framework and

the Mono framework are highly promising to the MI when these C# values are

identified using the UTF16 (on Windows machines). In all scenarios and variable

types, the number of occurrences is ranging from 1 to 4 and sometimes to 5 in

the case of the native .Net support.

6.1.3.2 Second, C# on a None Windows Machine:

The lower two parts Figure 5a present the heatmap that compares between two

different runs of the same C# program; when it runs with the support from the

Mono framework on Mac OS and Fedora Linux. Looking at the results obtained

from these memory dumps, we find that identifying C# values using the UTF8

on a Mac OS machine is highly unlikely ; all 12 variables’ types (V1 to V12) are

not found on all of the dumps that are captured for the corresponding execution

states (S1 to S21). In contrast, on the Fedora Linux machine, the number of

occurrences for the same set of variables from the same C# program is ranging

from 3 to 7. Hence, knowing that each of these values are only appeared once in

the subject program’s source-code, this is very promising to the MI. See the left

side of the Mac OS and Fedora Linux parts of Figure 5a for the exact numbers of

1187Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



occurrences. On the contrary, identifying the same set of values using the UTF16

format shows almost similar occurrences for these values on both Mac OS and

Linux machine; with the exception of V6 variable type that its value was not

found in any of the execution states on a Mac OS machine. See the right side of

Figure 5a for the exact number of occurrences. Hence, the only small difference

appears on the last execution state S21, which represents the scenario in which

the presumed program was already terminated when the corresponding memory

dump is captured ; this S21 state produces better occurrences for some variables

on Mac OS than it is on the Linux machine.

6.1.3.3 Finally, C# with Mono Framework:

This part compares between the results obtained from the C# program when

it runs on Windows with the support from Mono framework, the upper part

of Figure 5a, against its run on both Mac OS and Linux machines with the

support from the same Mono framework, the lower part of Figure 5a. It is clear

that the occurrences of values on the Linux machine are fare much better than

those obtained from the same C# program when it runs on Windows with Mono

framework support; in which the number of UTF8 occurrences for all 12 values

V1 to V12 and all execution states S1 to S21 are 1, but all occurrences are zeros

on Mac OS, see the left side of Figure 5a. Hence, these values from the Windows

and Linux machines are very processing to the MI; knowing that these values

V1 to V12 are only occurred once in the subject C# program’s source-code. In

contrast, identifying the same set of values in dumps S1 to S21 using the UTF16

shows that the results for the Mono framework running on Windows is relatively

better than those occurrences obtained from both Mac OS and Linux machines,

see the right side of Figure 5a.

6.2 Level 2: OS Based Results

This level compares between similar programs that are written in three different

languages when each is running on the same platform.

6.2.1 MS Windows Based Results

Figure 5b shows the heatmap with the number of concurrences obtained from the

set of similar programs with respect to language differences when each is running

on the same Windows machine. The left side of Figure 5b represent occurrences

that are identified using the UTF8 format whereas the right side of Figure 5b

represent occurrences identified using the UTF16 format. This heatmap shows

that Java is the best when it comes to the number of occurrences that are

identified using the UTF8 on aWindows machine. Whereas the C# program that

1188 Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



runs with the support from the .Net framework is the worst for the MI. However,

C# programs that are supported using the Mono framework and C++ programs

show moderate results (number of occurrences), in which the occurrences from

the C# program are all 1 and the occurrences from the C++ program are

relatively better with the exception that V3 and V6 are unlikely to be found

in the RAM of the Windows machine using the UTF8 format. However, this

heatmap shows that C# programs are the best in terms of the occurrences of

their values when these values are identified using the UTF16 format. In contrast,

identifying values using the UTF16 shows moderate occurrences on the Mac OS

machine whereas it is highly unlikely to be able to identify any of these values

using the UTF16 from any C++ program on a Windows machine.

6.2.2 Mac OS Based Results

Figure 6a presents the heatmap with the number of occurrences obtained from

the same set of similar programs, all of which run on the same Mac OS machine.

This heatmap shows that the best results, for the MI, can be obtained from a

Java program; when these values are identified using the UTF8 format, see the

left side of the Java part of Figure 6a. Whereas the worst results that can be

identified using the UTF8 formats are obtained from the C# program, in which

all UTF8 values are zeros. The results from the C++ language shows moderate

number of occurrences that are successfully found using the UTF8 format.

