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Abstract: Integration or fusion of the base classifiers is the final stage of creating
multiple classifiers system. Known methods in this step use base classifier outputs,
which are class labels or values of the confidence (predicted probabilities) for each class
label. In this paper we propose an integration process which takes place in the geometric
space. It means that the fusion of base classifiers is done using their decision boundaries.
In order to obtain one decision boundary from boundaries defined by base classifiers the
median or weighted average method will be used. In addition, the proposed algorithm
uses the division of the entire feature space into disjoint regions of competence as well as
the process of selection of base classifiers is carried out. The aim of the experiments was
to compare the proposed algorithms with the majority voting method and assessment
which of the analyzed approaches to integration of the base classifiers creates a more
effective ensemble.
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1 Introduction

In a typical supervised learning approach one classifier is used to designate the

class label. The single classifiers have been known for many years, and one of the

classifiers, which is derived from statistical methods of data analysis is Fisher’s

linear discriminant classifier. This classifier defines the decision boundary, which

is a linear function (in a two-dimensional space) and defines the boundary in the

feature space between two class labels. Another classifier, which defines a linear

boundary between the two class labels is linear SVM classifier. The idea of single

classifier is still used in recognition tasks, however, for over twenty years, also

multiple classifiers systems have been used [Drucker et al. 1994, Xu et al. 1992].

The system consisting of more than one, so called, base classifier is defined as en-

semble of classifiers (EoC) or multiple classifiers systems (MCSs) [Cyganek 2012,

Giacinto and Roli 2001, Przyby la-Kasperek 2019, Woźniak et al. 2014]. The rea-

sons for usage of a classifier ensemble include, for example, the fact that single

classifiers are often unstable (small changes in input data may result in creation

of very different decision boundaries) or they are overfitting.

The task of constructing MCSs can be generally divided into three steps:

generation, selection and integration [Britto et al. 2014]. In the first step a set
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of base classifiers is defined. Classifiers can be generated using: different training

sets, different models and different parameters of these models, manipulating the

training objects or using different feature subspaces. The classifiers, which are

called heterogeneous, belong to different machine learning algorithms, but they

are trained on the same data set. In this paper, we will focus on homogeneous

classifiers which are obtained by applying the same classification algorithm to

different learning sets.

The second phase of building EoC is related to the choice of a set of classifiers

or one classifier from the whole available pool of base classifiers

[Aksela and Laaksonen 2006, Britto et al. 2014, Burduk and Walkowiak 2015].

This article will use the selection of classifiers, which is done independently in

each region of competence. The selection uses the accuracy of the classification

measured using validation set and heuristic division of the whole feature space

into disjoint subspaces.

The integration or fusion process is widely discussed in the pattern recogni-

tion literature [Ponti Jr. 2011, Tulyakov et al. 2008]. This process uses the out-

puts of the base classifiers selected in the previous step. Generally, the output

of a base classifier can be divided into two types: an abstract or measurement

space [Kuncheva 2004]. With respect to the spaces presented here, in the liter-

ature there are many proposals of methods for combining the outputs of base

classifiers in order to obtain a single class label.

If a set of labels is available (abstract space), various methods for combin-

ing the responses of the base classifiers can be used to obtain the final decision

[Lam and Suen 1997, Przyby la-Kasperek et al. 2017, Ruta and Gabrys 2005].

One of simpler methods for combining the responses of classifiers is majority

voting. In this method, each component classifiers in EoC casts an equal vote

and the object is classified to the class, for which most base classifiers cast

their votes. The advantage of this method is its simplicity and a lack of any

calculations other than counting the votes cast by individual classifiers. One of

disadvantages of using this approach for combining the responses is a frequent

draw situation, which means that the same number of classifiers indicates more

than one class. In two-class recognition tasks, this problem can be solved by

using an odd number of base classifiers.

Another way to combine classifiers is weighted voting. In this approach, each

classifier is assigned with a weight that is taken into account when determining

the final decision of the ensemble. Typically, weights depend on the quality of the

base classifiers assigned to them and are usually normalized to unity. Another

way to calculate the weights is the approach in which each classifier is assigned

with the number of weights equal to the number of the predefined classes in

the recognition task. The resulting weights are also normalized to unity in each

class separately. Another method based on counting the votes cast by individual
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classifiers is the Behavior-Knowledge Space method [Huang and Suen 1993]. In

this method, an object is classified into the class, for which the conformity of

responses from individual classifiers exceeds the predetermined threshold value.

Several methods for determining responses of EoC in the measurement level

has been proposed in the literature [Fumera and Roli 2005, Kuncheva et al. 2001].

