Journal of Universal Computer Science, vol. 25, no. 9 (2019), 1043-1065
submitted: 16/1/19, accepted: 9/7/19, appeared: 28/9/19 © J.UCS

Determination of System Weaknesses
based on the Analysis of Vulnerability Indexes
and the Source Code of Exploits

Andrey Fedorchenko, Elena Doynikova, Igor Kotenko
(St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, St. Petersburg, Russia
{fedorchenko, doynikova, ivkote} @comsec.spb.ru)

Abstract: Currently the problem of monitoring the security of information systems is highly
relevant. One of the important security monitoring tasks is to automate the process of
determination of the system weaknesses for their further elimination. The paper considers the
techniques for analysis of vulnerability indexes and exploit source code, as well as their
subsequent classification. The suggested approach uses open security sources and incorporates
two techniques, depending on the available security data. The first technique is based on the
analysis of publicly available vulnerability indexes of the Common Vulnerability Scoring
System for vulnerability classification by weaknesses. The second one complements the first
one in case if there are exploits but there are no associated vulnerabilities and therefore the
indexes for classification are absent. It is based on the analysis of the exploit source code for
the features, i.e. indexes, using graph models. The extracted indexes are further used for
weakness determination using the first technique. The paper provides the experiments
demonstrating an effectiveness and potential of the developed techniques. The obtained results
and the methods for their enhancement are discussed.

Keywords: Vulnerability analysis, Exploit analysis, Vulnerability metrics, Abstract semantic
graphs, Data mining, Data classification, Open security data sources, Security monitoring.
Categories: H.3.1, H.3.2, H3.3, H.3.7, H.5.1

1 Introduction

One of the important security monitoring tasks is to automate the process of
determination of infrastructure weaknesses based on known vulnerabilities and
exploits of the analyzed system. According to the “Common Weakness Enumeration”
(CWE) glossary a weakness is a “type of mistake in software”, while a vulnerability is
“an occurrence of a weakness (or multiple weaknesses) within software” [CWE
Glossary, 2019]. An exploit is software or a sequence of commands using
vulnerabilities to implement cyber attacks.

This direction is selected because in the modern information society the task of
countering cyber attacks is highly relevant. Obviously, manual security data
processing in an acceptable time is impossible for modern information systems and
appropriate data sets. The modern tools for information security monitoring provide
functionalities for detection of known vulnerabilities in the analyzed system over
time. These tools include, in particular, security scanners Nessus [Nessus, 2018] and
Nmap [NMap, 2018]. They allow vulnerability detection using open vulnerability

1044 Fedorchenko A., Doynikova E., Kotenko I.: Determination ...

databases, such as “Common Vulnerabilities and Exposures” (CVE) [CVE, 2018],
“National Vulnerabilities Database” (NVD) [NVD, 2018], etc. The vulnerability
databases contain both all known vulnerabilities and information on their presence in
a particular software and hardware, i.e. they contain relations between the software
and hardware represented in the uniform format “Common Platform Enumeration”
(CPE) [CPE, 2019], and vulnerabilities represented in the uniform format CVE [CVE,
2018].

It is impossible to eliminate all vulnerabilities in a system because of the
complexity and cost of this process. A more reasonable approach is to eliminate
weaknesses of the system that lead to appearance (usage) of vulnerabilities. It can be
done via modification of system configuration, via modification of security policy or
via implementation of appropriate security tools. The source of data on the known
weaknesses is weakness database CWE [CWE, 2018]. But, to the best of our
knowledge, there is no database that includes information on the direct links between
the software and hardware represented in the uniform format CPE and weaknesses
represented in the uniform format CWE. Thus, to determine the weaknesses of
information system, considering its software and hardware, we solve the task of
vulnerability classification by weaknesses. It allows indirect linking of the software
and hardware with their weaknesses via their vulnerabilities. The most obvious
approach to compete the task is to use the NVD database to determine the links
between the vulnerabilities and weaknesses of the analyzed system. Vulnerability
entries in NVD have links to the weaknesses in CWE. Main challenges that prevent
automated mapping of weaknesses and vulnerabilities using links between NVD and
CWE consist in the absence of links to the weaknesses for some vulnerability
instances in NVD, and in the high level of abstraction of the linked CWE instances.
To overcome these challenges we propose to use data classification methods to link
vulnerabilities and weaknesses. We tested several methods and selected the one that
shown the highest accuracy. We selected vulnerability indexes specified by the
vulnerability scoring system CVSS (“Common Vulnerability Scoring System”) of
version 2.0 [Mell et al., 2007] and 3.0 [FIRST, 2015] as the classification features
because NVD contains their values for vulnerabilities. We analyzed in details the
vulnerability scoring system CVSS of version 2.0 and 3.0, and the indexes for
vulnerabilities specified by this system. In the process of analysis we detected some
features and inaccuracies of these systems and acceptable (but not ideal) classification
accuracy. This approach and the related technique were described in details in the
paper presented on the IWCC’2018 workshop held in conjunction with the
ARES’2018 [Doynikova et al., 2018].

In this paper we extend the previous research proposing the second technique to
compete the task. It concerns to the case when there are exploits but there are no
associated vulnerabilities and therefore the indexes for classification are absent. It is
based on the analysis of the exploit source code for the features, i.e. indexes, and their
extraction using graph models. The extracted indexes are further used as input data
for the weakness determination using the first technique. Known exploits for the
software can be found in the exploit databases (for example, “Exploit DataBase”,
EDB [EDB, 2018]). The EDB database also contains links from some exploit entries
to the related CVE vulnerabilities. This technique can be used both (1) to determine
the used weakness for the exploit, if the entry in the EDB database does not contain

Fedorchenko A., Doynikova E., Kotenko I.: Determination ... 1045

the link to the CVE vulnerability, and, potentially, (2) to enhance the classification
accuracy of the first technique, if the entry in the EDB database contains the link to
the CVE vulnerability.

The main contribution of this research is the approach to automated weaknesses
determination including the technique based on known system vulnerabilities and
their indexes, and the technique based on the available exploits and their features.
Automation of vulnerability classification process by weaknesses can help experts to
specify links to weaknesses for new detected vulnerabilities and to avoid subjectivity
of manual specification. Besides, the proposed approach can help to determine
weaknesses for the exploits without links to the vulnerabilities that can help to
enhance attack models [Doynikova and Kotenko 2018]. We also believe that further
extension of the set of features for classification using the analysis of the exploit
source code will help to overcome the high level of abstraction of the linked to the
vulnerabilities CWE instances and to increase the mapping accuracy.

The paper is organized as follows. Section 2 reviews related works. Section 3
describes the proposed approach and the developed techniques for the weaknesses
determination, including the technique based on analysis of the CVSS indexes and the
technique based on analysis of the exploit source code. Section 4 outlines the data for
analysis, the data preprocessing stage, and the experiments. The paper ends with
discussion, conclusion and future work.

2 Related Work

In the research we use open security data sources. Currently different open data
sources are used to solve various tasks of security analysis. The data on
vulnerabilities, products and configurations from the CVE [CVE, 2018], NVD [NVD,
2018] and other databases are used for vulnerability assessment [Chang et al., 2011;
Wu and Wang, 2011], attack generation [Aksu et al., 2018], risk management [Das et
al., 2012; Houmb and Franqueira, 2009; Radack and Kuhn, 2011; Zhang et al., 2015],
checking for compliance to the security standards such as FISMA [FISMA, 2019],
FDCC [FDCC, 2019], PCI DSS [PCI DSS, 2016] and security testing. Besides,
vulnerability sources are used by the vulnerability scanners [Nessus, 2018].