However, the right side of Figure 6a shows that C# presents the best occur-

rences when these values are identified using the UTF16 format; only variable

V6 was unlikely to be identified. In contrast, identifying values using the UTF16

shows moderate occurrences on the Mac OS machine for Java programs and bad

results for the C++ programs, which are highly unlikely to identify values using

the UTF16 from any C++ program before state S14.

6.2.3 Linux Based Results

Figure 6b presents the heatmap with the number of occurrences obtained from

the same set of similar programs, all of which run on the same Fedora 26 Linux

machine. It shows that the best results, for the MI, can be obtained from a

C# program that is running on a Linux machine with the support from the

Mono framework. The left side of Figure 6b presents these occurrences in UTF8

format whereas the right side of Figure 6b shows these results for the UTF16

format. Occurrences show promising results that can be found using UTF8 and

UTF16 encoding formats; only for the C# program. The second best results on

a Linux machine can obtained from a Java program, especially for source-code

related values that are identified using the UTF8 format, see the left side of

the Java part of Figure 6b. Hence, C++ shows a reasonable results using the

1189Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



1190 Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



1191Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



1192 Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



called nugget, which aims to enable the practical formal specification of digi-

tal forensic computations in a tool-agnostic fashion [Stelly and Roussev, 2018].

Johannes et al. proposed a technique to investigate firmware and its major com-

ponents. He proposed a new technique that improves forensics imaging based

on PCI introspection and page table mapping [Stüttgen et al., 2015]. Shashid-

har et al. targeted the prefetch folder and its potential value to the MI. This

folder is used to speed up the startup time of a program on a Windows ma-

chine [Shashidhar and Novak, 2015]. Joseph et al. provided a summarized study

of the forensics methods and their domains including the anti-forensic tech-

niques [Joseph and Norman, 2019]. Singh et al. presented a taxonomy of various

program execution artifacts and evaluated eleven of them that are running on

Windows and presented their forensic values [Singh and Singh, 2018].

However, this paper utilizes the source-code and/or binary-code related val-

ues to identify the software usage on different platforms. Its goal is to identify

and validate whether the presumed software is actually used during the digi-

tal crime. The study presented in this paper compares between three diffident

languages, each of which is evaluated on three different platforms.

8 Discussions and Future Work

The results presented in this paper are based on our carefully designed software.

We are not using a real world open-source or commercial software, that is be-

cause our experimentations are designed to evaluate the differences between the

behaviors of the same language on different platforms and, also, to evaluate the

differences between the behaviors of different languages on the same platform.

Though, it is not that hard to find the same software running on different plat-

forms, but it would be difficult enough to find the same exact program written in

three different languages in order to be evaluated on the same platform; a state

by state comparison is performed in order to find the exact differences in the cor-

responding memory footprints (digital evidence) [James and Gladyshev, 2015].

Thus, the research presented in this paper establishes a base case for a promis-

ing future work, in which we are planning to investigate open-source and closed-

source real world software. Of course, future studies will be guided by the results

that are presented in this paper.

However, in this paper, we tested the results of programs written in three

different languages: Java, C++, and C#, each of which is tested running on Win-

dows 10 Pro, Mac OS, and Fedora Linux. Hence, in all experiments, the prepared

programs are semantically identical with respect to the syntactic language dif-

ferences. The execution of the presumed programs are supported by different

underneath implementations that could potentially affect their memory forensic

evidence on different platforms.

1193Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



Nonetheless, the investigated languages differ in their OS support. For in-

stance, Java operates to some extent in a layer that is distant from the OS

Kernel (i.e. JVM). Practically, this means that a specific area of the memory is

kept from this layer to handle the program execution. Therefore, while the GC

picks up the garbage, the memory will not become immediately available to the

OS. This might explain the prominence of the digital evidence of Java based pro-

grams over other languages, even though, it shows platform differences, which

is expected due to the differences in the implementation of these JVMs accord-

ing the host OS. Thus, traces of various execution values (evidences) showed

different footmarks on different platforms.