There can be distinguished the sum method, the product method or the methods

based on position statistics. In the latter group, minimum, maximum and median

methods are distinguished. The final decision of EoC is made according to the

arg max rule. The application of a combined classifier using position statistics,

according to the minimum rule, gives the most pessimistic result. In this case, if

only one of the base classifiers returns the zero value of a posteriori probability

of the membership of the object in the selected class, the response of the entire

ensemble for this class will be ”no”. The situation is quite opposite when the

maximum method is used, where a posteriori probability equal to unity obtained

for the selected class by one base classifier is associated with the selection of this

class by the entire ensemble. A compromise between these methods is the use

of the median method. In the methods discussed above, the support functions

obtained from individual base classifiers have an equal share in the integration

of responses of these classifiers. Weighted versions of these methods can also be

easily created – as in the case of integration in the abstract space.

In this paper we propose the concept of the classifier integration process

which takes place in the geometric space. It means that we use the decision

boundary in the integration process instead of the base classifier output repre-

sented by the abstract or measurement space. In other words the integration of

base classifiers is done using their decision boundaries instead of class labels or

predicted probabilities.

The author’s earlier work [Burduk 2017] presents results of the integration

base classifier in the geometric space in which the base classifiers use Fisher’s

classification rule, while the process of the base classifier selection is performed in

the regions of competence defined by the intersection points of decision bound-

ary functions. The paper [Burduk 2018] presents results of the integration base

classifier in the geometric space in which the harmonic mean is used.

In this paper we use a different linear classifier’, the competence region will

be defined by the heuristic division of the feature space and in addition, the

median or weighed mean is used to determine the decision boundary of EoC.

The remainder of this paper is organized as follows. Section 2 presents the ba-

sic concept of the supervised classification and building EoC. Section 3 describes

the proposed method for the integration of base classifiers in the geometric space

in which the median or weighted mean is used after selection to determine the

final decision boundary of EoC. The experimental evaluation is presented in

Section 4. The discussion and conclusions from the experiments are presented in
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Section 5.

2 Basic concept

Let us consider the binary classification task. It means that we have two class

labels Ω = {0, 1}. Each pattern is characterized by the feature vector x. The

recognition algorithm Ψ maps the feature space x to the set of class labels Ω

according to the general formula:

Ψ(x) ∈ Ω. (1)

Let us assume that K (k ∈ {1, 2, . . . ,K}) different classifiers Ψ1, Ψ2, . . . , ΨK

are available to solve the classification task. In MCSs these classifiers are called

base classifiers. In the binary classification task, K is assumed to be an odd

number. As a result of all the classifiers’ actions, their K responses are obtained.

Usually all K base classifiers are applied to make the final decision of MCSs

although some methods select just one base classifier from the ensemble. The

output of only this base classifier is then used in the class label prediction.

Another option is to select a subset of the base classifiers. Then, the combining

method is needed to make the final decision of EoC.

The majority vote is a combining method that works at the abstract level.

This voting method allows counting base classifiers outputs as a vote for a class

and assigns the input pattern to the class with the greatest count of votes. The

majority voting algorithm is defined as follows:

ΨMV (x) = arg max
ω

K∑

k=1

I(Ψk(x), ω), (2)

where I(·) is the indicator function with the value 1 in the case of the correct

classification of the object described by the feature vector x, i.e. when Ψk(x) = ω.

In the majority vote method each of the individual classifiers takes an equal part

in building EoC.

3 Proposed method

Conventional fusion methods fuse the class labels or confidence values produced

by the base classifiers to produce the class labels of EoC. Assuming that the deci-

sion boundary for each base classifier is known we present the integration process

that is performed in the geometric space. Therefore in the proposed method we

don’t use in fusion the class labels or confidence values. The geometric approach

discussed in [Li et al. 2012] is applied to find characteristic points in the geo-

metric space. These points are then used to determine the decision boundaries.
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Thus, the results presented in [Pujol and Masip 2009] do not concern the process

of integration of base classifiers, but a method for creating decision boundaries.

The proposed algorithm to find the final decision boundary of EoC in geom-

etry space is defined as:

Algorithm 1: Algorithm for finding decision boundary of combining

classifier in geometry space ΨGS

Input : K base classifiers Ψ1, . . . , ΨK , M number of regions of

competence

Output: Decision boundary of combining classifier ΨGS

1 Train each of the base classifiers Ψ1, Ψ2, . . . , ΨK .

2 Divide feature space into non-overlapping M subspaces.

3 Evaluate competence of each base classifier on every subspace using the

validation data set.

4 Having quality measures select l best classifiers, where 1 < l < K is

calculated in each region of competence.

5 Define the decision boundary of the proposed EoC classifier ΨGS as

median ΨMdGS of the decision boundaries of base classifiers in each

region of competence separately or as weighted mean ΨwMeGS .

