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Abstract: In recent years, deep convolutional neural networks (DCNNs) have delivered 

notable successes in visual tasks, and in particular, image classification related applications. 

However, they are sensitive to the selection of their architectural and learning hyperparameters, 

which impose an exponentially large search space on modern DCNN models. Traditional 

hyperparameter selection methods include manual model tuning, grid, or random search but 

these require expert domain knowledge or are computationally burdensome. On the other hand, 

Bayesian optimization and evolutionary inspired techniques have surfaced as viable alternatives 

to the hyperparameter problem. In this work, an alternative automated system that combines the 

advantages of evolutionary processes and state-of-the-art Bayesian optimization is proposed. 

Specifically, the search space is first partitioned into separate discrete-architectural, and 

continuous and categorical learning parameter subspaces, which are then efficiently traversed 

by a stochastic genetic search applied to the former, combined with a genetic-Bayesian search 

of the latter. Several sequential experiments on prominent image classification tasks reveal that 

the proposed method results in overall classification accuracy improvements over several well-

established techniques, and significant computational costs reductions compared to brute force 

computation. 

 

Keywords: Convolutional neural networks, Genetic algorithms, Bayesian optimization, Hybrid 

systems, image classification, model selection 
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1 Introduction  

 
Recent years have seen the rapid advancement of convolutional neural networks 

(CNNs), fuelled by the application of GPUs for neural network computation, the 

availability of large labelled datasets, and several algorithmic enhancements. This has 

resulted in their application to various traditional and diverse computer vision tasks, 

with ground-breaking success [Suong & Jangwoo 2018]. These accomplishments 

have led researchers to progress several DCNN components, resulting in a plethora of 

improvements to their architecture, pooling layers, activation functions, loss 

functions, regularization techniques, optimization procedures, and computational 

characteristics [Rawat & Wang 2017]. On the other hand, DCNN successes have 

prompted others to scrutinize their internal mechanisms and gain a better 
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understanding of their operation and expressive ability, resulting in research into 

several open issues. For example DCNNs are not invariant to large scale geometric 

deformations [Gong et al. 2014], current models impose considerable storage and 

memory constraints averting mobile deployment [Iandola et al. 2016], and describing 

the semantic content of images is still a big challenge [Vinyals et al. 2015]. 

Furthermore, despite some progress [Mallat 2012], [Wiatowski & Bolcskei 2015], 

[Bengio et al. 2017] theoretical motivations of why DCNNs are successful are largely 

devoid.  

Moreover, deep learning models require numerous architectural and 

hyperparameter choices, such as the number and size of the convolutional and pooling 

filters, the need to use or negate regularization techniques such as Dropout [Hinton et 

al. 2012], and the important choice of which activation function to use. The learning 

methods such as the optimization technique, and its associated learning rate, the 

number of epochs and the size of each batch presented to the network, and the weight 

initialization method to adopt, also need to be selected. When the learning method 

choices are combined with the architectural choices, the number of possible models 

grows exponentially with each additional parameter, making DCNNs computationally 

expensive to use. The problem is exacerbated when the structure of the model is 

considered (network depth, type of layers etc). The traditional methods for model 

selection include the grid
1
 [Pedregosa et al. 2011] and random [Bergstra & Bengio 

2012] search techniques, and manual tuning; however, all of these have their own 

challenges. The manual model selection approach requires expert domain knowledge 

or unsystematic rules of thumb [Dernoncourt & Lee 2016], the grid search technique 

is computationally burdensome [Snoek et al. 2012], and whilst the random search 

approach relaxes some of the computational load imposed by grid search, it is not 

directed towards promoting high performing models.  

On the other hand Bayesian optimization has emerged as an influential solution 

for the automated selection of DNN models [Snoek et al. 2012], [Swersky et al. 

2013], [Shahriari et al. 2016], and in particular, Bayesian optimization based on 

Gaussian processes [Rasmussen & Williams 2006] is known to work well for 

continuous variables [Loshchilov & Hutter 2016]. However, the search spaces, which 

contain continuous variables, are naturally more complex, and have a higher 

dimensionality in contrast to discrete spaces, thus making Bayesian optimization well 

suited to traverse them. Despite this, Bayesian algorithms impose a significant 

administrative overhead and require expert knowledge in order to obtain sensible 

results [Dewancker et al. n.d], and furthermore, is inherently sequential in nature, thus 

preventing superlative parallelization [Loshchilov & Hutter 2016]. Divergently, 

Genetic Algorithms (GAs) can be parallelized if required, and have been shown to 

perform better than grid search techniques for support vector machines [Martino et al. 

2011], and neural networks [Ding et al. 2013], [Tao et al. 2007]. One of the main 

advantages of using the GA is its generality, in other words it can be used for a 

diverse range of applications due to its simplicity, and independence of the underlying 

problem. More specifically, the GA operators are mostly independent of a given 

problem, and thus only the codification of the population and fitness function for the 

problem are required to use the technique [Orive et al. 2014].  

