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Abstract: Ontology matching is concerned with finding relations between elements of
different ontologies. In large-scale settings, some significant challenges arise, such as how
to achieve a reduction in the time it takes to perform matching and how to improve
the quality of results. Current techniques involve the use of ontology segmentation to
overcome having such a large number of elements to compare. However, current methods
usually select the most relevant ontology elements based on the number of relationships,
which may dismiss some elements should they have fewer or no relationships. Therefore,
we propose an algorithm for ontology segmentation based on application requirements,
in such a way that the users can specify the concepts that are the most relevant in their
application context to generate the segments which will be used as an input for the
matching. In the experiments, we found a general reduction in the execution time and
some significant quality improvements, depending on what matcher is applied. In order
to assess the proposed algorithm, we considered some well-known evaluation measures,
such as precision, recall, and F-Measure.
Key Words: Segmented-based Ontology Matching; Ontology Segmentation Algorithm;
Goal-Oriented Ontology Matching; Semantic Web.
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1 Introduction

Ontology Matching has been widely studied in the last few years, and con-

sequently many Ontology Matching Systems (matchers) have been proposed

in the literature ([Shvaiko and Euzenat, 2013, Otero-Cerdeira et al., 2014]). The

results of Ontology Alignment Evaluation Initiative (OAEI) campaigns have

demonstrated that matchers can achieve different performances depending on the

ontologies considered [Achichi et al., 2017]. It therefore becomes challenging for

a user to select the most suitable matcher for a particular matching task. This,

in practice, increases the need for an automatic approach to select, combine and

tune matchers.

On the other hand, it is also important to note that ontologies may be

very heterogeneous. For example, it is common to encounter different terms

and structures being used to describe the same real-world concepts. These

differences are known as semantic heterogeneities, which make it necessary to

match ontologies with a view to discovering relationships between the elements

[Euzenat and Shvaiko, 2013]. An example of a relationship is equivalence, which

stands for two different ontology elements representing the same real-world
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concept (e.g., the classes Author and Creator or the properties dateCreation and

created).

Furthermore, the advent of the Semantic Web has resulted in the demand

for large-scale matchings, i.e., when one needs to match several ontologies which

may contain tens (and even hundreds) of thousands of classes and properties

[Rahm, 2011]. One example is the recent effort at mining the web in order to

extract entities, relationships, and ontologies to build general-purpose knowledge

bases such as DBpedia [Lehmann et al., 2015] and Google Knowledge Graph

[Dong et al., 2014]. The integration of such entities shows promise for improving

applications such as web-search and web-scale data analysis.

In such cases, due to the high number of ontologies to align, it is necessary to

make a vast computational effort to find correspondences among several items.

Moreover, an enormous human effort may be required to validate the suggested

correspondences between these elements. As there are several ontology matchers

available, their configuration and execution may be a complicated and time-

consuming task for the user, so much so that the correct parameters and their

respective effect on the quality of matching can only be asserted by using a

trial-and-error process [Peukert et al., 2011].

One possible strategy to reduce the matching search space is to split ontologies

into smaller segments [Rahm, 2011]. Two kinds of approaches to perform this

process are (i) ontology summarization [Pouriyeh et al., 2018] and (ii) ontology

segmentation [Seidenberg and Rector, 2006]. The former consists of splitting the

ontology based on the semantic relationship of its elements. This strategy breaks

ontologies into smaller parts with the aim of facilitating their use and maintenance

or even to build a summary containing their central concepts. The latter handles

the reduction by taking only elements related to some information provided

by a specific application (e.g., [Noy and Musen, ]). This approach is useful to

identify the most relevant parts of an ontology based on a user’s needs. In this

paper, we propose an ontology segmentation algorithm which uses Application

Requirements [See Section 4.1] as a way of acquiring the relevant information

that is applied to generating the segments.

As to the problem of ontology segmentation for matching large-scale ontologies,

we highlight the following main challenges:

(i) How to formalize application requirements in such a way that the definition

of the most relevant elements will be considered when generating ontology

segments?

(ii) How to reduce the search scope of ontologies so as to compare only the most

relevant subset of ontology elements?

(iii) How to reduce the resulting correspondences so as to present only those

related to concepts that are of interest to the user?
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Regarding issue (i), we separate application requirements into two categories:

Data Requirements (DR) and Operational Requirements (OR). DR are repre-

sented as a set of keywords which indicate the most relevant concepts that will

be considered when generating ontology segments. OR are represented as a set of

parameters that affect how the segments are generated. Regarding issues (ii) and

(iii), we propose a novel ontology segment algorithm that will be used to define

the set of requirements and, which will generate as an output, reduced versions of

ontologies containing only the relevant elements. By doing so, we seek to reduce

the scope of the matching search and consequently to generate correspondences

more efficiently than traditional approaches do.