The data on attack patterns from the CAPEC database can be used to develop
security policies, define security requirements, analyze security risks, and test
security. In [Pauli and Engebretson, 2008] the tool for secure system development
using CAPEC is proposed. The data on the weaknesses from the CWE database is
used for design and development of secure systems [Son et al., 2015], and for
penetration testing. In multiple research works, various security sources (such as
CVE, CPE, CWE, and CAPEC) are used jointly to construct knowledge databases for
risk analysis [Gamal et al., 2011; Wang and Guo, 2009].

The main data sources in the study are the vulnerability database NVD [NVD,
2018], the weaknesses database CWE [CWE, 2018], and the exploit database EDB
[EDB, 2018]. NVD contains the entries of known vulnerabilities in the CVE format
[CVE, 2018]. This format assumes the presence of unique CVE identifier. The NVD
entries also include the brief vulnerability or security flaw description, the source of
information about the vulnerability, the publishing date and the date of the last
modification, the metrics of CVSS of version 3.0 and/or 2.0 that describe

1046 Fedorchenko A., Doynikova E., Kotenko I.: Determination ...

vulnerability, and the references to advisories, solutions and tools. Besides, in NVD
the vulnerability entries have links to the vulnerable products in the CPE format and
the used CWE weaknesses. The most interesting fields of the NVD entries for us are
the CVSS metrics (indexes) for vulnerabilities and the linked weaknesses, as soon as
the CVSS metrics are used in the research to determine weaknesses used by
vulnerabilities.

The CVSS indexes characterize vulnerability considering preconditions and
postconditions of its exploitation [Mell et al., 2007]. In recent years several CVSS
versions were issued. Thus, CVSS of version 2.0 has some uncertainties that have
been fixed in the new version 3.0 [Hanford and Heitman, 2015]. The detailed
comparison of CVSS of version 2.0 and CVSS of version 3.0 is provided in
[Doynikova et al., 2017]. CVSS of version 2.0 and 3.0 includes basic, temporal and
contextual indexes. Basic indexes for the vulnerabilities can be found in the NVD
database. Temporal indexes can be found in the open vulnerability databases, but they
represent change of vulnerability in time and do not influence on vulnerability
mapping to some weakness. Contextual indexes are related to the system security
requirements and also do not influence on vulnerability mapping to some weakness.
So we consider in this research only basic indexes.

For the CVSS indexes, possible quantitative and qualitative values are specified.
These values are set for the vulnerabilities in the NVD database by the experts (from
the Computer Security Divisions' Information Technology Laboratory of National
Institute of Standards and Technology). We assumed that these values can be used to
classify vulnerabilities by weaknesses, because the classes of weaknesses are also
differ by the access type they provide and possible damage from their exploitation.
The set of known weaknesses of the software and hardware in the CWE format
[CWE, 2018] is provided in the CWE database. The dictionary has several views: by
research concepts, by development concepts and by architectural concepts. Different
views contain different number of entries. Currently we use for analysis the view by
research concepts and the view by development concepts. The CWE schema [CWE
Schema, 2019] incorporates three main groups of attributes: “Common Attributes”,
“Structural Schema Elements”, “Administrative Information”. In terms of our
research there are two interesting subgroups of the “Common Attributes” group: the
subgroup “Prescriptions and Recommendations”, as soon as it describes possible
security tools and means for the system, and the subgroup “Background and
Contextual Information” that includes the field “Observed Examples” containing the
examples of vulnerabilities that use the weakness. This field can be used to enhance
the accuracy of classification. Another valuable group is the “Supplemental
Information™ that contains the field “Related Attack Patterns”, because it allows
connecting weaknesses and attack patterns from CAPEC [CAPEC, 2018].

The exploit database EDB [EDB, 2018] contains known exploits and
corresponding vulnerable software, i.e. existence of an exploit supposes existence of
a vulnerability and a weakness. Consequently some EDB entries have links to CVE,
but some entries do not have such links.

There are a few research works devoted to classification of vulnerabilities. In
[Tripathi and Singh, 2011a] the trends in vulnerability classes in NVD are analyzed,
including the most popular classes and their severity levels. This paper analyses only
vulnerabilities that have links to the weaknesses. In [Tripathi and Singh, 2012] the

Fedorchenko A., Doynikova E., Kotenko I.: Determination ... 1()47

authors compare classifications used by various databases and conclude that the CWE
classification has the best classification properties. In [Tripathi and Singh, 2011b] the
authors prioritize vulnerability classes using the CVSS scores. But these papers do not
consider the task of automated classification of weaknesses. The approach provided in
[Wang and Guo, 2010] is the most closest to our approach to weaknesses
determination. The authors classify vulnerabilities in NVD using the CWE classes
and a naive Bayesian network. But they demonstrate the results only for one product
and one vulnerability and do not analyze the accuracy of their results.

Our second technique for the weaknesses determination supposes analysis of an
exploit source code and its representation as a graph for the further analysis. Currently
the following models for representation of the software source code exist: an abstract
syntax tree (AST), an abstract semantic graph (ASG), a control flow graph (CFG), a
program dependence graph (PDG), a code property graph (CPG) [Caprile et al.,
2003]. There are a lot of research works related to the software source code analysis
using the listed and other models.

AST is a processed parse tree, from which some elements are removed. The parse
tree is a tree that represents the process of construction of language sentences starting
from the terminal symbols using the language grammar [Duffy, 2011]. ASTs are often
used for the type inference, architecture recovery and call graph extraction [Caprile et
al., 2003]. Thus, in [Moses and Syman, 2001] the authors introduce a dynamic syntax
tree to analyze the dynamic programming languages. In [Neamtiu et al., 2005] the
authors use AST matching to analyze the C source code evolution. The practical
implementation of AST for the Python language is available [astdump 4.3, 2016].

ASG is generated from AST using semantic rules, i.e. in contradiction to AST it
includes semantic information. In [Duffy, 2011] the process of the ASG generation is
described. The author uses ASG for the static and dynamic analysis of C++ code for
the software development. In [Stein, 2016] ASG is used to analyze the dynamically
typed languages.

CFG is a directed graph where each node corresponds to a basic block and edges
connect nodes that can be executed consequentially [Patterson et al., 2018]. CFGs are
usually used for the flow analysis and the impact analysis [Caprile et al., 2003]. For
example, they are used to analyze the source code in [Gold, 2010; Patterson et al.,
2018]. The practical implementation of the CFG for Python is available [Coet, 2018].

PDG represents the data and control dependencies within a program. PDGs are
used, among other things, for the program slicing [Agrawal et al., 1990, Caprile et al.,
2003]. In [Hsieh et al., 1992] it is used for information flow control. The practical
implementation of the PDG for Python is available [Blais, 2018].

Analysis of the software code is often used to detect vulnerabilities in the
software [Yamaguchi et al. 2014]. In [Yamaguchi et al. 2014] the authors introduce
CPG that is generated combining AST, CFG and PDG. It allows detection of buffer
overflows, integer overflows, format string vulnerabilities, or memory disclosures.

Structure analysis issues for the .pyc files are considered in [Batchelder, 2008;
Fireeye, 2016]. We used it to determine the structure of exploit source code. In
[Code2graph, 2019; Gharibi et al., 2018] the authors introduce the tool to
automatically analyze a Python-source code and to generate a static call graph and
a similarity matrix of all possible execution paths in the system. A static call graph is
a representation of relationships between system’s functions. Each node of the graph

1048 Fedorchenko A., Doynikova E., Kotenko I.: Determination ...

is a function, and each edge is a function call. The authors suggest the technique,
including extraction of the code structure, using the static analysis code traversal
approach. The code structure is applied to extract the caller-callee relationships
(relationships between each caller function initiating the call and its targets) that are
represented as a 2D matrix. This matrix is used to construct a call graph. The call
graph is realized to generate similarity matrix that can be applied to detect the similar
execution paths and generate machine learning models.