Additionally, whenever the source-code of the presumed software is not avail-

able, software reverse engineering and its supportive tools, such as IDA disassem-

bler 6 and OllyDbg 7, can provide a considerable assistant to the MI in analyzing

the executable. For example, when a Java source-code is compiled, it is converted

into bytecode that is to be executed by the JVM. In comparison to C/C++

programs, Java’s bytecode is machine independent. Thus, when it comes to un-

derstanding the binary representation, Java bytecode retain more information

than the native code. Thus, it is relatively easier to decompile bytecode and with

greater accuracy. Freely available tools allow the Java bytecode to be converted

into Java source-code, and the resulting source-code is likely to be very similar

to the original one [Eilam, 2011]. Additionally, there are tools available to obfus-

cate Java, thereby making the memory investigators job more challenging, but

none are particularly strong—even highly obfuscated Java bytecode is generally

easier to reverse than unobfuscated native machine code [Stamp, 2011].

In contrast, C# is supported by the Microsoft .Net framework, and its equiv-

alent open-source cross-platform Mono framework that supports C# executables

on none Windows machines. Even though the MSIL code is stored in a .exe file,

this file does not contain native executable code; it contains information needed

by the JIT compiler to execute the code [Esposito and Ciceri, 2016]. Just like

in the Java case, this MSIL simplify the process of understanding the execution

logic [Kumar et al., 2015].

For future work, in addition to investigating real world applications, we

are planning to investigate the environments of small devices such as phones

and tablets. Although, this paper targets the strictly typed languages, we are

planning to investigate dynamically typed languages including the scripting

languages such as Python, Ruby, R, Icon/Unicon and others. For example,

JavaScript is one of the most commonly used dynamic languages that is widely

used for web development, thus we plan to forensically investigate its behav-

ior along with the HTTP protocol [Graniszewski et al., 2018]. Furthermore, we

6 IDA disassembler, www.hex-rays.com/index.shtml
7 OllyDbg, http://www.ollydbg.de/

1194 Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



are looking forward to investigate similar scenarios for other data types and

structures such as collections and generics. Finally, it would be important to

investigate various types and their impacts on long running programs such as

servers and web services.

9 Conclusion

This paper utilizes information from the source-code and/or the disassembled

binary of a software and employs it’s execution data to help the MI establishes

the DE against a perpetrator. Experiments are designed to target the potential

DE that would prove the actual software usage during various execution states

and scenarios. Memory footprints from similar programs that are developed in

different languages are compared on the same platforms. Moreover, the memory

footprint of each program is compared between different platforms. Three dif-

ferent factors that can affect the digital evidence in memory are examined. It

evaluated how the DE is impacted by the used platform, the used programming

language, and finally how it is impacted by the implicitly used encoding schemes

such as the UTF8 and UTF16. The result and discussion sections present in de-

tails how and what method the MI are encouraged to employ in order to obtain

the best amount of digital evidence that can be identified in RAM based on the

host platform, language used, and the encoding of string values and literals.

Results show that utilizing source-code and binary-code information can be

valuable to the MI. Moreover, some languages show better results on specific

platform over others. However, execution related data that is in memory can

often be used to establish the DE that the perpetrator is actually used the soft-

ware during the cybercrime. Various variables’ values and string literals and

non-literals related to the program execution are successfully identified during

different scenarios. This should permit law enforcement agencies to take legal

actions against criminals in the court of law. Finally, results show that when it

comes to investigating memory footprints of a used software, the MI cannot rely

on one technique always, instead, the MI need to take the environment (plat-

form), used language, and the encoding schemes into consideration in order to

successfully obtain relative and unique execution values (evidence). The results

presented in this paper should assist the MI toward the right direction, in which

to obtain the most valuable evidence.

References

[Al-Saleh and Al-Sharif, 2013] Al-Saleh, M. and Al-Sharif, Z. (2013). Ram forensics
against cyber crimes involving files. In The Second International Conference on Cyber
Security, Cyber Peacefare and Digital Forensic (CyberSec2013), pages 189–197. The
Society of Digital Information and Wireless Communication (SDIWC).