The main contributions of this paper are: (1) The specification of application

requirements that lets the user conduct a search to generate customized ontology

segments; (2) A novel algorithm for ontology segmentation that uses a keyword-

search approach for generating segments based on application requirements.

The rest of this paper is organized as follows: Section 2 introduces ontologies

and the ontology matching process. Section 3 briefly summarizes state-of-the-art

approaches, and compares them with the one set out in this paper. Section 4

explains our algorithm for ontology segmentation based on application require-

ments. Section 5 discusses the evaluation approach and the results obtained.

Finally, Section 6 summarizes this paper, presents some conclusions and suggests

lines of future research that may lead to improving the approach proposed.

2 Ontologies and the Ontology Matching process

Ontologies can be viewed as a set of assertions that are meant to model some

particular domain. Ontologies may represent several data and conceptual models

such as database schema, UML models, and XML schema. Despite several

definitions of ontology having been put forward over the years related to the aim

of this paper, we consider the following definition [Acampora et al., 2012]:

Definition 1. An ontology is a triple O = 〈C,P, I〉, where:

– C is the set of classes, i.e., the set of concepts that populate the domain of

interest;

– P is the set of properties, i.e., the set of relations existing between the concepts

of the domain.

– I is the set of individuals, i.e., the set of objects of the real world, representing

the instances of a concept.

Classes, properties, and individuals are generally referred to as entities. Prop-

erties that represent relations between classes are called Object Properties.
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Properties that represent relations between a class and some literal values (e.g.,

a string, a number) are called Data Properties.

The ontology matching problem arises from there being high heterogeneity

existing in ontologies that describe the same domain. Unfortunately, people

or artificial agents may use different terms for the same meaning or use the

same term to describe different things. The goal of matching ontologies is to

reduce this heterogeneity, which may be present on many levels (e.g., syntactic,

terminological, conceptual) [Euzenat and Shvaiko, 2013].

Definition 2. The Ontology Matching Process can be defined as a function f

that takes pairs of ontologies os (source ontology) and ot (target ontology) to be

matched, an optional reference alignment A, a set of parameters p and a set of

oracles and resources r so as to return an alignment A′ between these ontologies:

A′ = f(os, ot, A, p, r) (1)

Definition 3. A Correspondence (or Semantic Match) is denoted as a tuple

〈e1, e2, k〉, in which e1 ∈ O1, e2 ∈ O2 and e1 ≡ e2, being k a similarity measure

concerning the elements referred. A correspondence set can be acquired from the

execution of a matcher, as well as based on an expert user indication.

Definition 4. The Similarity Measure between the two elements that comprise

a correspondence is expressed by a value in the range of [0, 1] to indicate to what

extent the given entities are similar. In this case, 0 stands for complete disparity

and 1 for complete equality. There are several similarity measures proposed in

the literature (such as linguistic, semantic, and structural) and it is commonplace

to aggregate different similarity measures [Elshwimy et al., 2014].

Definition 5. An Alignment consists of a set of correspondences found between

elements from different ontologies. In this sense, we can define A = C〈O1,O2〉, in

which C〈O1,O2〉 represents the set containing the correspondences found between

elements from the ontologies O1 and O2.

Definition 6. An Ontology Matcher or simply Matcher is a function or algorithm

designed to lead the ontology matching process.

In a nutshell, the output alignment A is a set of correspondences generated

by a matcher. Each correspondence is used to link an element belonging to the

source ontology with a similar one belonging to the target ontology. Though there

are other types, the scope of this work is limited to relationships of equivalence

(=). This is because rather than propose a new matcher, existing ones are used

to evaluate the proposed segmentation algorithm. Just as equivalence is the only

relationship common to most matchers, so it is common to encounter only the

equivalence relationship in reference alignments.
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3 Related Work

In the case of large-scale ontology matching tasks [Rahm, 2011], reducing the

scope of the search is an important aspect that needs to be considered so as

to improve the quality of the potential alignment and to reduce the number of

validations required by the user. However, in spite of the large body of work on

ontology matching techniques, only a few are segmentation based. In the following,

we describe some of these techniques and compare them to our approach.