In [Caprile et al., 2003] the issues of interoperability of the source code analysis
tools based on different models are considered.

Currently there are security data sources that accumulate knowledge of
information security community on the vulnerabilities and weaknesses of products
and exploits for particular vulnerabilities. But such sources are large, contain
uncertainties, and they are usually incomplete. Thus there is a need in techniques for
security data processing that will eliminate uncertainty and incompleteness. We aim
to eliminate one of such uncertainties related with an absence of the direct links
between the products and appropriate weaknesses. It is required to simplify selection
of security measures (that are applicable for a weakness, i.e. a group of
vulnerabilities, instead of a separate vulnerability). From our point of view an
approach including analysis and classification of vulnerabilities as well as analysis
and classification of exploits can be realized to determine associated weaknesses. We
propose to analyse the exploits structure (namely, exploits with the Python-source
code) and its graph representation to classify the vulnerabilities used by these
exploits, i.e. to determine used weaknesses. It involves comparison of the execution
paths of exploits and further extraction of features, i.e. indexes, of the similar paths.
These indexes are the basis for classification of the exploits by weaknesses. Though
there are a lot of models for source code analysis, these models are not suitable for
our goal because we need to extract a formalized description of the code functionality.
Particularly, AST doesn’t represent code functionality, ASG loses function call names
in the existing implementations, and CFG can contain not functional nodes. In the
section 3.2 we describe our model that is an ASG variation. It combines CFG and the
function call dependencies graph.

3 Automated Determination of System Weaknesses

As it was mentioned in the introduction, the goal of this research is automation of the
infrastructure weaknesses determination based on the available data about analyzed
system. It is one of the steps towards automated selection of security measures. We
distinguish the following steps of automated selection of security measures (Fig. 1):
detection of vulnerabilities of the analyzed system and/or available exploits;
determination of weaknesses of the analyzed system (that make possible the detected
vulnerabilities and/or exploits); determination of cyber threats to the analyzed system
(that are possible because of the determined weaknesses); selection of security
measures to protect against determined cyber threats. The task being solved in this
paper is highlighted in Fig. 1. Before the automated determination of system threats
and appropriate security measures, the automated determination of system
weaknesses should be implemented. Let us describe the Fig. 1 in details.

Fedorchenko A., Doynikova E., Kotenko I.: Determination ... 1049

We propose to use as input data the system configuration including system
software and hardware, vulnerability entries from the NVD database [NVD, 2018]
and exploits from the EDB database [EDB, 2018]. We selected the NVD database for
the following reasons: (1) it incorporates the largest number of known vulnerabilities
[Kotenko et al., 2015]; (2) it is supported by the community of experts from
Information Technology Laboratory of the NIST Computer Security Division; and
(3) it contains the CVSS scores for the vulnerabilities and links to the weakness
database CWE [CWE, 2018] required for the connection of the vulnerabilities and
attacks. In its turn, EDB is the most known open database of exploits. Its entries have
links to the CVE database and description of the vulnerable platform and software.

Input data Output data
CWE CAPEC
Software and

hardware of
the analyzed

system Define S}_/S_tE_:m Define Security
vulnerabilities Define system Define system security p/ measures for
or available weaknesses threats measures the analyzed

system

exploits
?

Figure 1: The place of the task being solved

On the first step (“Define system vulnerabilities or available exploits”) we
determine system vulnerabilities or applicable exploits on the basis of the system
software and hardware, the NVD database [NVD, 2018] and the EDB database [EDB,
2018], and vulnerability characteristics according to the scoring system CVSS of
version 2.0 and 3.0 from the NVD database.

On the second step (“Define system weaknesses”) we determine system
weaknesses (this is the task being solved in this paper). At the end of this step CVEs,
CWEs and applicable exploits of the analyzed system should be known. At the
beginning of this step the following uncertainties can exist: (1) CVE and an exploit
are known, CWE is unknown; (2) CVE and CWE are known, an exploit is unknown;
(3) an exploit and CWE are known, CVE is unknown; (4) CVE is known, an exploit
and CWE are unknown; (5) an exploit is known, CVE and CWE are unknown; (6)
CWE is known, an exploit and CVE are unknown; (7) CVE is known, an exploit and
CWE are unknown.

Considering the task, we do not review cases (2), (3) and (6) when CWE is known.
Thus, in case (2), determined on the first step system vulnerabilities, links from the
appropriate vulnerability entries in the NVD database to weaknesses in the CWE
database, and entries from the CWE database are used to define the system
weaknesses. But the rather large number of vulnerability entries in NVD does not
have links to the used weaknesses, i.e. these vulnerabilities belong to the undefined
class (Fig. 2). It complicates achievement of the goal. It corresponds to the cases (1),
(4) and (7) and demonstrates the relevance of the task of vulnerability classification
via the explored CWE weaknesses.

In the paper we attempt to overcome aforementioned challenge and suggest the
technique for the vulnerability classification by weaknesses. It is based on the data
mining using the connection between values of the vulnerability attributes determined

Fedorchenko A., Doynikova E., Kotenko I.: Determination ...

1050

using CVSS and appropriate weaknesses in NVD. We trained classifiers using
vulnerabilities that are linked to the weaknesses from CWE. Then we determined
weaknesses for the vulnerabilities that do not have such links in the NVD database.

The case (5) corresponds to the situation when there is an exploit in the EDB
database, but it is not connected to the CVE. An analysis of the EDB database shown
that only 462 (35%) exploits written in Python for the past 5 years have links to the
CVE identifiers, i.e. there are no descriptions for the vulnerabilities exploited in 65%
exploits (in Python).

CWE present
B yes

2014 80.2%

19.8%

2015

76.8%

no

23.2%

© 2016 76.3%
<

23.7%

2017 86.0%

14.0%

2018 98.7%

1.3%

0 2500 5000 7500 10000 12500 15000
Vulnerability count

Figure 2: Number of the vulnerabilities classified using CWE by years (April,2018)

In this case the corresponding weaknesses cannot be determined using the
suggested above technique. Thus we introduce the second technique that
complements the first technique in the scope of the common approach. This technique
allows us to determine weaknesses for the case (5) and to enhance the classification
accuracy for the first technique. The second technique is based on the static analysis
of the exploit source code to determine the semantically similar exploits and their
features. These features specify corresponding vulnerability class, i.e. weakness.
Analysis is conducted using graph models.

The common scheme of our approach to determination of system's weaknesses
using two described techniques is depicted in Fig. 3. Rectangles and ovals represent
the types of security information. Ovals represent known vulnerability scores and
recoverable representations of exploits in the form of models and common features.
Solid lines represent the semantic relations [Kotenko et al., 2018]. Dotted lines
represent transitions between main steps of the techniques in scope of our approach.