The graphical interpretation of the proposed method for the two-dimensional

feature space, three regions of competence and three base classifiers is shown

in Fig. 1. Decision boundaries defined by 3 linear classifiers are presented in

Fig. 1(a). In addition, there are also marked three regions of competence labeled

D1, D2, D3. In each region of competence one base classifier is rejected which

is shown in Fig. 1(b). For example, in the region labeled D1 the classifier Ψ1 is

rejected i.e. this classifier has the lowest quality of classification on the valida-

tion set. Fig. 1(c) shows the decision boundary defined by the proposed method

ΨMdGS (the blue piecewise linear function), which is the median of the values

of decision boundaries after the selection process. Fig. 1(d) shows, on the other

hand, the decision boundary defined by the majority vote rule ΨMV (the red

piecewise linear function). Therefore, Fig. 1(c)-1(d) show the visual difference

between the decision boundary of EoC proposed in the paper and ΨMV .

4 Experimental Setup

In the experiment we used the linear SVM method as a base classifier and

we created a pool of classifiers consisting of nine base classifiers. SVM classi-

fier implementation from python library scikit-learn [Pedregosa et al. 2011] was
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for data sets names are used: bio – Biodeg, bup – Bupa, cry – Cryotherapy, dat –

Data banknote authentication, hab – Haberman, ion – Ionosphere, met – Meter

a, pop – Pop failures, sei – Seismic bumps, two – Twonorm, wis – Wisconsin. For

all data sets the feature selection process [Guyon and Elisseeff 2003, Rejer 2015]

was performed to indicate two most informative features.

It was asserted, that after data set division, all base classifiers were oriented

in the same way. That means, that whenever there was an unordered model

among all base classifiers (it classified objects under decision boundary with a

certain label, which was restricted for objects over boundary in other models),

the data set was rejected.

5 Results and Discussion

The main aim of the experiments was to compare the quality of classification

[Trawiński et al. 2012] of the proposed method of integration base classifiers in

the geometric space ΨwMeGS and ΨMdGS with MV rule ΨMV . Additionally sta-

tistical tests were performed to compare the improvement achieved by using me-

dian and weighted mean in composing decision boundary to determine the best

setup possible for the used set of benchmarking datasets. In order to compare the

quality of the classification, we used two classification measures: accuracy (ACC)

and Matthews correlation coefficient (MCC). Tab. 1– 4 show the results of ACC

and Tab. 5– 8 show the results of MCC. Along with quality measures, average

ranks obtained in nonparametric Friedman tests are written in the last column.

This test was carried out for each division of feature space (feature space was

divided in 3, 5, 7 and 9 regions of competence) and method used for integration

of decision boundaries separately, which means that 16 (8 tests for each quality

measure) tests were performed. The difference in the quality of the classification

in some cases was observed, because Bonferroni – Dunn test requires difference

in Friedman ranks to be at least 2.45 (7 algorithms are compared against the

reference method, 12 data sets are used) to reject the null hypothesis at the

significance level of α = 0.1.

Bonferroni-Holm post-hoc tests were conducted in order to determine whether

the proposed integrated classifiers ΨMdGS or ΨwMdeGS are better or worse than

the reference method ΨMV . Tab. 9 shows p-values of Bonferroni–Holm test gath-

ered for classification measures ACC, MCC and number regions of competence

based on non-parametric Friedman tests presented in previous tables. This test

pointed out that there is a statistical difference in the classification results for

the three examined cases at the significance level of α = 0.1. The p-values for

Holm test and the selected cases are shown in Tab. 10.

Mean ranks presented in Tab. 1- 8 and p-values of Bonferroni–Holm test

from Tab. 10 indicate that the median method of integrating base classifiers in
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Table 1: ACC and mean rank for space division into 3 regions of competence

bio bup cry dat hab ion met pop sei two wdb wis Rank

Ψ
2

wMeGS
0.724 0.580 0.827 0.888 0.774 0.886 0.832 0.927 0.931 0.747 0.935 0.946 4.25

Ψ
3

wMeGS
0.715 0.575 0.855 0.888 0.774 0.889 0.835 0.928 0.931 0.747 0.935 0.948 4.25

Ψ
4

wMeGS
0.708 0.571 0.862 0.887 0.764 0.889 0.849 0.927 0.935 0.748 0.936 0.948 4.67

Ψ
5

wMeGS
0.721 0.574 0.869 0.886 0.760 0.884 0.851 0.924 0.908 0.748 0.939 0.948 4.17

Ψ
6

wMeGS
0.724 0.580 0.860 0.886 0.758 0.882 0.846 0.924 0.926 0.748 0.940 0.949 4.12