In order to reduce the number of comparisons during a matching,

Do and Rahm propose COMA++ [Do and Rahm, 2007], a divide-and-conquer

approach based on breaking an ontology down into smaller parts, which are

defined as ontology fragments. In practice, it only matches fragment pairs with a

high similarity. However, to generate segments, COMA++ uses relatively simple

heuristic rules. More specifically, it does not consider the computation of struc-

tural closeness between the concepts, which often results in there being very few

or a great many segments, depending on the ontologies considered. Another issue

is how to determine what segments are similar, as COMA++ only considers the

root node of the segment, which may reduce the matching quality.

An extension of COMA [Massmann et al., 2011] (COMA 3.0) copes with these

limitations by applying a structure-based clustering algorithm to segment the

input ontologies into a set of disjoint sub-graphs [Algergawy et al., 2011]. Thus,

elements that are structurally similar are grouped in the same cluster, which

may increase the matcher’s efficiency and reduce the execution time. However, if

ontologies based on a fixed heuristic are segmented, this may result in a loss of

semantic information, especially for elements near segment boundaries. In the

case of obtaining a high number of segments, more information would be lost,

thus reducing the quality of the matching results.

With the aim of reducing the semantic loss, Anchor-Flood proposes a matcher

that avoids the ontology segmentation a priori [Seddiqui and Aono, 2009]. It

starts by defining a pair of similar concepts across ontologies as an anchor point.

Then, it proceeds toward the neighboring nodes, considering the locality of

reference, which results in segments located around the anchors. Eventually, it

may align parts of large ontologies and so output a relatively small segmented

alignment, depending on the continued success of finding matching partners for

the anchor considered.

Noy and Musen present traversal views as a way of defining a segment

[Noy and Musen, ], defined as an ontology view. The idea is to allow the user

to specify an ontology subset comprising concepts of interest, the respective

relationships, and the maximum depth. It enables the user to build segments

incrementally, by extending the current view over many iterations. However, it

assumes that the user (e.g., an Ontology Engineer) has a deep understanding of

the ontology elements. Another issue is the strong need for the user’s involvement
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in selecting the relationships that should be traversed and associating each one

of them to a level of recursion, which defines when the algorithm should stop

running.

Queiroz-Sousa et al. introduced a method for summarizing ontologies by us-

ing user-defined parameters [Queiroz-Sousa et al., 2013]. An ontology summary

is an excerpt containing the most important concepts of the ontology or the

most relevant concepts for a user, while respecting the original relationship and

properties of the input ontology. The authors define two relevance measures:

the Centrality Measure and the Closeness Measure. The Centrality Measure

considers the number of relationships between ontology concepts and the types

of relationships between them. The Closeness Measure indicates the extent to

which a concept is relevant, i.e., the more related concepts there are, the higher

the closeness measure is. By introducing the Broaden Relevant Paths (BRP)

Algorithm, they extract a global ontology view containing only the most rele-

vant elements. Lambrix and Kaliyaperumal proposed a session-based ontology

alignment framework to allow partial computation for generating mapping sugges-

tions [Lambrix and Kaliyaperumal, 2016]. The concept of session-based stands

for breaking the matching down into smaller tasks to enable the user to interrupt

and resume the process if necessary. Regarding ontologies in the scope of a session,

the framework proposed generates pairs of segments using a string-based approach

to detect concepts in different ontologies with similar names. The segment pairs

are retained based on a predefined number of maximum elements. However, as

the segmentation strategy concerns a fixed number of elements, the user has no

control over the concepts present in each segment, which makes it necessary to

iterate every session to assure that a particular concept is present in the set of

correspondences.

The aforementioned studies present approaches that make use of some element

references (e.g., anchors) or the analysis of the number of relationships to extract

an ontology excerpt containing only the most relevant elements. In the first

case, by only defining anchors as a reference, the user needs to have a broad

knowledge about the ontologies to perform complex assertions, for instance,

knowing what element relationships are needed to define an anchor point. On the

other hand, note that considering only the number of ontology relationships will

not cover the cases when the user has an interest in concepts that have fewer or no

references. In this paper, we introduce the definition of application requirements

in combination with a keyword-search process, which provides the possibility

of generating segments without requiring the user to know the structure of the

ontologies. Furthermore, unlike other approaches, we consider that whenever an

element satisfies the application requirements, it is taken as relevant, even if it

does not have a high number of relationships in the ontology structure.

821Pessoa D., Salgado A.C., Farias Loscio B.: Improving Ontology Matching ...



4 SOMA: An Algorithm for Segmentation of Ontologies for

Matching Applications

In this paper, we propose SOMA (Segmentation of Ontologies for Matching

Applications), an algorithm for generating ontology segments so as to improve

the ontology matching process. As a segmentation strategy, we consider a set of

application requirements to extract the most relevant elements in the context of

application-specific ontology matching context.

