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Abstract: With the increasing number of steganography-capable malware and the
increasing trend of stealthy data exfiltrations, network covert channels are becoming a
crucial security threat – also for critical infrastructures (CIs): network covert channels
enable the stealthy remote-control of malware nested in a CI and allow to exfiltrate
sensitive data, such as sensor values, firmware or configuration parameters.
We present WoDiCoF, a distributed testbed, accessible for the international research
community to perform a unified evaluation of detection algorithms for network covert
channels. In comparison to existing works, our testbed is designed for upcoming big-
data scenarios, in which huge traffic recordings must be analyzed for covert channels.
It is the first testbed to allow the testing of parallel detection algorithms.
To evaluate WoDiCoF, we took a detection algorithm published in ACM CCS/TISSEC,
verified several of the original results and enhanced the understanding of its perfor-
mance by considering previously unconsidered parameters. By parallelizing the algo-
rithm, we could moreover achieve a speed-up of 2.89 with three nodes.
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1 Introduction

Network covert channels are stealthy communication channels that enable secret

data transfers and are dealt with in the research discipline called network infor-

mation hiding, in particular network steganography. Many of these channels are

created by hiding data in unused fields of protocol headers or by modulating the

timing between network packets. Network covert channels have been studied in-

tensively, resulting in several books and surveys, see e.g. [Mazurczyk et al., 2016;

Mileva and Panajotov, 2014; Wendzel et al., 2015; Zander et al., 2007]. Due to

the increasing trend of covert channel utilization in malware, new research on the

topic is now also relevant for law-enforcement agencies (LEAs); moreover, infor-

mation hiding-capable malware started to target Critical Infrastructure (CI)—a

trend that can be expected to continue over the coming years [Mazurczyk and

Caviglione, 2015; Mazurczyk and Wendzel, 2018]. In CI, covert channels can be

used to secretly monitor equipment and leak data about sensitive CI processes.

They can also be used as a command & control channel to secretly perform

manipulations in critical equipment.

Recent work discusses the scientific fundamentals of network covert channels,

e.g. cf. [Chen et al., 2017; Mazurczyk et al., 2016; Wendzel et al., 2016, 2017], and

several publications address the scientific fundamentals of steganography itself,

e.g. [Anderson, 1996; Anderson and Petitcolas, 1998; Katzenbeisser and Petitco-

las, 2002]. However, none of these publications addresses two central problems

of covert channel research: (1) network covert channel detection algorithms are

not evaluated in a way that fosters reproducible experiments similarly as it is

common practice in natural sciences, and (2) network covert channel detection

methods are not designed for parallel algorithms.

In this article, we present WoDiCoF (Worms Distributed Covert Channel

Detection Framework), a testbed that improves upon existing scientific method-

ology in network covert channels in the following ways:

– allows the evaluation of parallel network covert channel detection algorithms

(and thus also aids big-data analysis);

– is remotely accessible for the scientific community;

– researchers can provide code and configuration files of their detection al-

gorithms and covert channel techniques, which enables reproducible experi-

ments under specified conditions;

– provides a traffic generator that is tailored for network covert channel anal-

ysis.

To illustrate the capabilities of WoDiCoF, we moreover enhance the cur-

rent understanding of a well-cited covert channel detection algorithm published
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by [Cabuk et al., 2009] in CCS and TISSEC. We additionally parallelized the

algorithm to achieve a speed-up.

WoDiCoF was designed and implemented by the Center for Technology and

Transfer (ZTT) of the University of Applied Sciences in Worms and is addition-

ally a project that runs under the umbrella of the CUING initiative1.

The remainder of this article is structured as follows. In Section 2, we dis-

cuss related work. We present the design and the implementation of our testbed

in Section 3 while Section 4 shows the evaluation of a sample covert channel

detection using a well-known algorithm by Cabuk et al., for which we present

enhanced insights. Potential drawbacks and limitations of WoDiCoF are dis-

cussed in Section 5 while Section 6 concludes and provides an outlook on future

work.

2 Related Work

Our work is primarily related to network covert channel testbeds but also to

fundamental aspects of information hiding research. We will cover these aspects

separately.

Network Covert Channel Testbeds. Several testbeds for security research

and testing have been presented. For instance, Benzel et al. designed and config-

ured DETER [Benzel et al., 2007], a testbed comprised of hardware in combina-

tion with extensive control software to experimentally verify the effectiveness of

attacks and defenses of malicious code. Siaterlis et al. designed and configured

EPIC [Siaterlis et al., 2013], a testbed specifically designed for cyber security

studies with multiple heterogeneous Networked Critical Infrastructure

However, only few testbeds on network covert channels have been presented

so far. Zander developed CCHEF, the Covert Channels Evaluation Framework,

cf. [Zander and Armitage, 2008]. CCHEF is an extensible tool that allows the

creation of covert channels for computer networks. With CCHEF, traffic can be

embedded using traffic recordings. CCHEF is set-up using configuration files,

which would allow for reperforming conducted experiments.