                                                           
1
 Grid search is sometimes referred to as brute-force computation 
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Thus, in this paper, we propose a hybrid method, which combines the generality 

of GAs and the scalability of Bayesian optimization, and use the combined technique 

to search for the optimal hyperparameters of DCNN’s, with the intention of 

eliminating the need for a computationally costly grid search or the requirement for 

domain specific expert model selection. The contributions of this paper are the 

following: 

• We separate the large search space of modern DCNNs into discrete 

architectural, and categorical and continuous learning subspaces, with the 

intention of applying different optimization techniques to search for their 

optimal parameters. 

• We present a biologically inspired stochastic genetic algorithm (GA) for the 

model selection problem, and use it to efficiently search the architectural 

space of DCNNs.  

• We combine the architectural search with a state-of-the-art Bayesian 

approach on top of the stochastic GA, and use the hybrid approach to 

efficiently traverse the learning subspace. 

The results demonstrate the computational superiority of the proposed method 

over the grid search technique, and whilst it demonstrates characteristics of a random 

search (Bergstra & Bengio, 2012), it has an additional advantage of using previous 

fitness evaluations and exploration / exploitation trade-offs to direct it, resulting in 

improvements in overall classification accuracies when it is compared to other 

methods. The remainder of the paper is arranged as follows. Section 2 gives a 

literature review of GAs and Bayesian optimization for DCNN's, and the motivations 

of the proposed methods, whilst Section 3 provides a brief overview of GA and 

Bayesian optimization. Thereafter, a methodology of applying the GA-Bayesian 

approach to the problem of DCNN model selection is formalized in Section 4. 

Experiments and comparisons to other techniques when using the proposed hybrid 

stochastic GA-Bayesian technique are given in Sections 5-6, before the paper is 

closed out with the limitations of the presented method and insights into future work. 

2 Existing GA and Bayesian Approaches 

2.1 GA Optimization of DCNNs 

Neuroevolution, which entails applying evolutionary processes to evolve the structure 

and architecture of neural networks, has seen several applications [Ding et al. 2013]. 

Although neuroevolutional-based techniques have been successful, their adaptation to 

DCNNs has not been studied extensively in the past, probably because of the 

complicated structure, large model size, and significant computational burden 

imposed by modern DCNNs [Desell 2017].  

Recent studies have begun focusing on the optimization of supervised DNNs. For 

example, [Loshchilov & Hutter 2016] optimized the hyperparameters of existing 

DCNNs, in a large-scale parallel setting, whilst [Desell 2017] proposed using a 

distributed network of over 5000 computers, and over two months of computation, to 

evolve the architectural and learning parameters of DCNNs. However, given the 

computational requirements of these methods, their large-scale adaptation is not 
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practical. Moreover, recent works have shown that using evolution to automatically 

learn the structure and hyperparameters of CNNs, is at the forefront of the current 

DCNN advances. For instance, [Xie et al. 2017] freshly proposed encoding CNNs as 

binary strings so that they can be subject to a standard GA, whilst [Miikkulainen et al. 

2017] newly proposed using evolution to learn the topology and hyperparameters of 

deep models. However, these methods are complex, yield compound and unprincipled 

structures, and keep several key building blocks of DCNN's such as the number and 

sizes of the convolutional filters and Dropout rates fixed. Nevertheless, these are 

essential for optimal classification performance.   

In general, traversing the parameter search space to select the optimal model 

parameters (hereafter referred to as model selection) for modern DCNNs using GAs 

or other evolutionary strategies requires excessive computation, since each member of 

the population represents an individual DCNN that needs to be trained and scored. 

Furthermore, if the architectural (number of filters, filter sizes, activation functions, 

the use of Dropout and Dropout rate) and learning parameters (optimizer, learning 

rate, batch size and weight initialization) both form part of the search space, the 

number of possible models grow exponentially with each additional parameter, thus 

making a GA based search intractable.  

Considering these challenges, a traditional, yet highly stochastic GA, is presented 

to find the near optimal architectural parameters of a DCNN with a fixed structure. 

Unlike the complicated approaches of others [Loshchilov & Hutter 2016]; 

[Miikkulainen et al. 2017], the presented method shows that such sophistication is 

unnecessary and that standard, yet highly stochastic, evolutionary processes can be 

used for model selection. Furthermore, previous work relied on elaborate computing 

power [Loshchilov & Hutter 2016], [Desell 2017] or at least the use of GPU's [Xie et 

al. 2017], [Miikkulainen et al. 2017] to merge GAs with DCNNs, however, here it is 

shown that a stochastically orientated GA guided search, can lead to classification 

improvements over baseline models, even with computation constrained to CPU 

alone. Moreover, to prevent using large GA populations and running the GA for 

numerous iterations, both of which will add to computation, the model selection 

search space is efficiently partitioned into the architectural and learning subspaces. 

Specifically, the stochastically inclined GA is used to optimize the architectural space.  