The first technique of the vulnerability classification starts from application of the
“CVSS score” for “Vulnerability classification” to determine corresponding

Fedorchenko A., Doynikova E., Kotenko I.: Determination ... 105 1

“Weakness” (Fig. 3). The second technique is used if there is known exploit, but used
vulnerability is unknown. Besides, in the future work we plan to use it to enhance an
accuracy of the first technique when vulnerability is known but the related weakness
is unknown. The second technique starts from the “Compilation” of the “Exploit”
represented with “Source code” into the “Executable code”. The “Executable code” is
used for the analysis. The process of analysis of exploit source code (ESC) is much
more complicated than analysis of executable code processed by the interpreter. The
stage of decompiling is omitted in the Fig. 3 because it is out of scope of this paper.
The decompiled “Executable code” is used for “Modeling” of the semantic “Exploit
code model” based on the graph of control flow and function (class) calls (use) of
imported modules. As the result of generation of multiple “Exploit code models” and
their consequent synthesis the “Common exploits features” are “Extracted”. These
“Common exploits features” are used for “Vulnerability classification” to determine
the corresponding “Weaknesses”. At the current stage of research, the effectiveness of
exploit code modeling is “Assessed” on the basis of correlation of their features with
known CVSS vulnerability indexes.

q
Attack
T
Implemented byT RN
/ N\
3 / Common \
alls Implements / . \
é ‘g ‘ Vulnerability classification exp|0|ts
s [kRN \)
9| | € | Weakness \ features /
T | TEERERY e : "
£ g A Vulnerability : A
—= Implements classification Assessment Extraction
N N “Exploit N
Implemented by ;b< CVSS score -+ < d P d I/':
Assessedby™>~__ ~ ~code model-
g - Implements .
"| Vulnerability ———— Exploit e
L PE
T f Implemented by ! Source | ‘g
Implements in i LS
Contains | __code 1|:
implementation of) _y Compilation
‘ _______Attackactions | "'Eyacytable |
| Ll
Product |¢__ 'mplements |1 code |
> ___=PdE

Implemented by

Figure 3: The common scheme of weakness determination

The Fig. 3 also represents two types of security information that are not used in the
proposed techniques, namely “Attack™ and “Product”. They are required to connect
the approach with the specific information system to select security measures (Fig. 1),
i.e. security measures depend on the possible attacks that, in their turn, depend on the
weaknesses and vulnerabilities of specific information system. While the weaknesses
and the vulnerabilities depend on the products of this system.

1052 Fedorchenko A., Doynikova E., Kotenko I.: Determination ...

3.1 The technique based on the analysis of CVSS indexes

The first technique uses the relationships between open security data sources of
vulnerabilities (NVD), weaknesses (CWE), and indexes of vulnerabilities provided in
NVD. It is based on the data mining using the connection between values of the
vulnerability attributes determined using CVSS and appropriate weaknesses in NVD.
We trained classifiers using vulnerabilities that are linked to the weaknesses from
CWE to determine weaknesses for the vulnerabilities that do not have such links in
the NVD database. Main stages of the technique are as follows: (1) gather and process
data; (2) train a classifier using vulnerabilities that are linked to the weaknesses from
CWE; (3) classify vulnerabilities that do not have links.

On the first stage we gather data on known vulnerabilities, values of their indexes,
and links to the corresponding weaknesses from the NVD database. Linked weakness
specifies vulnerability class. We gather data on the weaknesses from the CWE
database. We use the indexes of the vulnerability scoring system CVSS of versions
2.0 and 3.0 as the source of features for the vulnerability classification. Vulnerability
indexes in this system can have quantitative and qualitative (categorical) values. The
target features for the vulnerability classification are upper-level classes of CWE
weaknesses in two separate views: Research and Development. The data processing is
described in section 4. On the second stage we train classifier using vulnerabilities
from NVD that are linked to the weaknesses from CWE. On the third stage we
classify vulnerabilities that do not have links using the following classification
methods: decision tree, k-nearest neighbors, and random forest.

3.2 The technique based on the analysis of the exploit code

The approach to analysis of the exploit executable code underlying the proposed
technique is based on the assumption that exploits for the vulnerabilities that use
similar weaknesses (i.e. related to the same class) have semantically similar
functional. This assumption leads from the hypothesis of compactness. But, the model
of exploits as objects of statistical sampling should be specified to check it.

The developed technique of analysis of the exploit executable code incorporates
the following stages (Fig. 3): (1) compiling source code; (2) decompiling source code;
(3) building the functional semantic models of the exploits; (4) comparing the models;
(5) extracting sustainable and valuable parts of exploit models to determine
vulnerability classes.

Precompilation of the exploit source code into the machine code of the Python
language interpreter (format *.pyc) on the stage 1 and its consequent decompilation
(disassembling) into the sequence of interpreter instructions (opcodes) on the stage 2
allows excluding exploits with syntax errors in the source code. The errors can be
related with application of the specific version of the programming language standard
and/or interpreter of the Python language by the exploit's authors, and, consequently,
with the used modules (specified in the interpreter environment).

On the stage 3 we use graph model of the exploit code. As it was shown in
section 2 the graph models are successfully used to analyze the software source code.
The nodes of our graph are specified by the “names” of the source code that are
imported modules and their functions. Such modules (libraries) make up the standard
runtime environment of the code interpreter, because all source codes completed

Fedorchenko A., Doynikova E., Kotenko I.: Determination ... 1053

successfully the compiling stage (import errors such as “No module named ...” are
excluded). Edges of the graph specify the sequence of function calls for such
modules. The link from the source node to the destination node represents the use of
the corresponding function result as an argument of the destination node function.

The proposed model is generated based on the CFG which nodes are replaced with
functions and classes of objects of imported modules (conditionally global names).
On the current stage of the research CFG was simplified to the single route from
Entry Point (EP) to the “Implicit Return” (IR) for validation of the hypothesis about
similarity of exploit source codes. Usually, authors of the exploits do not use such
anti-debugging tools as obfuscation, packing, dynamic code modification, etc. to
implement the proof of concept code of the vulnerability exploitation. Thus, the
generation of single CFG route is sufficiently justified and should not lead to
a distortion of the semantic functional model of the exploit. Additional advantage of
this solution is reduction of number of names used in the source code that do not
reflect its functional features.

To generate CFG, we analyze the disassembled exploit code to find conditional
and unconditional, relative and absolute jumps, as well as exception handler
instructions and some other ways of code branching. To generate the resulting graph
of the semantic functional model of the exploit, the dependencies of names (calls)
usage from the importing modules are determined for the main CFG route.
Intermediate (local) names introduced by the authors in the process of exploit
development are not considered. The difference of the proposed model consists, on
the one hand, in the strict adherence to the main code execution route, and, on the
other hand, in the reflection of only functional dependencies between imported
names.

On the stage 4 we compare the models of different exploits. The generated
sequences of name dependencies can significantly differ even having similar
semantics. Thus, to generate common features of exploits codes on the stage 5 we
suggest to use only linked name pairs. On this stage of research for preliminary
confirmation of the hypothesis we compared generated sequences of name
dependencies for exploits and the CVSS scores for the corresponding vulnerabilities.

4 Experiments and Discussion

4.1 Experiments for the technique based on the CVSS indexes

Data gathering and processing. Let us to review the vulnerability indexes that will
be used for the classification first. The vulnerability entries in NVD have security
metrics (indexes) valued using the CVSS vulnerability scoring system of version 2.0.
Also, during the last years, the vulnerability entries in NVD are filled with security
metrics valued using CVSS of version 3.0 (Fig. 4).