Zseby et al. developed a network steganography testbed for higher education

at the Technical University of Vienna [Zseby et al., 2016]. Their testbed involves

CCHEF as a tool for covert channel creation and evaluation but also allows

teaching students the statistical analysis of abnormal traffic patterns.

Recently (November 2017), Gunadi and Zander developed an extension for

the Bro intrusion detection system. Their extension allows for detecting network

covert channels [Gunadi and Zander, 2017b]. The authors utilize the concept of

‘hiding patterns’ that were introduced by [Wendzel et al., 2015] and work on the

1 CUING (Criminal Use of Information Hiding) is an initiative supported by Europol’s
European Cybercrime Centre (EC3) cf. http://www.cuing.org
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integration of detection modules for all known patterns. Implementation details

are provided in [Gunadi and Zander, 2017a] specifically regarding the applied

analysis methods: Kolmogorov-Smirnov test (KS test), entropy and corrected

conditional entropy as well as multi modal analysis.

However, none of these testbeds address all of our major design goals, espe-

cially the support of parallel detection algorithms and the remote accessibility

of the testbed by default.

Scientific fundamentals. Our work also addresses the scientific fundamentals

of network information hiding since we foster the reproduction and verification

of covert channel detection algorithms and experiment results. Scientific funda-

mentals of network information hiding recently became a topic in the scientific

community. For instance, [Wendzel et al., 2017] discuss how the discipline could

profit from the Science 2.0 paradigm. The authors see a need for experimental

verification by re-executing experiments described in papers with data, param-

eters and tools of the particular authors. WoDiCoF aids this process by design.

[Chen et al., 2017] highlight several open problems and research challenges

in covert channel research in which especially better metrics and a better under-

standing of the square root law in the context of noisy channels are demanded.

The terminological inconsistencies between network covert channel research and

network steganography research were unified by [Mazurczyk et al., 2016]. As

pointed out in [Wendzel et al., 2016], network information hiding suffers from

inconsistently described hiding methods. For this reason, a unified description

method for such methods was proposed.

Fundamentals not specific to network information hiding but applied to the

domain of steganography as a whole are also available. A first terminology for

steganography and related disciplines, such as anonymity research, was devel-

oped under the umbrella of the first international workshop on information hid-

ing in 1996, cf. [Pfitzmann, 1996]. During the same year, [Anderson, 1996] stated

that public-key steganography is feasible. Later, he and Petitcolas clarif[ied]

what steganography is and what it can do and that public-key steganography

may be possible in the presence of an active warden [Anderson and Petitcolas,

1998]. [Katzenbeisser and Petitcolas, 2002] discuss how security can be defined

in steganographic systems. In their publication, they also summarize previous

approaches and discuss their limitations.

Relation to other research disciplines. We are aware of the fact that re-

search on covert channel detection overlaps with research on anomaly detection,

in which several approaches/heuristics have been proposed, also in a way that

addresses both domains, covert channels and anomaly detection. For instance,

[Bouché et al., 2016] performed a passive traffic analysis to mimic legitimate

traffic with a covert channel, so that it is not detectable by Snort’s Anomaly

Detection plugin. Another recent idea was to evaluate only the first N bytes of
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network packets for anomaly detection [Erlacher and Dressler, 2017]; this idea

could potentially also lead to efficient covert channel detection. An extensive

survey on anomaly detection methods and tools can be found in [Bhuyan et al.,

2014]. However, to the best of our knowledge, these approaches do not provide

research testbeds with information hiding-specific tools as we provide them for

WoDiCoF. Further, WoDiCoF is designed in a way that it can easily be extended

with modules that implement the known anomaly detection methods.

3 Design & Implementation of WoDiCoF

In this section, we first provide an overview of WoDiCoF’s design concept, fol-

lowed by a detailed discussion of its implementation.

3.1 System Requirements

The decision for the open source framework Apache Hadoop2 as our technology

platform is based on the capability to support performance and memory space

scaling by adding commodity hardware to our cluster or by simply renting cloud

computing resources. Additionally it is our goal to offer low barriers to entry

for experimentation and analysis. The ease of actually performing parallel tasks

as well as no requirements on the development language beyond supporting

standard input/output are crucial benefits in this regard. Finally, although there

is a certain up-front administrative cost to running a Hadoop based system, we

have learned that once successfully installed, only a minimum of care is needed.

Graphics processing unit (GPU) based systems might be faster for special

applications, but we are bound to support a wide variety of as yet unknown

detection algorithms. Some of these, such as ones based on breadth first or depth

first traversals would perform extremely poorly on GPU based systems. We are

confident that our approach offers good trade-offs regarding general applicability

and performance in a wide range of scenarios.

3.2 Design Concept Overview

The design of WoDiCoF contains several components as depicted in Fig. 1. Traf-

fic can either be generated using a traffic generator or by utilizing previously

recorded traffic. Traffic recordings are accepted as PCAP and legacy ethernet

format files (from NZIX, New Zealand Internet Exchange).

Following input, meta information is extracted from the traffic recordings.