The intention of SOMA is not to create a new matcher, but to generate

ontology segments based on application requirements and if needed to allow the

segment alignments to be generated by using any existing matcher. By considering

segments rather than the whole ontologies in the matching, the run time can be

reduced and efficiency can be improved, since fewer elements are compared and

the elements of the segment are related to the user’s interests.

Figure 1 presents the workflow of the SOMA algorithm. In the initial step, we

receive as an input a pair of ontologies (source and target) that are imported into

the Ontology Catalog, converting them into a standard representation. Then, we

generate the source ontology segment by extracting only the elements related

to the application requirements. Finally, we generate the segment for the target

ontology by extracting the elements related to the source ontology segment.

In the following sections, we define application requirements, present a mo-

tivating example and describe each one of the steps comprising the SOMA

algorithm.

4.1 Application Requirements

The aspect which distinguishes this work from previous approaches is the adop-

tion of application requirements as a means for specifying which concepts are

the most relevant to the user. According to [Sommerville, 2010], application

(or system) requirements consist of an abstract description of characteristics,

attributes, abilities or qualities that a system should provide to be useful to its

users. Requirements may range from a high-level statement of a service or a

system constraint to a detailed mathematical functional specification. Functional

requirements are those that describe functionalities or a system service. Non-

functional requirements are those that define system properties or constraints

(e.g., response time, reliability). This paper takes as a baseline a set of application

requirements as a way of improving ontology matching tasks, by an on-demand

generation of ontology segments. In this context, we formalize these requirements

as follows.

Definition 7. Application Requirements are denoted as AR = {r1, r2, . . . , rn},

where each ri describes an application-related need regarding the matching
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related elements of keywords and their first-level adjacent elements. Alterna-

tively, when the extension level is expanded, segments tend to be more densely

populated, as they also contain a second level of relationship between elements.

The similarity threshold is the minimum similarity value to ensure an ontology

element is related to a keyword described in the data requirements.

Operational Requirement Possible values

Segment Extension Level simple, expanded

Similarity Threshold Decimal number in the range of [0, 1]

Table 1: Specification of Operational Requirements

4.2 Motivating Example

We demonstrate our approach more accurately by describing how it is applied to

a practical example. Consider two ontologies O1 and O2. The ontologies describe

data about conferences such as documents and publishers as shown in Figure 2.

Let us assume that a user is interested in obtaining the most popular topics

covered by papers (documents) published over a given period of the years.

Considering that each ontology uses different terms to describe the same concept

(e.g., Document in O1 and Conference_document in O2), in order to allow the

integration of data from different sources, correspondences between these elements

must be generated. In this case, despite there being many elements in O1 and

O2, only a few are relevant to the application. Thus, there is no need to traverse

the whole ontologies when the alignment is being generated. To illustrate this

assumption, we define the following data requirements:

R1 The application shall provide information about submitted papers (e.g., paper,

reviewer, title)

R2 The application shall provide information (e.g., name, university, e-mail) about

some person who is registered for a conference

In order to fulfill respectively R1 and R2, we can define the following set of

keywords: K1 = {paper, reviewer, title, abstract} and K2 = {person, name, author,

email, university}. We consider these keywords in the next sections so as to demon-

strate how the segment is generated.
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(a) Cmt Ontology (O1) (b) Conference Ontology (O2)

Figure 2: An excerpt containing first-level elements from Ontologies O1 (a) and

O2 (b).

4.3 Importing ontologies into the catalog and collecting synonyms

The first step of the algorithm involves importing, pre-processing and storing

ontologies into the Ontology Catalog. To this end, we first convert the ontologies

from OWL or RDF formats to a labeled graph. During this process, we enrich

the graph by adding synonyms (obtained from Wordnet1) for each node.

Many algorithms transform ontologies into labeled graphs. We use this strategy

to facilitate how to deal with the ontology elements when generating the segment.

We create a graph in which the nodes represent classes or properties, and the

edges represent relationships between them. Figure 3 illustrates an example of

how to represent ontologies as a graph when following this notation. The black

nodes represent classes, the grey nodes represent object properties, the solid

white nodes represent data properties and the dashed white ones are synonyms

nodes. Between these nodes, there are some arrows indicating relationships such

1
http://wordnet.tspell.smu.edu
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Figure 3: Example of the graph notation adopted in this work to represent ontolo-

gies.

as isA (specialization), domain and range.

In Figure 3, we have the triple (Person, hasConflictOfInterest, Document)

to define an object property hasConflictOfInterest representing the relationship

between Person (domain) and Document (range). On the other hand, we have

the triple (Paper, title, xsd:string) to define a data property title representing the

relationship between the class Paper (domain) and a literal value string (range).