CVSS of version 2.0 includes the following basic indexes: (1) exploitability
indexes (namely, Access Vector that determines how the vulnerability is exploited,
Access Complexity that defines the complexity of exploitation of the vulnerability,
and Authentication that reflects how many times an attacker have to authenticate to
exploit the vulnerability) and (2) impact indexes (namely, Confidentiality Impact,
Integrity Impact and Availability Impact that determine the damage for the

1054 Fedorchenko A., Doynikova E., Kotenko I.: Determination ...

confidentiality, integrity and availability, accordingly, as the result of successful
exploitation). CVSS of version 3.0 includes the following basic indexes: exploitability
(Attack Vector, Attack Complexity, Privileges Required, User Interaction) and impact
(Confidentiality Impact, Integrity Impact, Availability Impact). Additionally CVSS of
version 3.0 includes index Scope, which allows separating the affected component
from a component that is damaged. We use indexes of the both versions because, as it
was mentioned, CVSS of version 2.0 and 3.0 significantly differs in the set of metrics
and in their values for the same metrics.

CVSS:
0,
86.5% I version 2
2014 H6.3% version 2 & 3
7.2% none
69.2%
2015 23.1%
7.7%
_ |2.2%
©
o 2016 85.7%
12.0%
0.0%
2017 86.6%
13.4%
0.0%
2018 99.2%
0.8%

0 2500 5000 7500 10000 12500 15000
Vulnerability count

Figure 4: Number of the vulnerabilities
considering the used CVSS version by years (April, 2018)

We filled the Pearson correlation coefficient matrix for the categorical features of
vulnerabilities specified according to the CVSS of version 2.0 and 3.0 (the Kendall
correlation coefficient and Spearman's correlation coefficient give similar results with
insignificant deviation) to show it. The matrix is provided in [Doynikova et al. 2018].
The resulting Pearson correlation coefficient matrix contains Pearson correlation
coefficients for the features of vulnerabilities specified according to the CVSS of
version 2.0 and 3.0. This coefficient shows dependence of value of one feature
(metric) from the value of another feature. To calculate these coefficients the attribute

Fedorchenko A., Doynikova E., Kotenko I.: Determination ... 1 0 5 5

values were factorized, i.e. converted to a numerical type. This operation does not
distort data because sets of values of categorical features are limited. According to the
obtained Pearson correlation coefficient matrix [Doynikova et al. 2018] the logical
correlation of values of the CVSS indexes of version 2.0 and 3.0 for the indexes of the
Impact subgroup (Availability, Confidentiality and Integrity) is 78 - 84%. These
indexes have metrics of the logical correlation of values 53 — 61% and 15 — 54%
within CVSS of version 2.0 and 3.0, accordingly.

Interconnection between values of other CVSS indexes of both versions
(Complexity, Access Vector, Authentication etc.) is represented with correlation
coefficient up to 0.82. Some indexes have back-dependent relationship with the
minimum coefficient — 0.47.

We analyzed vulnerabilities from the NVD database from 2014 year to the present
(April 2018). To assess correlation between the features, the vulnerability entries
without indexes of CVSS of version 2.0 and 3.0 were excluded from the original
sample. For the classification of vulnerabilities the vulnerability entries without link
to the CWE and vulnerabilities that implement rare CWE classes were also excluded
from the test and holdout datasets. For example, most vulnerabilities (more than 95%)
implement 4 classes of weaknesses from the Research view (Fig. 5).

High-level

class CWE:
42.6% mmm 118

2014 19.8% = others
13.8% 664
21.4% 693

707

2015

3 2016
R

2017 115.9%

16.8%

2018

22.8%
20.7%

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Vulnerability count

Figure 5: Number of the vulnerabilities that implement upper-level CWE classes
(Research Concept) by years

1056 Fedorchenko A., Doynikova E., Kotenko I.: Determination ...

Using vulnerability entries from the NVD database and the CWE classification of
weaknesses we generated original datasets for classifiers training and testing. In
Table 1, the characteristics of the original datasets are provided for two CWE views.

Research Development

Dataset

parameters

Real object count 17668 5786

Object dataset 28000 2000

Class count 4 5

CWE classes (118,664,693,707) (116,119,284,345,682)

Table 1: Characteristics of the original datasets

Original data representation formats are JSON (JavaScript Object Notation)
[JSON, 2019] and CSV (Comma Separated Values) [CSV, 2019] for the NVD and
CWE databases accordingly. Data loading and preprocessing were performed using
Python.

Training classifiers and vulnerability classification. Data analysis was
performed using Python and scikit-learn module [scikit-learn, 2019], that implements
selected training models. The holdout dataset for the testing of models with optimal
hyper-parameters in terms of accuracy is 30% from the original dataset, and training
dataset is 70% of the original dataset respectively.

In Table 2, the results of vulnerability classification for two CWE views are
provided. The following classification methods were used: decision tree (DT), k-
nearest neighbors (kNN), and random forest (RF). Further for each concept three
characteristics of the predictive model are provided: (1) hyper-parameters of the
model that give the maximum accuracy; (2) classification accuracy on cross-
validation (5 blocks); (3) classification accuracy on the holdout dataset. Hyper-
parameters of the predictive model for the decision tree method and random forest
method are: maximum depth of the tree (max depth) and maximum number of the
used features (max_features). For the k-nearest neighbors method it is the number of
neighbors. As it is shown in Table 2, the best classification results are obtained with
the random forest method (RF). As soon as current classification accuracy is rather
low, we plan to enhance it in the future work using the resulting indexes of the second
technique and more complex algorithms including deep learning scheme.

Method | Hyper- Concept Research Development
parameter 1 5 3 : 5 5
max_depth 13 o . 14) .
DT max_features 7 70.5% 71.5% 10 70.3% 70.4%
kNN n_neighbors 16 | 685% | 70.4% |9 68% 67.1%
max_depth 10 10
RF max_features 4 70.6% T1.7% g 70.4% 70.5%

Table 2: Results of vulnerability classification

Fedorchenko A., Doynikova E., Kotenko I.: Determination ... 105 7

In Fig. 6 the metrics that show significance of features for the classification via
considered CWE views using this method are provided. The figure shows difference
in CWE views in terms of informativeness of the features used for classification. The
most significant features are CVSSv3:Scope and CVSSv3:User Interaction from the
CWE Develop Concepts view with significance index value 0.15. The indicator of
features significance varies in the range [0.0, 1.0].

Research- 0.024 0.0082 0.018 feRelcERe i ERNOBREREN0.0074 0.014

2
2
s
Develop-0.059 0.01 0.018 0.052 0.058 0.022 0.04 0.015 0.063
Z 5 5 Z Y Z oz Z 5
g 99 Q¥B RS A8 VLT AD 9 23
0.12 a2 8> Z2 vl 0, ae >8 ma 0>
SE Bw 32 2% $% 26 Of ZE ok
0.09 ns > >g O> 0Oam >3 we oS¢
e =2 *g B S| @ UE >0 Y8
: @ < 2 S L3 <
-0.03 S i)
-0.00 < <
Research-0.076 0.061 0.059 0.067 0.013 0.044 0.027 0.078
3
2
s
Develop- 0.034 BUSEE 0.015 0.062 0.017 0.048 0.082
>) ' ‘ o c v o
nZ o5 £ 28 8 22 S5 5 5
a [v] m © = o i o] [v] [v]
38 g 22 28 .3 28 28 & o3&
>T >3 we L= ¢ 0O NG 32 032
03 Og 2o n ng Q0 gn
% | UiE 28 5 &z o%
<) 5 o o V= O
o k] 0 a_g Q
3 - 8 E
£ 3
& 5
x
w

Figure 6: Indexes of the features significance for the classification
using random forest method for the considered CWE views

4.2 Experiments for the technique based on the analysis of the exploit code

Data gathering and processing. Main data source for the second technique is the
EDB database. Its analysis shown that the most popular language for exploit
development is Python (Fig. 7). Therefore, in this paper, we analyze only exploits of
this type.