2.2 Bayesian Optimization of DCNNs  

Whilst the stochastic GA alleviates some of the challenges associated with the grid 

and random [Bergstra & Bengio 2012] search techniques, such as their computational 

load and the lack of direction towards high performing models, as the model selection 

search space increases, to search for near optimal solutions requires several runs of 

evolution with extremely large population sizes. Naturally, this significantly hinders 

computation [Elbeltagi et al. 2005]. Furthermore, although GAs are well suited to 

search discrete or categorical parameters, such as the options of the architectural 

search space, traditional GAs, are not suitable for continuous parameters, since a 

genetic search will be intractable. Thus, as the dimensionality and complexity of the 

search space increase, it can be computationally beneficial to use other methods that 

efficiently seek for the best model parameters.  

Recently, Bayesian optimization [Mockus et al. 1978] has emerged as a 

sophisticated, yet effective and powerful, solution to the model selection problem 
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[Snoek et al. 2012]. Bayesian optimization can efficiently find near optimal 

parameters for a diverse range of models including statistical methods such as 

Markov chain Monte Carlo models [Hamze et al. 2013], deep belief networks 

[Bergstra et al. 2011], and most significantly DCNNs [Snoek et al. 2012], [Swersky et 

al. 2013]. Whilst the optimization of the architectural parameters are conducted 

through a stochastic GA, the learning parameters, some of which are of the 

continuous type thereby making them intractable for a genetic search, are optimized 

through the better suited Bayesian optimization approach. Bayesian optimization has 

been applied to the model selection problem for DCNNs previously [Snoek et al. 

2012], [Swersky et al. 2013], however, the approach presented here aims at 

combining it with GAs, which has not been studied in prior work. Furthermore, 

different from other complex Bayesian algorithms or other intricate GAs, the 

presented hybrid method is simple to implement, and can be parallelized if required.    

3 Background 

3.1 Genetic Algorithms 

GAs, a subclass of Evolutionary Algorithms (EA’s), maintain a population of 

solutions that traverse a solution space and they use evolutionary processes to obtain 

near optimal solutions. Each solution is evaluated and based on the score or fitness of 

the individual solutions, the population is evolved. During the evolutionary process, 

the genetic operations of selection, mutation and crossover are used to produce 

offspring chromosomes (or children) and this simulates the natural process of survival 

of the fittest. These genetic operations evolve the population by improving its overall 

fitness and thus generate feasible solutions to the optimization problem. While other 

parameters are required, the performance of a GA is principally governed by the 

population size, number of generations, crossover rate and mutation rate. As the 

population size and number of generations increase, the probability of finding an 

optimal solution is also increased, however this comes with an increase in 

computational costs [Elbeltagi et al. 2005].  

3.2   Bayesian Optimization 

Bayesian optimization, explores the search space of a given domain, through 

deliberating exploring new areas and exploiting areas where good performance has 

been perceived, by using previous observations of an objective function to define the 

next point of observation. Similar to the GA optimization approach discussed in the 

previous section, and other typical types of optimization, in the framework of 

Bayesian optimization, we are interested in searching for the global maximum (or 

minimum) of an unspecified objective function. Formerly, for the maximum case, we 

have: 

x∗ = argmax
�	∈	�

�(x) 

where � is the objective function and � is a bounded set or the search space of 

interest, which can be conceived as a subset of ℝ�. For a general optimization 
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problem, � is more often than not a compact subset of	ℝ�, however in the Bayesian 

case, it can be generalized to more uncommon spaces that consider conditional or 

categorical inputs, or several of these inputs in the case of combinatorial search 

spaces. Bayesian optimization has two fundamental components. Firstly, it constructs 

a surrogate regression model, which is inherently probabilistic and consists of a prior 

distribution, to capture the confidence regarding the behavior of the black-box 

objective function, and secondly, an observational model defines the mechanism that 

generates the data [Shahriari et al. 2016].  

4  Method 

4.1 Stochastic GA for architectural search 

4.1.1 Methodology  

The architectural parameters are optimized using the GA, whilst the learning 

parameters are held fixed and separately optimized using Bayesian optimization. For 

the proposed GA, each member of the population is subjected to the evolutionary 

operators, and constitutes a set of topological choices, and thus an individual CNN 

model, denoted by Ι�,�. An example of these choices is illustrated in Table 1. 

4.1.2  Evolutionary process 

4.1.2.1  Initialization, Selection and Retention 

The details of the genetic process is summarized by Algorithm 1. Formerly, a set of 

randomized individual CNN models {Ι�,�}���
�  are used to initialize the population of 

CNNs. Each network is then trained on a subset (training set Ɗ��) of an image 

classification dataset	Ɗ, before being evaluated on its test set Ɗ��. Since the fitness 

function of the GA channels the evolutionary process, and is dependent on the 

optimization task, it is imperative to use an appropriate fitness function [Lessmann et 

al. 2005]. Given that the task is image classification, classification accuracy is 

selected. Here the classification accuracy takes the notation	�� �,�, as the evaluation 

of the n-th individual CNN !� �,� takes place before the crossover operation of the t-th 

generation. The training and evaluation process is computationally expensive, as each 

model is trained and evaluated from scratch, and thus, this step is the bottleneck of the 

evolutionary process. The networks are then categorized according to their 

classification accuracy, and only the top performing individual CNNs	{Ι�,�}���
�"