The notation of a graph can thus be used to represent the basic elements used in

the matching process.

4.4 Validating the Requirements and Segmenting the Source

Ontology

The next step concerns how to generate a segment from the source ontology, with

a view to collecting only ontology elements in accordance with the Application

Requirements.

The algorithm for segmenting the source ontology [See Algorithm 1] receives

the source ontology SO and the set of application requirements (DR and OR)

as input and returns a segmented version of SO containing only the elements

(e.g., classes, properties) that are suitable for DR. The OR also has an impact

on the process, as depending on some of the requirements chosen (e.g., extension

level or keyword search threshold), a higher/lower number of elements may be

the output.

To generate the segment, we parse each element (including the synonym

nodes) of the source ontology and select the elements that match the keywords

defined in DR. The Match function outputs a value between [0, 1] based on

the linguistic similarity of the elements compared. The value of the similarity
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Algorithm 1 Algorithm for segmenting the Source Ontology

1: function generateSourceOntologySegment(SO, DR, OR)

⊲ SO corresponds to the source ontology graph;

⊲ DR (Data Requirements) corresponds to the list of keywords representing

the relevant concepts to be included in the segment;

⊲ OR (Operational Requirements) corresponds to the list of configuration

parameters that are used to generate the segment

⊲ Match(e1, e2) is a function that calculates the linguistic similarity between

e1 and e2, comparing element names and synonyms;

⊲ Neighbors(n) is a function that returns the list of nodes that are adjacent

to n.

⊲ NodeAux is a temporary copy of an element to be included in the segment

2: SOseg ← {} ⊲ Initialize the subgraph SOseg representing the segment

3: for all ei ∈ SO do ⊲ Iterate ontology elements ei (classes and properties)

4: for all kj ∈ DR do ⊲ Parse each keyword kj defined in DR

5: if Match(ei, kj) >= OR.similarityThreshold then

6: nodeAux← {ei}

7: if OR.extensionType == EXPANDED then

8: nodeAux← nodeAux ∪Neighbors(ei)

9: end if

10: SOseg ← SOseg ∪ nodeAux

11: end if

12: end for

13: end for

14: return SOseg

15: end function

threshold is one of the available operational requirements [See Section 4.1]. The

Neighbors function receives a node and returns the set of adjacent ontology

elements (classes and properties) in the graph. The resulting segment is the union

of the set of elements (plus neighbors in the case of expanded extension type)

that matches with the keywords defined in the DR.

Figure 4 shows two examples of source ontology segments regarding the

ontology Cmt2. In the former, we illustrate how the segment is generated, based

on the keywords K1 (paper reviewer, title, abstract). In the latter, we show

how the segment is generated for the keywords K2 (person, name author, email,

university).

Note that for the first segment [See Figure 4(a)], SOMA includes the classes

Person and Author and their neighbors in the segment, since the Cmt ontology

2 http://oaei.ontologymatching.org/2017/conference/data/cmt.owl
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contains elements related to these concepts. The same applies to the data prop-

erties email and name. However, as the Cmt ontology does not have any element

related to university, this concept is absent in the segment. In the second segment

[See Figure4(b)], SOMA extracts the classes Paper and Reviewer, and the data

property title, as there are elements with the same name defined in keywords.

The class Paper abstract is also considered, despite the keyword being different

from the name of the element.

(a) Source Ontology Segment for R1

(b) Source Ontology Segment for R2

Figure 4: Excerpt of ontology segments for the ontology Cmt generated based on

the data requirements DR1 and DR2
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4.5 Generating the Target Ontology Segment

After obtaining the source ontology segment, we generate the segment for the

target ontology (TO). For this process, we select the candidate elements based

on the similarity value between the target ontology elements and those present in

the source ontology segment SOseg. [See Algorithm 2] for details how to generate

the segment for the target ontology.

Algorithm 2 Algorithm for segmenting the Target Ontology

function generateTargetOntologySegment(TO,SOseg, OR)

⊲ TO corresponds to the target ontology graph;

⊲ SOseg corresponds to the source ontology segments previously obtained;

⊲ OR (Operational Requirements) corresponds to the list of configuration

parameters that are used to generate the segment;

⊲ Match(e1, e2) is a function that calculates the linguistic similarity between

e1 and e2, by comparing the element names and synonyms;

⊲ Neighbors(n) is a function that returns the list of nodes that are adjacent

to n.