The EDB database contains the following types of exploits (Fig. 8): 4292
webapps, 1829 dos, 1078 local, 1030 remote, 287 shellcode. There are 531 exploits
for the hardware platform, 3610 exploits for the operational system, 132 exploits for
the software platform, 3432 exploits for the WEB platform, and 1646 undefined. All
exploits are represented with single source code file. It excludes application of the

10 5 8 Fedorchenko A., Doynikova E., Kotenko I.: Determination ...

custom modules that go beyond the interpreter standard libraries or modules that are
not described in the file (unknown modules). Based on this, all the modules used by
the exploits are known and will be listed in the set of names of decompiled codes.

36.1% File type
- py
= php
- rb
html

c 60.5% Type
md 8.8% = webapps
2014 11.0% = local
17.9% dos
1.9%

remote
shellcode
43.6%
2015 25.0%
3 2016
K

39.4%

55.8%

2017 20.6%

52.0%

2018 20.6%

0 100 200 300 400 3.7%

Exploit count 200 400 600 800 1000 1200 1400
Exploit count

=3

Figure 7: Statistics of exploit) . o . .
development languages in EDB for Figure 8: Statistics of exploit types in
2014-2018 years EDB for 2014-2018 year

Data analysis. In this paper we describe the experiments for the stages 1 and 3 of
the proposed technique as the most interesting for us because they show the viability
of the proposed technique.

Stages 1 and 2 (compiling and decompiling). There are 1315 exploits developed
using the Python language for the past 5 years. Source code of 1153 exploits was
compiled without errors. Therefore, no more than 13% exploits were excluded from
the data set. Successfully compiled exploits were used as input data for the stage 3.

Stage 3 (generating the model). The “names” were extracted from the exploits
executable code to generate the graph model. These “names” form nodes of the graph.
4690 names were extracted from 1153 successfully compiled exploits. The minimum
number of names in the exploit is 1, the maximum number of names in the exploit is
132.

Analysis of the extracted names shown that the most used names are as follows:
'close' (number of uses — 582), 'sys' (487), 'len' (461), 'open' (452), 'write' (445),
'socket' (375), 'exit' (288), 'buffer' (273), 'argv' (266), 'name' (248), 'f' (242), 'os' (232),
'struct' (226), 'payload’ (213), 'AF INET' (212), 'send'" (206), 'connect' (196),
'SOCK_STREAM' (195), 'doc' (190), 's' (187), 'time' (182), 'port' (180), 'shellcode’
(164), 'requests' (163), 'str' (161), 'file' (156), 'host' (151), etc. The most used names
clearly reflect the functional identity of the exploits. However, the data obtained is not
enough to extract features (even dichatomical), because the import of the name does

Fedorchenko A., Doynikova E., Kotenko I.: Determination ... 1059

not mean its use in the code, especially in the main control flow of the exploit.
Moreover, one exploit may use several high-level and frequently used names that
have complex dependency connections and execution flow relations.

The exploit model in the form of the CFG which nodes are replaced with
functions and classes of objects of imported modules (conditionally global names)
was generated based on the extracted names and the names usage dependencies from
the importing modules. Currently the CFG was simplified to the single CFG route. An
example of the exploit code model extraction is provided in Fig. 9. It is a control flow
graph (in the left) and its transformation to the exploit model (in the right) for the
exploit with EDB-ID = 30688. In CFG the nodes correspond to the code blocks. The
number in the node represents an offset of the first instruction of each block. The
shortest path of the code execution is bold and represents regular program execution.
The nodes beyond the main route represent the blocks that process exceptions and
irregular situations.

141
urllib.urlencode()
159
urllib2. Request()
196
urllib2.urlopen()

Figure 9: An example of exploit code CFG transformation

The generated semantic functional model of the exploit reflects an order and
dependencies of calls of imported names (in the considered case there are names of
two functions, namely urlencode() and urlopen(), and one class constructor, namely
“Request”). The first two calls are made in one block. Therefore, the output of

1060 Fedorchenko A., Doynikova E., Kotenko I.: Determination ...

function urlencode() will be unconditionally send in the constructor of class Request
(in case of absence of exceptions). This link is based only on call dependency.
Function call urlopen() is made in another block. But it uses an object of class
Request created earlier. This link is built both on the basis of CFG and functional
dependency.

Besides, the code of this exploit contains two more imported modules. But calls
of their modules do not reflect the functional features of code. It should be noticed
that simplification of CFG via finding single shortest path allows excluding a quantity
of names that also do not characterize the code functional.

4.3 Discussion

The challenge of uncertainty of the input data is one of the most complex tasks for
security analysis and security tools selection. As a result of initiatives devoted to
overcome this challenge both a lot of research and a lot of open security databases
accumulating security knowledge appeared. However, the problems of accuracy,
incompleteness and limitless of the existing databases for the specific security tasks
still exist. Particularly, while solving the task of selection of automated security
controls we faced the challenge of automated weaknesses determination for the
information systems.

Usually the initial set of security measures is selected manually, so the task of
automated weaknesses determination is not widely researched. Existing research
works, reviewed in the related works, do not provide sufficient solution. We proposed
two techniques for the automated determination of weaknesses of the analyzed system
on the basis of its known vulnerabilities and its known exploits.

The first technique of vulnerability classification using different methods have
70% accuracy. This accuracy level follows from the source data nature. These data
are CVSS indexes where the categorical values predominate over quantitative. As the
result the set of possible values of the CVSS indexes used for the classification task is
very limited. For example, categorical indexes in the scoring system CVSS of version
2.0 theoretically allow 729 unique combinations (the number of combinations of
possible values). In the CVSS of version 3.0 they give 2592 unique combinations.
Joint use of indexes of the CVSS of version 2.0 and 3.0 significantly expands
vulnerability description space. But even in this case the number of unique
vulnerability entries in terms of values of their indexes is a little more than 900
samples. Also uncertainty of the CWE database in terms of the structure of classes of
weaknesses (one weakness can belong to upper-level several classes) influences
negatively on the common predictive ability of the model. Thus, currently obtained
results are not enough for the vulnerabilities classification by weaknesses and further
automated determination of the required set of security controls.

To increase accuracy of the first technique, on the one hand, and to overcome
situation when vulnerability is unknown, while, for example, exploit is known, we
introduced the second technique based on the analysis of exploits. The static analysis
of the source code is rather researched area for the software analysis, including
vulnerability analysis, that was reviewed in details in the related works.
Unfortunately, existing models and practical implementations of the graph for the
Python code are not applicable for our goal, because we need the formalized
description of the code functional. Particularly, AST does not represent code

Fedorchenko A., Doynikova E., Kotenko I.: Determination ... 106 1

functional, existing implementations of ASG lose function call names, and CFG can
contain not functional nodes. Thus, we introduced a new model combining CFG and
DG. We preliminary confirmed the hypothesis that exploits for the vulnerabilities that
use similar weaknesses, i.e. related to the same class, have semantically similar
functional using the developed model. We plan to extend the technique by identifying
potential dependencies between calls of imported names. To implement this we plan
to analyze exploit model represented as the common dependency graph and outline
the potential execution routes. We assume that the extracted in this way exploit
features will be more common and informative for the construction of the predictive
model of vulnerability classification by weaknesses and will complement the first
technique.

The proposed techniques can be further applied to specify vulnerability metrics,
detect unknown vulnerabilities, and assess the risks.