, where 

#$ represents the predetermined percentage of models to be retained, are selected to 

evolve the population via reproduction and become part of the next 

generation	{Ι�,�
ˊ }���

� . To prevent getting trapped in local extremes, a subset of the poor 

performing CNNs, are also retained, with a random probability	%�.  
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4.1.2.2  Crossover 

Initialization, selection and retention, is followed by random crossover &�, in which 

children CNNs are breed from randomly selected pairs of parent 

members	Ι�,'� �,	Ι�,'� of the retained population (top performing CNN’s and the 

retained poor performers). The number of children that are breed is dependent on the 

number of individuals N in the initial population	{Ι�,�}���
� , and the number of retained 

models. For example if ( = 16, in the initial population, and 25% of the top 

performers were retained, plus another two of the weaker CNNs, ten children will 

need to be breed in order to maintain the original population size for the next 

generation {Ι�,�
ˊ }���

� . With this scheme, there is a possibility of an individual CNN 

appearing in different generations, since N remains unchanged from the initialized 

population	{Ι�,�}���
� . During crossover, randomly selected topological choices from 

parent CNNs are crossed over to children CNNs, as illustrated by Table 1, where the 

selected parameters are represented by the shaded blocks. 

4.1.2.3  Mutation  

Crossover is followed by mutation of the children, where the rate of mutation is 

controlled by	%+. The lack of mutation can cause a population to lack diversity and 

devolve, and thus mutation is imperative to promote diversity, augment the capability 

of the population and facilitate propagation [Floreano & Mattiussi 2008]. To 

implement mutation, a child CNN is selected with probability 	%+ and a randomly 

selected topographical feature of it is replaced with another arbitrarily selected 

feature, resulting in a mutated population {Ι�,�
⸗ }���

� . The effect of mutation on CNN 

architecture is illustrated in Table 1, where the shaded blocks represent the mutated 

topographical parameters. Mutation in this fashion facilitates the retention of the 

majority of the strong topographical characteristics of the selected CNN, whilst also 

providing a chance of evaluating new CNN architectures. The entire evolutionary 

process is repeated for a predetermined number of generations	,. 

4.2 GA-Bayesian optimization of the learning parameter subspace 

4.2.1 Methodology 

The learning parameter optimization procedure for the given image classification task 

can be formalized by Algorithm 2, which applies Bayesian optimization to the 

learning parameter search. Here the unknown blackbox function denoted by	�, 

represents the GA inspired DCNN model, with selectable learning parameters x, and 

stochastic and independently computed accuracy - = �(x). In this context, the 

Bayesian algorithm is used to query �, for a designated set of learning parameters, 

denoted by the point 	x./� and the results are observed at a tentative observation point 

	y./�,	which represents the accuracy on the validation set, computed after training the 

model on the training set. The sequential queries of the Bayesian optimized learning 

subspace continue for a predetermined number of maximum iterations		!, which is set 

by a specified computational budget. When ! is reached, a final set of learning 

parameters, denoted by 	x1 2 is proposed by the Bayesian algorithm, and this represents 

the last GA derived architectural, and Bayesian optimized learning parameter 
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recommendation. The best recommendation of the search is denoted by		x3, since it is 

possible that		x1 2 ≠ 	x3. The learning parameters are optimized using Bayesian 

optimization, whilst the GA inspired architectural parameters are held constant. For 

the proposed GA-Bayesian model selection procedure, the top performing GA derived 

model, is subject to a Bayesian search, where each iteration 5 of the Bayesian loop 

represents a set of learning parameters, and thus an individual CNN model. The 

overall hybrid optimization procedure is shown in Figure 1. 

Conv. 1 Conv. 2 Fully conn. 1  Fully conn. 2 Act. 

Filt. 

no. 

Filt. 

 size 

Filt. 

no. 

Filt. 

size 

Filt. 

no. 

Drop. 

use? 

Drop. 

rate 

Filt. 

no. 

Drop. 

use? 

Drop. 

rate 

Funt. to 

use? 

Parent CNN_A 

64 3*3 32 5*5 16 No 0.25 256 No N/A ELU 

Parent CNN_B 

32 5*5 16 4*4 128 Yes 0.5 512 Yes 0.75 ReLu 

Child CNN_C 

32 3*3 16 5*5 128 Yes 0.5 256 No N/A ReLu 

Child CNN_M – Before mutation 
32 3*3 16 5*5 128 Yes 0.5 256 No N/A ReLu 

Child CNN_M´ – After mutation 
32 3*3 16 5*5 128 Yes 0.5 256 No N/A ELU 

Table 1: Illustration of crossover between parent CNN_A and CNN_B resulting in a 

child CNN_C and mutation in the offspring after crossover has taken place, resulting 

in a mutated CNN_ M´ 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The proposed hybrid GA-Bayesian approach 
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Apply Bayesian optimization to search space, 

and evaluate resultant Bayesian rec. 
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Stop: return the best 
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Generation < 
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No 
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Algorithm 1: DCNN model selection flow, using genetic processes of selection, 

crossover, and mutation 

Algorithm 1: CNN model selection using the GA 

Data: Reference classification training set Ɗ67 and test set Ɗ68 

Genetic process inputs: The number of CNNs in the initial and subsequent 

generations N, the maximum number of generation T, the percentage of top 

performing networks in each generation 	79 and the probability	97 of random poor 

performers being retained, random crossover :7, and the rate of mutation 	9;.  