⊲ NodeAux is a temporary copy of an element to be included in the segment

TOseg ← {} ⊲ Initialize empty ontology segment

for all ei ∈ SOseg do ⊲ Parse each element ei in SOseg

for all ej ∈ TO do ⊲ Parse each element ej in TO

if Match(ei, ej) ≥ OR.similarityThreshold then

nodeAux← {ej}

if OR.extensionType == EXPANDED then

nodeAux← nodeAux ∪Neighbors(ej)

end if

TOseg ← TOseg ∪ nodeAux

end if

end for

end for

return TOseg

end function

Figure 5 illustrates two examples of target ontology segments. In the first [See

Figure 5(a)], we present the segment coming from the comparison of the source

ontology segment generated for R1 and the ontology Sofsem3 as the target. The

same applies to the second case [See Figure 5(b)], with the only difference being

that we consider the source ontology segment generated for R2 as the input.

3 http://oaei.ontologymatching.org/2017/conference/data/Conference.owl
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(a) Target Ontology Segment for R1

(b) Target Ontology Segment for R2

Figure 5: Excerpt of ontology segments for the ontology Sofsem, considering the

source ontology segments illustrated in Section 4.4. as input

Note that the ontology Sofsem does not have a class Author. In this case,

SOMA has included some classes in the segment that may correspond to an author,

such as Conference Contributor, Conference Participant and Conference Applicant.

830 Pessoa D., Salgado A.C., Farias Loscio B.: Improving Ontology Matching ...



Once generated, the source and target ontology segments are both exported as

ontology OWL files. These files may be the input for some ontology matching

systems, which is what we did in our experiments, as shown in the following

section. In this case, the assumption is that in the subsequent ontology matching

process, a matcher may use more sophisticated techniques (e.g., structural-level

matching) in order to identify more precisely the correspondences between the

elements present in the segments.

5 Experiments and Analysis

For the purpose of evaluating our approach, we designed three application-

based ontology matching scenarios using the conference benchmark provided

by the OAEI 2017. In the first one, we consider how matching was conducted

by each ontology in its entirety. In the other two, we focus on the matching

between segments generated by SOMA. We present below the configuration of the

experiment and compare the performance of OAEI matchers in these scenarios.

5.1 Experiment Configuration

In this section, we define the datasets, parameters, and hardware configurations

used to perform the experiments in this work.

– Datasets: Table 2 details the datasets considered in the experiments and

the respective number of classes, data and object properties. Although the

OAEI conference track contains a total of 16 ontologies, we select only the

ontologies that have available reference alignments4 (gold standards).

– Data Requirements: To be a guideline on how to generate segments SOMA,

we consider the data requirements DR1 and DR2 illustrated in the motivating

example [See Section 4.2], in which each requirement represents the concepts

that are of interest to an expert user.

– Operational Requirements: The set of operational requirements used

in the experiments are defined in the following. The value expanded for

the segment extension is taken because it generates larger segments, which

improves the range for evaluating the accuracy of the generated results.

The value considered to the keyword search threshold was defined based on

preliminary experiments. For this purpose, we have tested several scenarios

containing different values, and the value of 0.6 resulted, on average, in the

inclusion of more suitable elements on the segments, regarding the targeted

dataset.

4 The reference alignments can be downloaded from
http://oaei.ontologymatching.org/2017/conference/data/reference-alignment.zip
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• Segment Extension Level = EXPANDED

• Keyword search threshold = 0.6

– Hardware Configuration: The following hardware configuration is used

to perform the experiment execution:

• Processor: Intel Core i5-3210M

• CPU Speed: 2.50GHz x 2 core

• RAM Capacity: 16GB

Ontology Classes Data Properties Object Properties

Cmt 36 10 49

Sofsem 60 18 46

ConfTool 38 23 13

Edas 104 20 30

Ekaw 74 0 33

Iasted 140 3 38

Sigkdd 49 11 17

Table 2: Detailed information of ontologies from the OAEI Conference track used

in the experiments

5.2 Implementation and Tools

We implemented the SOMA algorithm and the Ontology Catalog as Java Web

applications. Furthermore, to support the conduct of the experiments, we also

have implemented a Matchers Catalog, which supports the execution of multiple

matchers. Some details on the implementation regarding each component are

given below.

5.2.1 Ontology Catalog

The Ontology Catalog5 stores ontologies by representing them in a single directed

graph. The elements from different ontologies are distinguished by their URI

prefix. Figure 6 depicts the metadata structure of the ontology catalog. We

use the OWL API to traverse all ontology elements, reading classes such as

5 The Ontology Catalog source code is available at https://github.com/dass-cin/
ontology-catalog
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Figure 6: Metadata structure of the ontology catalog.