5 Conclusions

The paper proposed the approach to automation of vulnerabilities and exploits
classification, i.e. determination of the system weaknesses, for their further
simultaneous elimination. The developed approach is based on the open security
sources and the analysis of security data provided in them. The approach incorporates
two techniques that are described in the paper in details. The first one is based on the
analysis of the publicly available vulnerability indexes of the Common Vulnerability
Scoring System from the NVD database and it was already introduced on the IWCC
workshop [Doynikova et al., 2018]. The second one extends the previous research and
complements the first technique in case if there are exploits in the EDB database not
related to the vulnerabilities and therefore the indexes for classification are absent. It
is based on the analysis of the exploit code for the features (i.e. indexes) extraction
using graph models. The extracted indexes are further used for the weakness
determination using the first technique.

The paper also provided the statistics for the used open security databases that
justify the relevance of the considered task and of the developed techniques. The data
gathering and preprocessing process is described carefully as soon as the experiment
results highly depend on it. The experiments demonstrated the effectiveness and
potential of the developed techniques. Particularly, the first technique based on the
CVSS indexes shown satisfying classification results, but the results should be further
enhanced. The experiments with the second technique preliminary confirmed the
hypothesis that exploits for the vulnerabilities that use similar weaknesses (i.e. related
to the same class) have semantically similar functional. The technique and
experiments should be further evolved.

6 Future Work

In the future work, we plan to evolve the developed techniques and specify the
mechanism of their common application for the enhancement of vulnerability and
exploits classification by weaknesses and to evolve the experiments approving an
efficiency of the approach. Particularly, to evolve the technique based on the CVSS

1062 Fedorchenko A., Doynikova E., Kotenko I.: Determination ...

indexes, we plan to use predictive models on the second CWE level (in this work we
used only the first CWE level), i.e. to use separate classifiers for each upper-level
class of weaknesses, and to use more complex algorithms including deep learning
scheme. Also, in the scope of the more general task, we plan to use the links from the
weaknesses to the attack patterns of the attack patterns database (“Common Attack
Pattern Enumeration and Classification” (CAPEC) [CAPEC, 2018]) provided by
CWE, and references to the possible security measures provided for the attack
patterns in CAPEC to determinate the set of security controls for analyzed
infrastructures.

Acknowledgements

This research is partially supported by grants of RFBR (projects No. 16-29-09482,
18-07-01488, 19-07-01246) and by the budget (the project No. AAAA-A16-
116033110102-5).

References

[Agrawal et al., 1990] Agrawal, H., Horgan, J. R.: "Dynamic Program Slicing", In Proceedings
of the ACM SIGPLAN’90 Conference on Programming Language Design and Implementation.
New York: White Plains (1990), 11 p.

[Aksu et al., 2018] Aksu, M. U., Bicakei, K., Dilek, M. H., Ozbayoglu, A. M., Tatli, E.:
"Automated Generation of Attack Graphs Using NVD", In Proceedings of the Eighth ACM
Conference on Data and Application Security and Privacy - CODASPY’18 (2018).
https://doi.org/10.1145/3176258.3176339

[astdump 4.3, 2016] "astdump 4.3" (2016). Retrieved from https://pypi.org/project/astdump/

[Batchelder, 2008] Batchelder, N.: "The structure of .pyc files" (2008). Retrieved 10 January
2019, from https://nedbatchelder.com/blog/200804/the_structure_of pyc_files.html

[Blais, 2018] Blais, M.: "snakefood: Python Dependency Graphs" (2018). Retrieved from
https://bitbucket.org/blais/snakefood/overview

[Caprile et al., 2003] Caprile, B., Potrich, A., Ricca, F., Tonella, P.: "Model centered
interoperability for source code analysis", In STEP 2003, Software Technology and
Engineering Practice, Workshop on Software Analysis and Maintenance: Practices, Tools,
Interoperability (SAM). Amsterdam, The Netherlands (2003).

[Chang et al., 2011] Chang, Y. Y., Zavarsky, P., Ruhl, R., Lindskog, D.: "Trend analysis of the
CVE for software vulnerability management”, In Proceedings - 2011 IEEE International
Conference on Privacy, Security, Risk and Trust and IEEE International Conference on Social
Computing, = PASSAT/SocialCom 2011 (2011). https://doi.org/10.1109/PASSAT/
SocialCom.2011.184

[Code2graph, 2019] "Code2graph: Automatic Generation of Static Call Graphs for Python
Source Code", Kansas City: The UMKC Distributed Intelligent Computing group (UDIC).
Retrieved 15 Junuary 2019 from https://info.umkc.edu/UDIC Research/ index.php/code2graph/

[Coet, 2018] Coet, A.: "StatiCFG" (2018). Retrieved from https://github.com/coetaur0/staticfg

[CAPEC, 2018] "Common Attack Pattern Enumeration and Classification (CAPEC)".
Retrieved 7 September 2018, from https://capec.mitre.org/

Fedorchenko A., Doynikova E., Kotenko I.: Determination ... 1063

[CPE, 2019] "Common Platform Enumeration (CPE)". Retrieved 11 January 2019, from
https://nvd.nist.gov/products/cpe

[CSV, 2019] "CSV, Comma Separated Values (RFC 4180)". Retrieved 15 January 2019, from
https://www.ietf.org/rfc/rfc4180.txt

[CVE, 2018] "Common Vulnerabilities and Exposures (CVE)". Retrieved 7 September 2018,
from https://cve.mitre.org/

[CWE, 2018] "Common Weakness Enumeration (CWE)". Retrieved 7 September 2018, from
https://cwe.mitre.org/index.html

[CWE Glossary, 2019] "CWE Glossary". Retrieved 30 May 2019, from
https://cwe.mitre.org/documents/glossary/index.html

[CWE Schema, 2019] "MITRE. CWE Schema Documentation". Retrieved 11 January 2019
from https://cwe.mitre.org/documents/schema/schema_d9.pdf

[Das et al., 2012] Das, R., Sarkani, S., Mazzuchi, T.A.: "Software Selection based on
Quantitative Security Risk Assessment", IICA Special Issue on “Computational Intelligence &
Information Security" (2012), pp. 45-56.

[Doynikova et al., 2017] Doynikova, E., Chechulin, A., Kotenko, I.: "Analytical attack
modeling and security assessment based on the common vulnerability scoring system", In
Conference of Open Innovation Association, FRUCT (2017).
https://doi.org/10.23919/FRUCT.2017.8071292

[Doynikova et al., 2018] Doynikova, E., Fedorchenko, A., Kotenko, I.: "Determination of
security threat classes on the basis of vulnerability analysis for automated countermeasure
selection”, In Proceedings of the 13th International Conference on Availability, Reliability and
Security (ARES 2018). Hamburg: ACM ICPS (2018), pp. 62:1-62:8.
https://doi.org/https://doi.org/10.1145/3230833.3233260

[Doynikova and Kotenko 2018] Doynikova, E. V., Kotenko, 1. V.: "Improvement of attack
graphs for cybersecurity monitoring: Handling of inaccuracies, processing of cycles, mapping
of incidents and automatic countermeasure selection", SPIIRAS Proceedings (2018).
https://doi.org/10.15622/sp.57.9

[Duffy, 2011] Duffy, E.: "The Design & Implementation of an Abstract Semantic Graph for
Statement-Level Dynamic Analysis of C++ Applications”, Clemson University (2011).
Retrieved from https:/tigerprints.clemson.edu/cgi/viewcontent.cgi?referer=&httpsredir=1
&article=1832&context=all_dissertations

[EDB, 2018] ‘Exploit Database’. Retrieved 7 September 2018, from https://www.exploit-
db.com/

[FDCC, 2019] "Federal Desktop Core Configuration (FDCC)". Retrieved 11 January 2019,
from https://www.nist.gov/programs-projects/federal-desktop-core-configuration-fdcc

[Fireeye, 2016] "Fireeye: bytecode graph", Milpitas, CA: Github (2016). Retrieved from
https://github.com/fireeye/flare-bytecode graph/blob/master/README.md

[FIRST, 2015] "FIRST: Common Vulnerability Scoring System v3.0: Specification
Document", Forum of Incident Response and Security Teams (FIRST) (2015).
https://doi.org/10.1109/msp.2006.145

[FISMA, 2019] "FISMA Background". Retrieved 11 January 2019, from
https://csrc.nist.gov/projects/risk-management/detailed-overview

1064 Fedorchenko A., Doynikova E., Kotenko I.: Determination ...

[Gamal et al., 2011] Gamal, M.M., Hasan, D., Hegazy, A.F.: "A security analysis framework
powered by an expert system", International Journal of Computer Science and Security, Vol. 4,
No. 6 (2011), pp. 505-526.