1: GA initialization: Generate a random initial population of CNNs {<=,>}>�?
@

  

2: Train and evaluate the initial population: Train each individual A6 ?,> on 

Ɗ67 and evaluate its accuracy B6 ?,> on Ɗ67    

for each generation, t = 1; 2; 3; 4; :: ; T, repeat the following genetic operations: 

 3:  Selection: Select a percentage	79 of the top performing CNNs 	{<6,>}>�?
79

 to 

retain for the next generation, plus add random poor performing models with 

probability	97, to form the next generation {<6,>
ˊ }>�?

@
.  

4:   Crossover: Perform random crossover :7, for each CNN pair <6,D> ?,	<6,D> to 

maintain the population at N 

5:   Mutation: Select children randomly with probability 	9;, and mutate a 

randomly selected topographical choice. 

6:   Evaluation: Repeat step 2 for each generation  

until the predetermined number of generations T is complete 

Result: The final generation {<E,>}>�?
@

 of CNNs with their classification 

accuracies.  

Algorithm 2: GA-DCNN model learning parameter selection through Bayesian 

optimization 

Algorithm 2: GA-DCNN learning parameter selection using Bayesian 

optimization  

Data: Reference classification training set Ɗ67 and test set Ɗ68 

Bayesian optimization inputs: The iteration number 5 for each sequential 

Bayesian search, the learning parameters 	x� for the initial Bayesian search, and 

subsequent parameters	x./�, the observed classification accuracy - = �(x) 

observed at an initial point 	y�, and the succeeding points of observation, denoted 

by 	y./�. 

1: Bayesian loop initialization: Get an initial learning parameter suggestion x� 

from the Bayesian loop  

2: Train the initial DCNN: Train the top performing GA derived model on the 

training set Ɗ�� , with the learning parameters x�, suggested by the Bayesian loop  

3: Observe the results: Validate the model on the test set	Ɗ��, at 	y� by observing 

the classification accuracy	- = �(x). 
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for each iteration, i = 1; 2; 3; 4; :: ; I, repeat the following steps: 

4:  Subject the results to a Bayesian search: Pass the observed accuracy - =

�(x), from step 3 to the Bayesian optimization loop, and obtain the next set of 

learning parameters  

5:  Model parameter fitment and training reiteration: Fit the GA selected 

DCNN from step 2, with the new Bayesian suggested learning parameters 	x./�, 

and retrain the model on Ɗ��  

6: Evaluation: Repeat step 3, and observe the results on 	Ɗ�� for each iteration 5 , 

at 	y./� 

until the predetermined number of iterations I is complete 

Result: The final Bayesian recommend learning parameter		x1 2, and the best found 

Bayesian selection	x3, for the GA optimized architecture, and their associated 

classification accuracies	-F  and -G .   

5 Experiments 

5.1 Development Environment 

All simulations were conducted on an 8-core Intel i7-6700k CPU, clocked at 4.0 GHz 

(4.2 GHz maximum frequency), with an 8 MB cache, and 16GB DDR4 random 

access memory (RAM). The software experiments were implemented in Python using 

the Keras [Chollet et al. 2015] application program interface (API) whilst TensorFlow 

[Abadi et al. 2015] was used as the backend. Other necessary Python libraries and 

dependencies are used, such as numPy and sciPy. 

5.2 Data 

Experimentation was conducted on the MNIST [LeCun 1998] and CIFAR-10 

[Krizhevsky 2009] datasets. For the former, the traditional train-test split of 60000-

10000, was maintained for all simulations, whilst for the latter the standard 50000-

10000 train-test split was utilized. Except for normalization and data shuffling, no 

further preprocessing or data augmentation was considered.  

5.3 Experimentation on MNIST  

5.3.1 Base model and GA architectural choices 

The selected base model for the GA search was derived from the LeNet-5 model 

[LeCun 1998]; however, selected modern architectural changes such as maximum 

pooling [Ranzato et al. 2007] and Dropout [Hinton et al. 2012] were included to 

improve performance. Compared to MNIST, CIFAR-10 is more complex and 

generally requires deeper models, however, this comes with high computational costs 

(Rawat & Wang, 2017). Given the limited computational resources, only one 

additional set of convolutional and pooling layers were added to the model used for 

the MNIST simulations. Whilst the classification performance is not state-of-the art, 

the parameters inherent to the model depth provides greater opportunities for 

hyperparameter optimization compared to the MNIST model and thus it was used to 

test the proposed GA-Bayesian search technique on a more complex benchmark than 
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MNIST. The softmax loss function was used as the objective function and it was 

minimized using the traditional and widely accepted Stochastic Gradient Decent 

[SDG - Bottou 1998] algorithm, whilst the batch size was set to 64. The convolutional 

and fully connected filters were initialized using the scheme presented in [Glorot & 

Bengio 2010]. The architecture variants subjected to optimization, can be seen in 

Table 3.  