ClassNode, data properties such as DataPropertyNode and object properties such

as ObjectPropertyNode. The SynonymNodes are obtained for each element by

searching for synonyms in Wordnet. We also used the OWL API6 to read/write

ontologies and a graph database (Neo4J7) to store and search the ontology graph.

The option for Neo4j is motivated by the ease of graph manipulation due to the

Cypher8 query language.

The importance of using the Ontology Catalog to support the SOMA algo-

rithm is because the ontology can be dealt with while using less memory. Since

we consider large-scale ontologies, it could be unfeasible to load all elements into

the memory so as to generate the segment. Given the number of possibles rela-

tionships that there are in an ontology, a graph allows navigation at several levels.

Furthermore, storing data as a graph opens up new possibilities in comparison

to relational databases [Vicknair et al., 2010], because of the addition of custom

element relationships (e.g., synonyms) and the possibility of using existing graph

algorithms for navigation and searching within ontologies.

5.2.2 Matchers Catalog

As we wished to provide a general infrastructure for generating alignments, we

also developed a Matchers Catalog9. The purpose of which was to abstract

the matcher component so that any matcher can be incorporated to generate

correspondences. The resulting alignments are structured by using the Alignment

API, which facilitates the integration of results generated by different matchers.

Figure 7 depicts the metadata structure of the Matchers Catalog. To describe a

matcher, in addition to name and version, we consider the Web Service endpoint

6 The OWL API can be downloaded from http://owlcs.github.io/owlapi/
7 Neo4J is available to download at https://neo4j.com
8 The Cypher documentation is available at https://neo4j.com/developer/cypher/
9 The Matchers Catalog source code is available at https://github.com/dass-cin/
matchers-calalog
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in which the matcher is run, a set of features and the default configuration

parameters that should be considered. Given that matchers do not provide a

default Web Service endpoint, we implemented a wrapper component to import

the matcher library and provide the service that receives the source/target

ontologies and provides the alignment in accordance with the Ontology API

format. In this initial version of the Matchers Catalog, we have incorporated some

matchers which were registered in the last OAEI campaigns, such as COMA,

LogMap, and AML.
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H[HFXWLRQ7LPH,Q0LOOLV���/RQJ

WRWDO0HPRU\8VHG���/RQJ
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�
�


Figure 7: Metadata structure of the Matchers Catalog.

Once an alignment has been generated, it is stored in the matcher’s catalog

together with the respective correspondence set. We use these records both to

evaluate the matcher’s running performance (as long as we track the execution

time and total memory used), and to assess the matcher’s quality, by comparing

the provided correspondence set provided to a gold standard.

5.2.3 SOMA Algorithm

Concerning the implementation regarding the SOMA Algorithm10, we build a

Java application by using the Spring Batch Framework11. We take as an input a

CSV file, which makes it possible to determine several segment generations and

the matching to run at once. The output summarizes the results of many executed

matchings in a CSV containing the number of true positives, false positives, false

negatives and some measures such as precision, recall, F-Measure and execution

time.

About the algorithm operation, we use the lexical matcher S-Match-Wordnet12

as similarity measure for the Match function. This matcher relies on semantic

information taken from the linguistic resource WordNet to identify nodes that

are semantically related. The option for this tool is because it is suitable for

10 The SOMA algorithm source code is available at https://github.com/dass-cin/soma
11

https://spring.io/projects/spring-batch
12 S-Match-wordnet source-code available at: https://github.com/s-match/

s-match-wordnet
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lightweight matching and provides minimal results [Bella et al., 2017], which

is especially useful during the segment generation, considering it requires a

preliminary matching between a small number of ontology elements.

5.3 Experiments Performed and Results

In this section, we detail the experiments performed as well as the results obtained.

The main objective of the experiments was to confirm that using the segments

generated by SOMA in the ontology matching process results in reducing the

scope of the search and improves the quality of the alignments. Thus, the

first experiment is concerned with matching on the whole ontologies, while the

remaining experiments address each one of the data requirements DR1 and DR2

so as to generate the segment generation, which is based on the matching between

segments. Figure 8 shows the summary of results, concerning the measures of

execution time, precision, recall and F-Measure.

The specification of experiments is described as follows:

– Experiment 1 (exp1): Matching based on the whole ontologies;

– Experiment 2 (exp2): Segment matching based on the keywords paper,

reviewer, title, abstract;

– Experiment 3 (exp3): Segment matching based on the keywords person,

name, author, email, university.

We evaluate the proposed algorithm using well-known evaluation measures

such as precision, recall, and F-Measure. More precisely, precision (2) measures

the ratio of the correctly found correspondences (true positives) over the total

number of correspondences. Recall (3) measures the ratio of the true positives

over the total number of expected correspondences (i.e., true positives and false

negatives). We also consider the measure of the execution time that a matcher

takes to complete the matching process between each pair of ontologies.