Ψ
7

wMeGS
0.722 0.583 0.867 0.886 0.762 0.879 0.846 0.923 0.937 0.748 0.939 0.948 4.79

Ψ
8

wMeGS
0.720 0.584 0.867 0.887 0.761 0.878 0.842 0.924 0.933 0.748 0.937 0.947 4.33

ΨMV 0.723 0.582 0.901 0.891 0.770 0.839 0.743 0.923 0.938 0.748 0.940 0.952 5.42

Ψ
2

MdGS
0.724 0.577 0.825 0.888 0.775 0.886 0.810 0.927 0.931 0.747 0.933 0.947 3.75

Ψ
3

MdGS
0.725 0.582 0.880 0.888 0.778 0.889 0.805 0.926 0.937 0.747 0.933 0.948 5.17

Ψ
4

MdGS
0.724 0.576 0.859 0.886 0.775 0.893 0.807 0.926 0.911 0.748 0.935 0.950 4.33

Ψ
5

MdGS
0.725 0.583 0.889 0.887 0.775 0.891 0.799 0.925 0.937 0.748 0.936 0.948 5.00

Ψ
6

MdGS
0.724 0.581 0.872 0.887 0.773 0.896 0.791 0.924 0.922 0.748 0.939 0.948 4.08

Ψ
7

MdGS
0.725 0.582 0.889 0.891 0.772 0.889 0.765 0.923 0.938 0.748 0.938 0.947 5.00

Ψ
8

MdGS
0.724 0.578 0.877 0.889 0.771 0.893 0.755 0.924 0.925 0.748 0.941 0.946 4.00

ΨMV 0.723 0.582 0.901 0.891 0.770 0.839 0.743 0.923 0.938 0.748 0.940 0.952 4.67

Table 2: ACC and mean rank for space division into 5 regions of competence

bio bup cry dat hab ion met pop sei two wdb wis Rank

Ψ
2

wMeGS
0.727 0.574 0.834 0.898 0.761 0.891 0.777 0.926 0.931 0.748 0.932 0.947 4.42

Ψ
3

wMeGS
0.726 0.582 0.847 0.895 0.766 0.894 0.787 0.927 0.931 0.748 0.935 0.950 5.42

Ψ
4

wMeGS
0.713 0.576 0.831 0.893 0.760 0.893 0.807 0.926 0.935 0.748 0.935 0.950 4.08

Ψ
5

wMeGS
0.721 0.580 0.847 0.895 0.755 0.887 0.824 0.923 0.909 0.748 0.937 0.949 3.50

Ψ
6

wMeGS
0.724 0.581 0.853 0.894 0.757 0.883 0.832 0.922 0.926 0.748 0.937 0.950 3.83

Ψ
7

wMeGS
0.722 0.584 0.855 0.895 0.758 0.880 0.841 0.922 0.937 0.748 0.938 0.949 4.83

Ψ
8

wMeGS
0.721 0.584 0.857 0.893 0.759 0.876 0.849 0.924 0.933 0.748 0.936 0.947 4.58

ΨMV 0.723 0.582 0.901 0.891 0.770 0.839 0.743 0.923 0.938 0.748 0.940 0.952 5.33

Ψ
2

MdGS
0.726 0.569 0.841 0.898 0.764 0.892 0.782 0.926 0.931 0.748 0.934 0.948 4.08

Ψ
3

MdGS
0.725 0.574 0.874 0.896 0.771 0.893 0.776 0.925 0.937 0.747 0.934 0.949 4.87

Ψ
4

MdGS
0.724 0.569 0.848 0.891 0.769 0.896 0.787 0.924 0.911 0.748 0.935 0.951 4.00

Ψ
5

MdGS
0.725 0.575 0.876 0.891 0.772 0.895 0.801 0.925 0.937 0.748 0.935 0.948 5.46

Ψ
6

MdGS
0.724 0.573 0.863 0.891 0.769 0.895 0.784 0.924 0.922 0.748 0.939 0.949 3.58

Ψ
7

MdGS
0.725 0.577 0.884 0.893 0.769 0.890 0.761 0.922 0.938 0.748 0.940 0.948 4.75

Ψ
8

MdGS
0.724 0.577 0.869 0.891 0.771 0.893 0.748 0.923 0.926 0.748 0.942 0.946 4.33

ΨMV 0.723 0.582 0.901 0.891 0.770 0.839 0.743 0.923 0.938 0.748 0.940 0.952 4.92

Table 3: ACC and mean rank for space division into 7 regions of competence

bio bup cry dat hab ion met pop sei two wdb wis Rank

Ψ
2

wMeGS
0.727 0.574 0.815 0.902 0.768 0.888 0.782 0.930 0.931 0.748 0.934 0.946 4.58