5.3.2 Brute-force / random search model selection 

To validate the GA algorithm (CNN_GA_1.X), the technique was tested against the 

grid search approach (CNN_BF_1.X), whilst for the remaining runs CNN_GA_2.X, 

CNN_GA_3.X; it was compared against the random search technique, due to the 

intractability of searching a large space using brute force computation. On MNIST, 

the models were trained for twenty epochs, whilst ten was used for CIFAR-10. For 

random search, the number of models searched was equivalent to the number of 

models of the GA search.  

5.3.3 GA based model selection  

Algorithm 1 was applied to the same search space as the grid and random searches. 

The GA parameters for the different runs are shown in Table 2. For the first run, a 

small population size and number of generations were used to save on computation 

and facilitate comparison to grid search; however, these were increased for the 

subsequent runs of the algorithm. Moreover, high mutation rates were set to promote 

diversity within the population, and prevent the GA from getting stuck in a local 

maxima. Other options of these GA specific hyperparameters were also tried but these 

led to suboptimal results. Although other combinations may produce better results, no 

hyperparameter tuning was done, since this would require the training and evaluation 

of a complete population of CNNs for several generations, which will be a 

computationally exorbitant procedure.  

 

GA Hyperparameter CNN_GA_1.X CNN_GA_2.X CNN_GA_3.X 

Population ( = 12 (	 = 	40 ( = 20 

No. of generations ,	 = 	10 ,	 = 	20 ,	 = 	10 

Percentage of models to retain 		#$ = 50% 		#$ = 25% 		#$ = 25% 

Probability of retention 	%� = 10% 	%� = 10% 	%� = 10% 

Probability of mutation %+ = 0.3 %+ = 0.3 %+ = 0.3 

Total no. of models evaluated 61 483 121 

Total no. of possible models 108 11664 34992 

Table 2: GA parameters for the different GA runs 
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Layer Hyper -parameter 

CNN_GA_1.X / 

CNN_BF_1.X / 

CNN_RA_1.X 

CNN_GA_2.X / 

CNN_RA_1.X 

CNN_GA_3.X / 

CNN_RA_3.X 

Convolutional 

layer 1 

Number of filters {8, 16, 32, 64} {16, 32, 64}    {16, 32, 64} 

Kernel size 5*5 {3*3;4*4;5*5} {3*3; 4*4; 5*5} 

Max pooling 

layer 1 
Filter size 2*2 2*2 2*2 

Convolutional 

layer 2 

Number of filters {16, 32, 64} {16, 32, 64} {16, 32, 64} 

Kernel size 5*5 {3*3; 4*4; 5*5} {3*3; 4*4; 5*5} 

Max pooling 

layer 2 
Filter size 2*2 2*2 2*2 

Convolutional 

layer 3 

Number of filters       {16, 32, 64} 

Kernel size   {3*3; 4*4; 5*5} 

Max pooling 

layer 2 
Filter size   2*2 

Fully connected 

layer 1 

 

Number of filters {64, 128, 256}   {64, 128, 256} {64, 128, 256} 

Dropout rate /       

Alpha Dropout rate 

 

0.5 

{0, 0.25, 0.5, 0.75} 

/   

   {0, 0.025, 0.05, 

0.1} 

{0, 0.25, 0.5, 0.75} 

Fully connected 

layer 2 

 

Number of filters {64, 128, 256} 
Same as Fully 

connected layer 1 
{64, 128, 256} 

Dropout rate /      

Alpha Dropout rate 
0.5 

{0, 0.25, 0.5, 0.75} 

/  {0, 0.025, 0.05, 

0.1}  

{0, 0.25, 0.5, 0.75} 

Global 

parameters 

Activation 

Function - All 

layers except 

softmax layer 

ReLu / Softmax 
   {ReLu; ELU; 

SeLu} / Softmax 

{ReLu; ELU; 

tanh} / Softmax 

Optimization 
SGD – Lr. Rate:  

0.01 

SGD – Lr. Rate:  

0.01 

SGD – Lr. Rate:  

0.01 

Table 3: Search space for the different approaches of the architectural search 
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5.3.4 Experimental results and analysis 

The mean accuracies of the top performing models (top-10, and final GA generations 

vs. their grid counterparts), the entire computational runs, and the top performing 

models for each run, are shown in Tables 4-5. Notable redundancies in parameter 

choices are observed for all techniques. Notwithstanding these redundancies and the 

stochastic nature of the computation, when compared to grid search (Table 4), the GA 

search obtained very similar results, for a drastic reduction in computation (40%
2
), 

which illustrates its ability to find the top performing models, whilst against random 

search
3
 the GA technique achieved superior mean and top performing accuracies, as 

illustrated by Table 5.  