[Gharibi et al., 2018] Gharibi, G., Tripathi, R., Lee, Y.: "Code2graph: automatic generation of
static call graphs for Python source code", In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering - ASE 2018 (2018).
https://doi.org/10.1145/3238147.3240484

[Gold, 2010] Gold, R.: "Control flow graphs and code coverage", Intern. Journal of Applied
Mathematics and Computer Science (2010). https://doi.org/10.2478/v10006-010-0056-9

[Hanford and Heitman, 2015] Hanford, S., Heitman, M.: "Common Vulnerability Scoring
System v3 . 0 : User Guide", FIRST-Forum of Incident Response and Security Teams (2015).

[Houmb and Franqueira, 2009] Houmb, S.H., Franqueira, V.N.L.: "Estimating ToE risk level
using CVSS", In Proceedings - International Conference on Availability, Reliability and
Security, ARES 2009 (2009). https://doi.org/10.1080/00206816709474435

[Hsieh et al., 1992] Hsieh, C.S., Unger, E.A., Mata-Toledo, R. A.: "Using program dependence
graphs for information flow control", Journal of Systems and Software, Vol. 17, No. 3 (1992),
pp. 227-232. https://doi.org/https://doi.org/10.1016/0164-1212(92)90111-V

[JSON, 2019] "Introducing JSON". Retrieved 11 January 2019 from
https://javaee.github.io/tutorial/jsonp001.html

[Kotenko et al., 2015] Kotenko, 1., Fedorchenko, A., Chechulin, A.: "Integrated repository of
security information for network security evaluation", Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications, Vol. 6, No. 2 (2015), pp.41-57.

[Kotenko et al., 2018] Kotenko, I., Doynikova, E., Fedorchenko, A., Chechulin, A.: "An
ontology-based hybrid storage of security information", Information Technology and Control, 4
(2018), pp.655-667.

[Mell et al., 2007] Mell, P., Scarfone, K., Romanosky, S.: "A Complete Guide to the Common
Vulnerability Scoring System Version 2.0", FIRST Forum of Incident Response and Security
Teams (2007).

[Moses and Syman, 2001] Moses, T., Syman, D.: "Static Analysis: a Dynamic Syntax Tree
implementation" (2001).

[NCPR, 2018] "National Checklist Program Repository". Retrieved 11 January 2019 from
https://nvd.nist.gov/ncp/repository

[Neamtiu et al., 2005] Neamtiu, I., Foster, J.S., Hicks, M.: "Understanding source code
evolution using abstract syntax tree matching", ACM SIGSOFT Software Engineering Notes
(2005). https://doi.org/10.1145/1082983.1083143

[Nessus, 2018] "Nessus vulnerability scanner". Retrieved 2 July 2018 from
http://www.tenable.com/products/nessus-vulnerability-scanner

[NMap, 2018] "NMap reference guide". Retrieved 2 July 2018 from
http://nmap.org/book/man.html

[NVD, 2018] "National Vulnerability Database". Retrieved 7 September 2018 from
https://nvd.nist.gov/

Fedorchenko A., Doynikova E., Kotenko I.: Determination ... 1065

[Patterson et al., 2018] Patterson, E., Baldini, I, Mojsilovic’, A., Varshney, K.R.:
"Representation and Analysis of Software", In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence (IJCAI-18) (2018), pp. 5847-5849.

[Pauli and Engebretson 2008] Pauli, J. J., Engebretson, P. H.: "Towards a specification
prototype for hierarchy-driven attack patterns", In Proceedings - International Conference on
Information Technology: New Generations, ITNG 2008 (2008).
https://doi.org/10.1109/ITNG.2008.23

[PCI DSS, 2016] "Payment Card Industry (PCI) Data Security Standard". Requirements and
Security Assessment Procedures Version 3.2 (2016).

[Radack and Kuhn, 2011] Radack, S., Kuhn, R.: "Managing security: The security content
automation protocol", IT Professional (2011). https://doi.org/10.1109/MITP.2011.11

[scikit-learn, 2019] "scikit-learn". Retrieved 2 July 2018 from https://scikit-learn.org/stable/

[Son et al., 2015] Son, Y., Lee, Y., Oh, S.: "A Software Weakness Analysis Technique for
Secure Software", Advanced Science and Technology Letters, Vol. 93 (2015), pp. 5-8.

[Stein, 2016] Stein, D.: ‘Graph-Based Source Code Analysis of Dynamically Typed
Languages’ (2016).

[Tripathi and Singh, 2011a] Tripathi, A., Singh, U. K.: "Analyzing Trends in Vulnerability
Classes across CVSS Metrics", International Journal of Computer Applications (0975 — 8887),
Vol. 36, No. 3 (2011a), pp. 38-44.

[Tripathi and Singh, 2011b] Tripathi, A., Singh, U. K.: "On prioritization of vulnerability
categories based on CVSS scores", In 2011 6th International Conference on Computer Sciences
and Convergence Information Technology (ICCIT). A. Tripathi, U. K. Singh (2011b).

[Tripathi and Singh, 2012] Tripathi, A., Singh, U. K.: "Taxonomic analysis of classification
schemes in vulnerability databases", In 2011 6th International Conference on Computer
Sciences and Convergence Information Technology (ICCIT). Seogwipo, South Korea (2012).

[Wang and Guo, 2009] Wang, J., Guo, M.: "OVM: an ontology for vulnerability management",
Proceedings of the Sth Annual Workshop on Cyber Security and Information Intelligence
Research (2009). https://doi.org/10.1145/1558607.1558646

[Wang and Guo, 2010] Wang, J. A., Guo, M.: "Vulnerability Categorization Using Bayesian
Networks", In Proceedings of the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research. Oak Ridge, Tennessee, USA (2010). https://doi.org/10.1145/
1852666.1852699

[Wu and Wang, 2011] Wu, B., Wang, A.: "EVMAT: an OVAL and NVD based enterprise
vulnerability modeling and assessment tool", Proceedings of the 49th Annual Southeast
Regional Conference (2011). https://doi.org/10.1145/2016039.2016074

[Yamaguchi et al., 2014] Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: "Modeling and
discovering vulnerabilities with code property graphs", In Proceedings - IEEE Symposium on
Security and Privacy (2014). https://doi.org/10.1109/SP.2014.44

[Zhang et al., 2015] Zhang, S., Ou, X., Caragea, D.: "Predicting Cyber Risks through National
Vulnerability Database", Information Security Journal (2015).
https://doi.org/10.1080/19393555.2015.1111961