Precision =
truePositives

truePositives+ falsePositives
(2)

Recall =
truePositives

truePositives+ falseNegatives
(3)

F-Measure = 2 ·
precision · recall

precision+ recall
(4)

As to the matching execution, we consider some active OAEI participants:

COMA, AML, and LogMap. We delegate to each matcher the pairwise compari-

son between all the simple combinations of the seven ontologies (or respective
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Figure 8: Results of the experiments considering precision, execution time, recall

and F-Measure.

segments) described in [Section 5.1], which results in 21 comparisons. Since we

consider three matchers, we have a total of 63 matchings per experiment.

In brief, our evaluation compares the results of matching segments generated

by the SOMA algorithm against the comparison of the matching on the whole

ontologies. The purpose is to confirm that by choosing to match the segments

generated, we obtain a faster execution time and improve the quality of the align-

ments. We then performed two experiments with different sets of requirements

(exp2) and (exp3) to illustrate segments containing different parts of ontologies.

Therefore, this enabled it to be observed that the matchers have different results

depending on the segment considered. An example from Figure 8 is that LogMap

obtained the highest F-Measure for exp1, although COMA provided better quality

results in exp3.

More precisely, Figure 8(a) illustrates the difference in the execution time

acquired for each referred experiment. Comparing the results obtained for gener-

ating alignments between the whole ontologies (exp1) and between the segments

generated by SOMA (exp2, exp3), we notice a substantial reduction in the
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execution time for the latter, regarding the matchers considered.

Figure 8(b) compares the precision obtained in each experiment. We notice

a slight improvement in the majority of cases in which SOMA segments were

considered (exp2, exp3). This illustrates that there has been no loss in precision

due to reducing the search space in order to consider only the concepts related

to the data requirements.

In Figure 8(c), we present the comparison of the results obtained based on

the recall. In this case, taking exp1 as a baseline, note that with regard to the

matcher AML there is a discrete gain in exp3, whereas there is a slight decrease

in exp2. Regarding the matcher COMA, there is an improvement in both the

experiments. On the other hand, LogMap presented a decrease in the experiments

with segments. This occurred because of the higher number of false positives

delivered by LogMap when it considered the segments. This variation influences

the case that takes F-Measure as a baseline [Figure 8(d)], as it is a harmonization

measure between precision and recall.

In short, according to the results of the experiments, we notice an improvement

in most cases when the segments were considered, indicating that the segments

generated by SOMA reduced the matching scope, and at least maintained the

quality of results, thus demonstrating the effectiveness of the algorithm for the

large-scale ontology matching problem.

The variation of performance observed in the experiments indicates that,

depending on the dataset considered and the metric taken for the matcher

evaluation, it is possible to achieve results of higher/lower quality. This fact

has motivated the search for approaches that can enumerate the aspects that

somehow have an impact on the acquisition of results of quality, with the aim

being to recommend the most suitable matchers for a particular matching task.

Exploring the possibilities of undertaking such approaches is a line that further

research could usefully undertake.

6 Conclusions and Future Work

In large-scale settings, the ontology matching process is challenging due to

the high number of elements available for comparison, and the possibility of

obtaining an excessive number of correspondences as a result, which can make

human validation difficult. In this context, this work proposes an algorithm

for segmenting ontologies so as to reduce the scope of the matching search by

considering only the elements that are most relevant to the user. Based on this,

we introduce the use of application requirements, that are categorized into data

requirements - a set of keywords which indicate the most important concepts to the

user, and operational requirements - a set of parameters to use when generating

the segment. In the experiments, we examined the matchers’ performance when
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matching on the whole ontologies and on the segments generated by SOMA.

The results obtained indicate that the segment-based matching was performed

significantly faster, and maintains the quality of the results.

In future studies, we intend to propose a framework to introduce the capability

of selecting the most suitable matchers based on the features of ontologies (or

segments) provided. We plan to use the framework together with SOMA to exploit

the matching between different types of ontologies and how the characteristics of

ontologies affect the quality of the matchers and execution time. Our assumption

is that the use of ontology segments provides the possibilities of having a more

reliable identification of the matching characteristics, thereby facilitating the

identification of the most suitable matcher. Furthermore, we can expand this

investigation to deal with the problem of tuning the matchers, by assessing how

the matcher is run with regard to different values of configuration parameters.

Other applications of this work would be to select an ontology by using keywords,

as we can use the data requirements to search for ontologies that contain similar

(or synonyms) elements in different sources.
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