Evaluation criteria 

Brute-force 

search   

CNN_BF_1.X 

GA search 

GA_CNN_1.X 

Mean accuracy of top 12 

models (brute / GA) 
98.94 98.95 

Mean accuracy of top 61 

models searched / all GA 

models 

98.81 98.86 

Top performing model 98.98 99.02 

Table 4: Limited GA model selection and comparison to grid search 

Evaluation 

criteria 

MNIST   CIFAR-10   

Random 

search 

CNN_RA_2.X 

GA search 

CNN_GA_2.X 

Random 

search 

CNN_RA_3.X 

GA search 

CNN_GA_3.X 

Mean accuracy - 

top 10 models  

 

99.05 

 

99.12 

 

61.16 

 

64.33 

Mean accuracy of 

the top  models / 

last generation of 

the GA  

 

98.98 

 

99.01 

 

60.15 

 

62.34 

Mean accuracy of 

complete search 

 

98.68 

 

98.96 

 

52.18 

 

60.08 

Top model 99.06 99.17 63.93 65.51 

Table 5: Extended GA model selection and comparison to other techniques on MNIST 

and CIFAR-10 

 

                                                           
2
 Grid force – 1044 minutes; GA – 620 minutes 

3
 Computation times were similar as a result of experimental design 
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5.4 Bayesian optimization implementation 

Bayesian optimization was carried out using the SigOpt API
4
 (see Dewancker et al. 

2016a, 2016b, 2016c for recent work), which utilizes an ensemble of state-of-the art 

Bayesian optimization techniques to find the optimal parameters for a wide variety of 

tasks, such as the DCNN's studied here. More specifically, it aims to maximize a 

blackbox objective function 	� [Dewancker et al. 2016b], by utilizing Gaussian 

processes to model it [Dewancker et al. 2016c] and the expected improvement 

acquisition function to trade-off exploration and exploitation of the search space. 

5.4.1 Brute-force / random search, and Bayesian model selection 

For the first Bayesian exploration, CNN_BA_1.X (70 Bayesian observations), the 

technique was tested against the brute force and random search approaches, whilst for 

the remaining runs CNN_BA_2.X (120 Bayesian observations), CNN_BA_3.X (70 

Bayesian observations), it was compared against random search, due to the 

intractability of searching a large space using brute force computation. On MNIST, 

the models were trained for twenty epochs, whilst ten was used for CIFAR-10. For 

the random search, the number of models searched was equivalent to the number of 

models of the GA search. The search spaces are shown in Table 6.  

 

Global 

parameter 

CNN_RA4_1.X / 

CNN_BA_1.X 

CNN_RA_5/6.X / 

CNN_BA_2/3.X  

Initialization 

method 

Random_normal; 

Lecun_normal; He_normal; 

Glorio_normal 

Random_normal; 

Lecun_normal; He_normal; 

Glorio_normal 

Learning rate 
0.001 – 0.01 (step size = 

0.01) 
0.001 – 0.01 (continuous) 

Optimizer Adagrad; RMSprop; SGD 
RMSprop; SGD; Adagrad; 

Adam; Adamax; Nadam 

Batch size 64  32 - 64 (with step size = 1) 

Table 6: Learning parameter choices exposed to the first, second and third Bayesian 

searches, and their random and grid counterparts 

5.4.2 Experimental results  

The mean accuracies of the top performing models (top-10), the entire computational 

runs, and the top performing models for each run are shown in Tables 7 and 8. When 

compared to grid search, as expected, the top performing models obtained similar 

results, however, the mean accuracies of the top performing models and the entire 

runs were superior for the Bayesian search, albeit for a drastic reduction in 

computation (> 40%
5
). The Bayesian approach outperforms random search for all the 

measures used in this section on both MNIST and CIFAR-10. Moreover, when the 

complexity of the search space is increased (variables treated as continuous variables 

                                                           
4
 https://sigopt.com 

5
 Grid force – 1580 minutes; GA-Bayesian search – 950 minutes 
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– see Table 6), the superiority of the Bayesian search over random search is 

amplified, as illustrated by Table 8.   

 

MNIST 

Dataset 

Limited grid vs. random vs. 

Bayesian search 

Extended random vs. 

Bayesian search 

Evaluation 

criteria 

CNN_BF 

_2.X 

CNN_RA 

_4.X 

CNN_BA 

_1.X 

CNN_RA 

_5.X 

CNN_BA 

_2.X 

Mean 

accuracies of 

top 10 models 

99.20 99.13 99.32 99.37 99.44 

Mean 

accuracies of 

the complete 

search 

98.79 98.31 99.11 98.71 99.32 

Top performing 

model 
99.37 99.24 99.38 99.40 99.47 

Table 7: Performance analysis between the brute-force, random and Bayesian 

approaches on MNIST 

Evaluation criteria 

Random 

search 

CNN_RA_6.X 

Bayesian 

search 

CNN_BA_3.X  

Mean accuracy of top 10 models 

(random / Bayesian)  

 

69.81 

 

70.24 

Mean accuracy of all  randomly 

searched models / all the 

Bayesian searched models 

 

63.21 

 

67.70 

Top performing model 70.08 70.78 

Table 8: Performance analysis between the random, and Bayesian approaches on 

CIFAR-10 

6 Comparison to other optimization techniques 

The best GA-Bayesian run, which is a combination of CNN_GA_2.X and 

CNN_BA_2.X on MNIST, and CNN_GA_3.X and CNN_BA_3.X on CIFAR-10 

were also compared against TPE
6
, which is also a Bayesian technique, and the 

Simulated Annealing (SA) optimization techniques of the state-of-the-art Hyperopt 

framework [Bergstra et al. 2015]. The number of evaluations used for these 

techniques were equated to the total number of combined GA-Bayesian evaluations, 

whilst the epochs used per model was maintained the same as the GA-Bayesian runs. 