1195Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



[Al-Sharif, 2016] Al-Sharif, Z. A. (2016). Utilizing program’s execution data for digital
forensics. In The Third International Conference on Digital Security and Forensics
(DigitalSec2016), pages 12–19.

[Al-Sharif et al., 2017] Al-Sharif, Z. A., Al-Saleh, M. I., and Alawneh, L. (2017). To-
wards the memory forensics of oop execution behavior. In 2017 8th International
Conference on Information, Intelligence, Systems Applications (IISA), pages 1–6.

[Al-Sharif et al., 2018a] Al-Sharif, Z. A., Al-Saleh, M. I., Alawneh, L. M., Jararweh,
Y. I., and Gupta, B. (2018a). Live forensics of software attacks on cyber–physical
systems. Future Generation Computer Systems.

[Al-Sharif et al., 2018b] Al-Sharif, Z. A., Bagci, H., Zaitoun, T. A., and Asad, A.
(2018b). Towards the Memory Forensics of MS Word Documents, pages 179–185.
Springer International Publishing, Cham.

[Al-Sharif et al., 2015] Al-Sharif, Z. A., Odeh, D. N., and Al-Saleh, M. I. (2015). To-
wards carving pdf files in the main memory. In The International Technology Man-
agement Conference (ITMC2015), pages 24–31. The Society of Digital Information
and Wireless Communication (SDIWC).

[Bauman et al., 2018] Bauman, E., Lin, Z., and Hamlen, K. W. (2018). Superset dis-
assembly: Statically rewriting x86 binaries without heuristics. In Proc. NDSS, pages
40–47.

[Bobowska et al., 2018] Bobowska, B., Choraś, M., and Woźniak, M. (2018). Advanced
analysis of data streams for critical infrastructures protection and cybersecurity.
Journal of Universal Computer Science, 24(5):622–633.

[Bovet and Cesati, 2005] Bovet, D. P. and Cesati, M. (2005). Understanding the Linux
Kernel: from I/O ports to process management. ” O’Reilly Media, Inc.”.

[Butler, 2016] Butler, J. (2016). Physical memory forensics system and method. US
Patent 9,268,936.

[Case and Richard, 2017] Case, A. and Richard, G. G. (2017). Memory forensics: The
path forward. Digital Investigation, 20(Supplement C):23 – 33. Special Issue on
Volatile Memory Analysis.

[Conlan et al., 2016] Conlan, K., Baggili, I., and Breitinger, F. (2016). Anti-forensics:
Furthering digital forensic science through a new extended, granular taxonomy. Dig-
ital Investigation, 18(Supplement):S66 – S75.

[Craiger, 2005] Craiger, P. (2005). Recovering digital evidence from linux systems. In
IFIP International Conference on Digital Forensics, pages 233–244. Springer.

[Dezfoli et al., 2013] Dezfoli, F. N., Dehghantanha, A., Mahmoud, R., Sani, N. F.
B. M., and Daryabar, F. (2013). Digital forensic trends and future. International
Journal of Cyber-Security and Digital Forensics (IJCSDF), 2(2):48–76.

[Eilam, 2011] Eilam, E. (2011). Reversing: secrets of reverse engineering. John Wiley
& Sons.

[Esposito and Ciceri, 2016] Esposito, A. and Ciceri, M. (2016). Reactive Programming
for. NET Developers. Packt Publishing Ltd.

[Graniszewski et al., 2018] Graniszewski, W., Krupski, J., and Szczypiorski, K. (2018).
Somsteg-framework for covert channel, and its detection, within http. Journal of
Universal Computer Science, 24(7):864–891.

[Haller et al., 2016] Haller, I., Slowinska, A., and Bos, H. (2016). Scalable data struc-
ture detection and classification for c/c++ binaries. Empirical Software Engineering,
21(3):778–810.

[James and Gladyshev, 2015] James, J. I. and Gladyshev, P. (2015). Automated in-
ference of past action instances in digital investigations. International Journal of
Information Security, 14(3):249–261.

[Jensen et al., 2017] Jensen, D., Lundkvist, A., and Hammouda, I. (2017). On the
significance of relationship directions in clustering algorithms for reverse engineering.
In Proceedings of the Symposium on Applied Computing, SAC ’17, pages 1239–1244,
New York, NY, USA. ACM.