Ψ
3

wMeGS
0.726 0.575 0.830 0.899 0.768 0.892 0.784 0.929 0.931 0.748 0.935 0.949 5.33

Ψ
4

wMeGS
0.714 0.573 0.811 0.896 0.765 0.889 0.814 0.928 0.935 0.748 0.935 0.949 4.00

Ψ
5

wMeGS
0.724 0.574 0.829 0.896 0.759 0.885 0.823 0.926 0.909 0.748 0.936 0.949 3.83

Ψ
6

wMeGS
0.724 0.574 0.835 0.895 0.761 0.881 0.831 0.924 0.926 0.748 0.937 0.950 4.25

Ψ
7

wMeGS
0.723 0.577 0.845 0.895 0.760 0.878 0.846 0.924 0.937 0.748 0.938 0.949 4.83

Ψ
8

wMeGS
0.722 0.584 0.842 0.893 0.761 0.875 0.851 0.925 0.933 0.748 0.937 0.948 4.17

ΨMV 0.723 0.582 0.901 0.891 0.770 0.839 0.743 0.923 0.938 0.748 0.940 0.952 5.00

Ψ
2

MdGS
0.726 0.576 0.828 0.902 0.771 0.890 0.769 0.930 0.931 0.748 0.932 0.946 4.67

Ψ
3

MdGS
0.725 0.574 0.868 0.896 0.773 0.893 0.760 0.928 0.937 0.748 0.933 0.948 4.79

Ψ
4

MdGS
0.724 0.575 0.827 0.891 0.773 0.895 0.781 0.928 0.911 0.748 0.936 0.951 4.58

Ψ
5

MdGS
0.725 0.579 0.865 0.892 0.774 0.894 0.790 0.926 0.937 0.748 0.935 0.948 5.21

Ψ
6

MdGS
0.724 0.577 0.861 0.891 0.772 0.895 0.777 0.925 0.922 0.748 0.939 0.949 4.17

Ψ
7

MdGS
0.725 0.577 0.867 0.893 0.772 0.889 0.758 0.923 0.938 0.748 0.940 0.948 4.83

Ψ
8

MdGS
0.724 0.575 0.868 0.891 0.771 0.893 0.748 0.924 0.926 0.748 0.941 0.946 3.50

ΨMV 0.723 0.582 0.901 0.891 0.770 0.839 0.743 0.923 0.938 0.748 0.940 0.952 4.25
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Table 4: ACC and mean rank for space division into 9 regions of competence

bio bup cry dat hab ion met pop sei two wdb wis Rank

Ψ
2

wMeGS
0.726 0.573 0.848 0.900 0.770 0.907 0.746 0.927 0.931 0.748 0.934 0.947 4.33

Ψ
3

wMeGS
0.725 0.576 0.859 0.898 0.771 0.911 0.754 0.926 0.931 0.748 0.936 0.950 4.75

Ψ
4

wMeGS
0.714 0.574 0.842 0.895 0.764 0.907 0.784 0.927 0.935 0.748 0.937 0.950 4.50

Ψ
5

wMeGS
0.724 0.574 0.849 0.894 0.757 0.902 0.799 0.925 0.909 0.748 0.938 0.950 3.92

Ψ
6

wMeGS
0.724 0.576 0.859 0.893 0.759 0.899 0.808 0.924 0.926 0.748 0.939 0.950 4.75

Ψ
7

wMeGS
0.722 0.582 0.863 0.892 0.758 0.895 0.825 0.923 0.937 0.748 0.939 0.950 4.50

Ψ
8

wMeGS
0.721 0.585 0.861 0.891 0.758 0.892 0.830 0.925 0.933 0.748 0.938 0.948 4.25

ΨMV 0.723 0.582 0.901 0.891 0.770 0.839 0.743 0.923 0.938 0.748 0.940 0.952 5.00

Ψ
2

MdGS
0.726 0.576 0.841 0.900 0.772 0.891 0.726 0.927 0.931 0.748 0.932 0.946 4.08

Ψ
3

MdGS
0.725 0.586 0.877 0.894 0.776 0.893 0.726 0.925 0.937 0.747 0.933 0.949 5.04

Ψ
4

MdGS
0.724 0.577 0.829 0.890 0.771 0.895 0.748 0.926 0.911 0.748 0.935 0.951 4.25

Ψ
5

MdGS
0.725 0.579 0.865 0.890 0.774 0.894 0.766 0.925 0.937 0.748 0.936 0.948 5.04

Ψ
6

MdGS
0.724 0.574 0.858 0.890 0.773 0.895 0.766 0.924 0.922 0.748 0.938 0.949 3.92