Moreover, they were asked to traverse the combined search space traversed by the 

                                                           
6
 Tree-structured Parzen estimator 
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combined GA-Bayesian searches. As illustrated in Table 9 below, the GA-Bayesian 

technique outperformed its counterparts on all the classification measures used in this 

section, albeit for a slightly greater computational time on MNIST.  

Evaluation 

criteria 

MNIST CIFAR-10 

SA TPE 
GA-

Bayesian 
SA TPE 

GA-

Bayesian 

Mean acc. of 

top 10 

models 

99.23 99.29 99.44 69.54 69.79 70.24 

Mean acc. of 

the complete 

search 

96.64 97.1 99.14 58.76 59.11 63.89 

Top 

performing 

model 

99.3 99.34 99.47 70.55 70.65 70.78 

Computation 

time (mins) 
6226 5841 7321 2390 2395 2158 

Table 9: Performance analysis between TPE, SA and the GA-Bayesian search 

7 Discussion and conclusions 

A grid search of the architectural search space dissects the possible topological 

choices into equivalently sized (with regards to each dimension) grids, resulting in a 

uniform sampling of all the possible architectures, and this entails training and 

validating complete DCNN models at each intersection of the partitioned space. The 

downside is that this requires searching over an exponential number of dimensions, 

which is computationally exorbitant given the cost of training a single model, and this 

is further compounded when the learning search space is also traversed, since this 

subspace introduces variables that are continuous in nature. Whilst some of these 

computational costs can be reduced if a random search is conducted, random search is 

not directed towards the top performing models. On the other hand, the GA-Bayesian 

approach uses several random operations (random population generation, crossover 

and mutation) of a stochastic GA to promote a type of random search of the 

architectural space, however, it poses an additional benefit of directing the search 

towards the selection of high performing models through its selection and retention 

mechanisms, the latter of which is also stochastic in nature.  

Whilst the GA search is well suited to the discrete hyperparameters of the 

architectural subspace, using it to traverse the complex learning parameter subspace is 

not practicable. Thus, to mitigate this, the space was searched using a Bayesian search 

on top of the GA derived models, and whilst the GA-Bayesian search exhibited 

randomness with regards to the initial Bayesian samples, and subsequent exploration 

related samples, it was focussed towards the exploitation of the top performing 
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DCNN models. Subsequently, the combined hybrid search approach is able to 

significantly reduce the computational load, when compared to grid search [Pedregosa 

et al. 2011], and improve the classification accuracy, when compared to random 

search, as well as SA and TPE, as demonstrated by several simulations on the MNIST 

and CIFAR-10 benchmarks.  

The GA and Bayesian specific hyperparameters such as the crossover and 

mutation rates and the number of Bayesian evaluations, were not optimized due to 

limited computational resources, however, with a larger computational budget, 

optimizing them can lead to improved overall performance and is thus left for future 

work. The GA component of the search is time consuming, especially if a large 

number of generations are used, which was the case with the MNIST simulations. 

Whilst, this leads to improved classification performance, optimizing the algorithm to 

improve the time costs is an attractive direction that still needs to be explored. 

Furthermore, whilst the presented technique was used to search for the near optimal 

set of hyperparameters in this work, extending it to optimize other parameters such as 

the depth of the network (i.e. number of layers in a network) and using it to explore 

the various building blocks of modern DCNNs to search for novel architectures, is 

another interesting direction left for upcoming research.  Moreover, the presented 

method was commissioned on the task of image classification, which has been 

dominated by DCNNs in recent years [Rawat & Wang 2017]. However, DCNNs have 

also been shown to work well for object detection and segmentation tasks [Girshick et 

al. 2014], [Girshick 2015]. Further to the requirement of different architectural 

hyperparameters compared to image classification tasks, the techniques presented for 

object detection and segmentation tasks, such Regions with CNN features (R-CNN) 

[Girshick et al. 2014], have their own hyperparameters that require tuning. These 

hyperparameters include region warping padding, bounding box-regression and non-

maximum suppression threshold choices. Thus, given the computational and accuracy 

gains of using the proposed GA-Bayesian searching strategy, and the fact that the 

method works independently of model training and validation, it is conceivable that 

the presented optimization methods can be generalized to search for the 

hyperparameters for object detection, segmentation and other similar computer vision 

related tasks. 

In closing, separating the search space imposed by DCNN models into 

architectural and learning parameter subspaces, to respectively promote the 

convergence of small evolutionary populations in minimal generations, and to 

facilitate a Bayesian search for continuous and continuous-like learning parameters 

can lead to significant overall performance improvements over well-established 

techniques. The proposed technique becomes especially useful when operating on a 

tight computational budget, and whilst further experimentation on natural colour 

images is still required, the performance of the presented approach justifies its use as 

a viable option for traversing the high dimensional and complex search space of our 

current models. 
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