1196 Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



[Jones, 2018] Jones, M. (2018). Automated in-memory malware/rootkit detection via
binary analysis and machine learning.

[Joseph and Norman, 2019] Joseph, D. P. and Norman, J. (2019). An analysis of dig-
ital forensics in cyber security. In First International Conference on Artificial Intel-
ligence and Cognitive Computing, pages 701–708. Springer.

[Josey et al., 2004] Josey, A., Cragun, D., Stoughton, N., Brown, M., Hughes, C., et al.
(2004). The open group base specifications issue 6 ieee std 1003.1. The IEEE and
The Open Group, 20(6).

[Kao et al., 2019] Kao, D.-Y., Wu, N.-C., and Tsai, F. (2019). The governance of
digital forensic investigation in law enforcement agencies. In 2019 21st International
Conference on Advanced Communication Technology (ICACT), pages 61–65. IEEE.

[Kälber et al., 2013] Kälber, S., Dewald, A., and Freiling, F. C. (2013). Forensic
application-fingerprinting based on file system metadata. In 2013 Seventh Inter-
national Conference on IT Security Incident Management and IT Forensics, pages
98–112.

[Kruegel et al., 2004] Kruegel, C., Robertson, W., Valeur, F., and Vigna, G. (2004).
Static disassembly of obfuscated binaries. In USENIX security Symposium, vol-
ume 13, pages 18–18.

[Kumar et al., 2015] Kumar, K., Kaur, P., and GNDU, A. (2015). A generalized pro-
cess of reverse engineering in software protection & security. Int. J. Computer Science
& mobile Computing, 4(5):534–544.

[Leukfeldt et al., 2017] Leukfeldt, E. R., Kleemans, E. R., and Stol, W. P. (2017).
Cybercriminal networks, social ties and online forums: social ties versus digital
ties within phishing and malware networks. The British Journal of Criminology,
57(3):704–722.

[Ligh et al., 2014] Ligh, M. H., Case, A., Levy, J., and Walters, A. (2014). The art of
memory forensics: detecting malware and threats in windows, linux, and Mac mem-
ory. John Wiley & Sons.

[Lindholm et al., ] Lindholm, T., Yellin, F., Bracha, G., and Buckley, A. The java
virtual machine specification-java se 8 edition, march 2014.

[Mazurczyk et al., 2013] Mazurczyk, W., Szczypiorski, K., Tian, H., and Liu, Y.
(2013). Trends in modern information hiding: techniques, applications and detec-
tion. Security and Communication Networks, 6(11):1414–1415.

[Mesbah et al., 2017] Mesbah, A., Lanet, J.-L., and Mezghiche, M. (2017). Reverse
engineering a code without the code: Reverse engineering of a java card dump. In
Proceedings of the 1st Reversing and Offensive-oriented Trends Symposium, ROOTS,
pages 1:1–1:8, New York, NY, USA. ACM.

[Montasari and Hill, 2019] Montasari, R. and Hill, R. (2019). Next-generation digi-
tal forensics: Challenges and future paradigms. In 2019 IEEE 12th International
Conference on Global Security, Safety and Sustainability (ICGS3), pages 205–212.
IEEE.

[Moser et al., 2017] Moser, M., Pfeiffer, M., and Pichler, J. (2017). Towards reverse en-
gineering of intermediate code for documentation generators. In 2017 IEEE 24th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 553–554.

[Nadi and Holt, 2014] Nadi, S. and Holt, R. (2014). The linux kernel: A case study of
build system variability. Journal of Software: Evolution and Process, 26(8):730–746.

[Otsuki et al., 2018] Otsuki, Y., Kawakoya, Y., Iwamura, M., Miyoshi, J., and Ohkubo,
K. (2018). Building stack traces from memory dump of windows x64. Digital Inves-
tigation, 24:S101 – S110.

[Pridgen et al., 2017] Pridgen, A., Garfinkel, S., and Wallach, D. S. (2017). Picking
up the trash: Exploiting generational gc for memory analysis. Digital Investigation,
20(Supplement):S20 – S28. DFRWS 2017 Europe.