Ψ
7

MdGS
0.725 0.577 0.867 0.892 0.771 0.889 0.754 0.923 0.938 0.748 0.939 0.948 4.92

Ψ
8

MdGS
0.724 0.578 0.860 0.891 0.769 0.892 0.746 0.924 0.926 0.748 0.940 0.946 3.75

ΨMV 0.723 0.582 0.901 0.891 0.770 0.839 0.743 0.923 0.938 0.748 0.940 0.952 5.00

Table 5: MCC and mean rank for space division into 3 regions of competence

bio bup cry dat hab ion met pop sei two wdb wis Rank

Ψ
2

wMeGS
0.330 0.130 0.658 0.775 0.257 0.755 0.682 0.462 0.019 0.000 0.863 0.828 5.04

Ψ
3

wMeGS
0.325 0.106 0.720 0.774 0.255 0.759 0.690 0.454 0.020 0.000 0.862 0.835 4.87

Ψ
4

wMeGS
0.304 0.109 0.734 0.771 0.179 0.757 0.722 0.417 0.053 0.000 0.865 0.833 4.87

Ψ
5

wMeGS
0.320 0.095 0.750 0.770 0.136 0.747 0.725 0.389 0.038 0.000 0.869 0.833 4.87

Ψ
6

wMeGS
0.324 0.107 0.729 0.770 0.095 0.740 0.715 0.379 0.031 0.000 0.872 0.837 4.46

Ψ
7

wMeGS
0.316 0.107 0.744 0.771 0.086 0.735 0.716 0.372 0.013 0.000 0.870 0.832 3.79

Ψ
8

wMeGS
0.310 0.112 0.743 0.772 0.078 0.730 0.707 0.374 0.006 0.000 0.867 0.828 3.29

ΨMV 0.319 0.109 0.810 0.779 0.208 0.630 0.458 0.435 0.000 0.000 0.867 0.894 4.79

Ψ
2

MdGS
0.331 0.130 0.664 0.775 0.257 0.755 0.631 0.462 0.019 0.000 0.859 0.829 4.46

Ψ
3

MdGS
0.331 0.149 0.771 0.774 0.264 0.759 0.620 0.448 0.000 0.000 0.858 0.836 4.87

Ψ
4

MdGS
0.326 0.137 0.726 0.771 0.240 0.767 0.627 0.450 0.047 0.000 0.862 0.840 4.96

Ψ
5

MdGS
0.328 0.161 0.792 0.772 0.223 0.763 0.606 0.443 0.000 0.000 0.865 0.833 4.71

Ψ
6

MdGS
0.323 0.161 0.756 0.771 0.217 0.774 0.587 0.444 0.027 0.000 0.870 0.835 4.79

Ψ
7

MdGS
0.327 0.158 0.791 0.780 0.203 0.757 0.528 0.443 0.000 0.000 0.868 0.830 4.42

Ψ
8

MdGS
0.325 0.139 0.769 0.776 0.198 0.766 0.508 0.443 0.023 0.000 0.875 0.825 3.96

ΨMV 0.319 0.109 0.810 0.779 0.208 0.630 0.458 0.435 0.000 0.000 0.867 0.894 3.83

Table 6: MCC and mean rank for space division into 5 regions of competence

bio bup cry dat hab ion met pop sei two wdb wis Rank

Ψ
2

wMeGS
0.333 0.123 0.684 0.795 0.204 0.763 0.575 0.462 0.018 0.000 0.855 0.830 4.79

Ψ
3

wMeGS
0.333 0.140 0.701 0.788 0.222 0.768 0.595 0.461 0.021 0.000 0.862 0.838 5.71

Ψ
4

wMeGS
0.309 0.115 0.673 0.784 0.181 0.763 0.637 0.434 0.053 0.000 0.863 0.837 4.12

Ψ
5

wMeGS
0.319 0.116 0.708 0.789 0.120 0.749 0.677 0.394 0.040 0.000 0.866 0.836 4.87

Ψ
6

wMeGS
0.322 0.113 0.718 0.786 0.114 0.738 0.699 0.388 0.031 0.000 0.865 0.836 4.37

Ψ
7

wMeGS
0.317 0.127 0.724 0.788 0.080 0.732 0.715 0.373 0.013 0.000 0.867 0.834 4.29

Ψ
8

wMeGS
0.312 0.120 0.726 0.784 0.077 0.722 0.730 0.394 0.006 0.000 0.865 0.829 3.62

ΨMV 0.319 0.109 0.810 0.779 0.208 0.630 0.458 0.435 0.000 0.000 0.867 0.894 4.21

Ψ
2

MdGS
0.333 0.116 0.694 0.795 0.218 0.768 0.590 0.462 0.017 0.000 0.859 0.832 4.71

Ψ
3

MdGS
0.331 0.137 0.753 0.789 0.236 0.769 0.573 0.447 0.000 0.000 0.859 0.838 4.96

Ψ
4

MdGS
0.326 0.132 0.703 0.780 0.217 0.775 0.595 0.446 0.047 0.000 0.861 0.845 4.87

Ψ
5

MdGS
0.328 0.147 0.762 0.781 0.226 0.772 0.619 0.453 0.000 0.000 0.861 0.834 5.46

Ψ
6

MdGS
0.323 0.137 0.736 0.780 0.209 0.772 0.581 0.453 0.027 0.000 0.869 0.836 4.54

Ψ
7

MdGS
0.327 0.153 0.779 0.785 0.201 0.761 0.524 0.443 0.000 0.000 0.871 0.833 4.33

Ψ
8

MdGS
0.325 0.140 0.751 0.780 0.203 0.766 0.494 0.439 0.023 0.000 0.876 0.825 3.79

ΨMV 0.319 0.109 0.810 0.779 0.208 0.630 0.458 0.435 0.000 0.000 0.867 0.894 3.33
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Table 7: MCC and mean rank for space division into 7 regions of competence

bio bup cry dat hab ion met pop sei two wdb wis Rank

Ψ
2

wMeGS
0.332 0.116 0.662 0.802 0.223 0.754 0.579 0.485 0.018 0.000 0.859 0.823 4.96

Ψ
3

wMeGS
0.331 0.113 0.682 0.797 0.228 0.762 0.586 0.465 0.021 0.000 0.861 0.833 5.62

Ψ
4

wMeGS
0.310 0.102 0.640 0.791 0.202 0.752 0.650 0.445 0.053 0.000 0.862 0.832 4.21

Ψ
5

wMeGS
0.325 0.100 0.676 0.790 0.146 0.740 0.673 0.417 0.040 0.000 0.863 0.833 4.54

Ψ
6

wMeGS
0.320 0.098 0.691 0.787 0.121 0.731 0.691 0.399 0.031 0.000 0.865 0.835 4.46

Ψ
7

wMeGS
0.316 0.105 0.708 0.787 0.090 0.724 0.722 0.368 0.013 0.000 0.867 0.833 4.04

Ψ
8

wMeGS
0.312 0.118 0.705 0.784 0.081 0.717 0.732 0.380 0.006 0.000 0.866 0.827 3.79

ΨMV 0.319 0.109 0.810 0.779 0.208 0.630 0.458 0.435 0.000 0.000 0.867 0.894 4.37

Ψ
2

MdGS
0.333 0.131 0.671 0.803 0.240 0.764 0.563 0.485 0.017 0.000 0.856 0.828 4.62

Ψ
3

MdGS
0.331 0.137 0.744 0.791 0.244 0.769 0.538 0.463 0.000 0.000 0.857 0.836 4.96

Ψ
4

MdGS
0.326 0.139 0.664 0.781 0.232 0.772 0.581 0.464 0.047 0.000 0.863 0.843 5.29

Ψ
5

MdGS
0.328 0.150 0.737 0.781 0.233 0.770 0.594 0.456 0.000 0.000 0.861 0.832 4.96

Ψ
6

MdGS
0.323 0.138 0.728 0.780 0.220 0.772 0.566 0.453 0.027 0.000 0.870 0.836 4.62

Ψ
7

MdGS
0.327 0.145 0.744 0.785 0.212 0.758 0.518 0.443 0.000 0.000 0.873 0.833 4.33

Ψ
8

MdGS
0.325 0.141 0.747 0.780 0.197 0.766 0.494 0.444 0.023 0.000 0.874 0.825 4.04

ΨMV 0.319 0.109 0.810 0.779 0.208 0.630 0.458 0.435 0.000 0.000 0.867 0.894 3.17

Table 8: MCC and mean rank for space division into 9 regions of competence

bio bup cry dat hab ion met pop sei two wdb wis Rank

Ψ
2

wMeGS
0.332 0.135 0.732 0.798 0.234 0.795 0.501 0.470 0.018 0.000 0.860 0.819 5.12

Ψ
3

wMeGS
0.334 0.120 0.740 0.795 0.233 0.803 0.523 0.454 0.021 0.000 0.863 0.829 5.71

Ψ
4

wMeGS
0.312 0.111 0.708 0.789 0.183 0.793 0.591 0.447 0.053 0.000 0.866 0.829 4.37

Ψ
5

wMeGS
0.330 0.098 0.727 0.786 0.129 0.781 0.622 0.446 0.040 0.000 0.867 0.830 4.54

Ψ
6

wMeGS
0.324 0.105 0.738 0.784 0.102 0.771 0.647 0.434 0.031 0.000 0.870 0.831 4.71