[Rafique and Khan, 2013] Rafique, M. and Khan, M. (2013). Exploring static and live
digital forensics: Methods, practices and tools. International Journal of Scientific &

1197Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...



Engineering Research, 4(10):1048–1056.
[Rupprecht et al., 2017] Rupprecht, T., Chen, X., White, D. H., Boockmann, J. H.,
Lüttgen, G., and Bos, H. (2017). Dsibin: identifying dynamic data structures in
c/c++ binaries. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 331–341. IEEE.

[Salajegheh et al., 2018] Salajegheh, M., Gathala, S. A. K., Das, S. M., and Islam, N.
(2018). System and method of performing online memory data collection for memory
forensics in a computing device. US Patent App. 15/248,178.

[Sali and Khanuja, 2019] Sali, V. R. and Khanuja, H. (2019). Ram forensics: The
analysis and extraction of malicious processes from memory image using gui based
memory forensic toolkit. In 2018 Fourth International Conference on Computing
Communication Control and Automation (ICCUBEA), pages 1–6. IEEE.

[Schatz and Cohen, 2017] Schatz, B. and Cohen, M. (2017). Advances in volatile mem-
ory forensics. Digital Investigation, (20):1.

[Schildt, 2014] Schildt, H. (2014). Java: The Complete Reference. McGraw-Hill Edu-
cation Group.

[Schwartz et al., 2018] Schwartz, E. J., Cohen, C. F., Duggan, M., Gennari, J.,
Havrilla, J. S., and Hines, C. (2018). Using logic programming to recover c++ classes
and methods from compiled executables. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 426–441. ACM.

[Sen and Mall, 2016] Sen, T. and Mall, R. (2016). Extracting finite state representa-
tion of java programs. Software & Systems Modeling, 15(2):497–511.

[Shashidhar and Novak, 2015] Shashidhar, N. K. and Novak, D. (2015). Digital foren-
sic analysis on prefetch files. International Journal of Information Security Science,
4(2):39–49.

[Singh and Singh, 2018] Singh, B. and Singh, U. (2018). Program execution analysis in
windows: A study of data sources, their format and comparison of forensic capability.
Computers & Security, 74:94 – 114.

[Sitaraman and Venkatesan, 2005] Sitaraman, S. and Venkatesan, S. (2005). Low-
intrusive consistent disk checkpointing: A tool for digital forensics. Journal of Uni-
versal Computer Science, 11(1):20–36.

[Stamp, 2011] Stamp, M. (2011). Information security: principles and practice. John
Wiley & Sons.

[Stelly and Roussev, 2018] Stelly, C. and Roussev, V. (2018). Nugget: A digital foren-
sics language. Digital Investigation, 24:S38 – S47.

[Stevens and Rago, 2013] Stevens, W. R. and Rago, S. A. (2013). Advanced program-
ming in the UNIX environment. Addison-Wesley.

[Stüttgen et al., 2015] Stüttgen, J., Vömel, S., and Denzel, M. (2015). Acquisition
and analysis of compromised firmware using memory forensics. Digital Investigation,
12:S50–S60.

[Subedi et al., 2018] Subedi, K. P., Budhathoki, D. R., and Dasgupta, D. (2018).
Forensic analysis of ransomware families using static and dynamic analysis. In 2018
IEEE Security and Privacy Workshops (SPW), pages 180–185. IEEE.

[Thomas et al., 2013] Thomas, S., Sherly, K., and Dija, S. (2013). Extraction of mem-
ory forensic artifacts from windows 7 ram image. In 2013 IEEE Conference on
Information & Communication Technologies, pages 937–942. IEEE.

[Tien et al., 2017] Tien, C. W., Liao, J. W., Chang, S. C., and Kuo, S. Y. (2017).
Memory forensics using virtual machine introspection for malware analysis. In 2017
IEEE Conference on Dependable and Secure Computing, pages 518–519.

[Yang et al., 2007] Yang, J., Li, T., Liu, S., Wang, T., Wang, D., and Liang, G. (2007).
Computer forensics system based on artificial immune systems. Journal of Universal
Computer Science, 13(9):1354–1365.

1198 Al-Sharif Z.A., Al-Saleh M.I., Jararweh Y., Alawneh Y., Shatnawi A.S. ...