Ψ
7

wMeGS
0.315 0.107 0.755 0.782 0.072 0.763 0.682 0.408 0.013 0.000 0.870 0.829 3.96

Ψ
8

wMeGS
0.313 0.113 0.751 0.781 0.067 0.756 0.693 0.420 0.006 0.000 0.867 0.823 3.54

ΨMV 0.319 0.109 0.810 0.779 0.208 0.630 0.458 0.435 0.000 0.000 0.867 0.894 4.04

Ψ
2

MdGS
0.333 0.140 0.700 0.798 0.236 0.765 0.475 0.470 0.017 0.000 0.854 0.827 4.54

Ψ
3

MdGS
0.330 0.165 0.761 0.787 0.252 0.769 0.462 0.446 0.000 0.000 0.857 0.836 4.96

Ψ
4

MdGS
0.326 0.140 0.664 0.779 0.217 0.772 0.507 0.456 0.047 0.000 0.861 0.844 4.79

Ψ
5

MdGS
0.328 0.152 0.737 0.779 0.231 0.771 0.542 0.453 0.000 0.000 0.864 0.834 4.87

Ψ
6

MdGS
0.323 0.139 0.725 0.777 0.227 0.771 0.538 0.457 0.027 0.000 0.868 0.837 4.71

Ψ
7

MdGS
0.327 0.151 0.744 0.783 0.201 0.757 0.506 0.449 0.000 0.000 0.871 0.834 4.50

Ψ
8

MdGS
0.325 0.147 0.732 0.779 0.190 0.764 0.490 0.446 0.023 0.000 0.873 0.825 3.79

ΨMV 0.319 0.109 0.810 0.779 0.208 0.630 0.458 0.435 0.000 0.000 0.867 0.894 3.83

geometric space ΨMdGS is significantly better than the reference classifier ΨMV .

This situation occurs with the appropriate division of the feature space into

regions of competence and selecting about half of the base classifiers. On the

other hand the method ΨwMeGS can be statistically worse than the reference

method ΨMV .

6 Conclusion

In this article the algorithm of classifier integration in geometric space was pro-

posed. It means, that we used decision boundaries directly in the process of

integrating base classifiers – instead of using the class labels or predicted proba-

bilities in integration process of base classifiers as in the methods known so far.
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Table 9: p-values obtained in Holm post-hoc test

ΨwMeGS ΨMdGS

m ACC MCC ACC MCC
3 0.20 0.13 0.36 0.26
5 0.07 0.13 0.18 0.03
7 0.24 0.21 0.34 0.03
9 0.28 0.10 0.21 0.26

Table 10: Comparison pairs of classifier using p-values obtained in Bonferroni–

Holm post-hoc test

measure MCC MCC measure ACC
no of regions 5 7 no of regions 5

ΨMV vs Ψ
2

MdGS 0.17 0.14 ΨMV vs Ψ
2

wMeGS 0.36
ΨMV vs Ψ

3

MdGS 0.10 0.07 ΨMV vs Ψ
3

wMeGS 0.93
ΨMV vs Ψ

4

MdGS 0.12 0.03 ΨMV vs Ψ
4

wMeGS 0.21
ΨMV vs Ψ

5

MdGS 0.03 0.07 ΨMV vs Ψ
5

wMeGS 0.07

ΨMV vs Ψ
5

MdGS 0.23 0.14 ΨMV vs Ψ
6

wMeGS 0.13
ΨMV vs Ψ

7

MdGS 0.32 0.24 ΨMV vs Ψ
7

wMeGS 0.62
ΨMV vs Ψ

8

MdGS 0.65 0.38 ΨMV vs Ψ
8

wMeGS 0.45

The weighted mean or median method was used in order to get one decision

boundary, which is the final stage of building EoC. In addition, the proposed

method uses the selection of base classifiers in the defined regions of competence.

The selection phase can be used to assure an odd number of base classifiers al-

though it is not required, what makes the proposed method more general than

majority voting, which for the two-class data set requires an odd number of base

classifiers.

Twelve open-source benchmarking data sets were used in the experimental

part to perform the statistical analysis of results concerning two classification

measures. Bonferroni–Holm test showed, that in two cases the proposed algo-

rithm provided statistically significant better results than the results obtained

using the reference classifier. These cases concern in particular the use of the

median method to obtain a decision boundary of EoC and the use of about half

of the base classifiers from all base classifiers. The obtained results clearly in-

dicate that in the case of the proposed method of combining decision limits in

the geometrical space, better results are obtained when a median is used rather

than an weighed average to determine the final EoC decision boundary.
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[Alcalá-Fdez et al. 2011] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, and
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