This includes: timing values of recorded frames, source and destination addresses,

2 cf. https://hadoop.apache.org
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3.3.1 Traffic Generator

The main purpose of our traffic generator is to create highly configurable syn-

thetic network traffic with specific statistical characteristics.

While several tools for traffic generation exist, e.g. [Garcia and Fyodor, 2017;

Haas, 2010; Klauser et al., 2017; Stefano Avallone and Ventre, 2003], all of these

fail to combine both, flexible covert channel creation (e.g. choosing among dif-

ferent methods to manipulate header bits for information hiding) and scientific

applicability (e.g. defining value distributions for header fields or packet timing

in a way that is typical for covert channels). For this reason, WoDiCoF con-

tains its own tailored traffic generator that allows both: the generation of covert

channel traffic and the typical options of other traffic generators, i.e. to define

a detailed configuration of several traffic characteristics, such as packet count

and distribution of certain values. Our traffic generator is written in Python and

uses YAML as a configuration markup language. It utilizes the Scapy packet

generator5 internally to provide a broad configuration interface and support for

multiple protocols (TCP, UDP and ICMP).

For each protocol there are a number of configuration parameters available.

In the case of TCP, it is possible to simulate a handshake and answers with

acknowledgements while the TCP flags and IP options can be manipulated.

For ICMP, it is also possible to simulate responses and to manipulate the IP

options. For UDP, is it again possible to manipulate the IP options. The number

of generated packets can be defined for all protocols.

As mentioned, a central functionality is the manipulation of IATs between

packets. The IATs can be generated using a variety of statistical distributions or

can be drawn from a user defined list with given probabilities. It is also possible

to add another layer of noise on top of the IATs to simulate network jitter. This

gives the user several options to simulate legitimate traffic and covert channels.

To make the generated traffic reproducible, all used PRNGs are seeded and the

seed can be defined in the configuration.

3.3.2 Network Data Interface and Metadata Extraction

The traffic recording input is converted into a comma separated value file (CSV)

format that contains only the metadata that is relevant for the detection al-

gorithms. The conversion is done using scripts. The CSV input data is then

provided to the Apache Hadoop framework.

3.3.3 Utilization and Functionality of Apache Hadoop

The Apache Hadoop Library allows for the distributed parallel sorting and pro-

cessing of arbitrary data on commodity systems. Possible clusters can be com-

5 cf. http://secdev.org/projects/scapy/
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posed of a few or of up to thousands of nodes. Hadoop employs the MapReduce

programming model [Dean and Ghemawat, 2004], a distributed parallel data

processing paradigm inspired by functional programming concepts. This enables

sorting and processing of suitable big data with the benefit of reduced overall

computation time.

The MapReduce programming model consists, unsurprisingly, of two stages:

the mapper and the reducer, both of which are parallelized. We use the mapper

stage to sort and group the input data into flows. A flow determines an IP-

conversation between two endpoints. The covert channel analysis as well as some

preprocessing, such as computing IATs from frame times, is performed in the

reducer stage.

Each stage in the Hadoop system expects data to be provided as key/value

pairs. In our mapper stage, the key is a tuple with the following structure:

[PCAP input filename, protocol name, IP source address, IP destination address,

source port (if applicable), destination port (if applicable), frame time] which

together define a flow. The value is a tuple with the following structure: [frame

time, packet number, . . . ]. The value tuple is used for the actual covert channel

detection in the reducer stage and can be extended and modified as needed

to support different analysis methods. The frame time is part of the key as

well as part of the value to make it possible to implement a Secondary Sort

Algorithm [Gunarathne et al., 2015], which enables the reducer stage to provide

IP-conversations with a list of chronologically sorted values. Arbitrary numbers

of modules can be called in the reducer to process the data. The results are

stored in CSV formatted files on the HDFS volume.

The input data are CSV files which are easy to split by the Hadoop frame-

work to achieve best results in terms of overall computation time. HDFS dis-

tributes the input data within the cluster. Both mapper and reducer processes

are replicated and distributed over the cluster. This setup works well using a de-

fault configuration but can be tuned further to achieve optimal results. Overall

computation time can be adjusted by changing the cluster size.

3.3.4 Visualization

After the detection algorithms process the traffic metadata using Hadoop, all

results are aggregated from files residing on HDFS to CSV formatted files on a

Linux filesystem. We apply scripts to process these results to generate visualiza-

tion output. This is currently done using shell scripts (bash, awk, sed and similar

tools) as well as gnuplot, weka6 and Python. By default, plots are generated for

all given parameters and for each flow, resulting in Gigabytes of output plots,

depending on the size of the input traffic and the number of flows. However, a

6 https://www.cs.waikato.ac.nz/ml/weka/
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pre-selection is possible (e.g. by defining thresholds for certain parameters in the

scripts).

The usage of scripts in combination with the mentioned UNIX tools and

frameworks gives rapid results but is error-prone and cumbersome if parameters

have to be adjusted. We are currently evaluating approaches to offer user in-

terfaces for parameter adjustments which are self-explanatory and workflows to

speed up the generation of plots for immediate visual results. We are targeting

a professional audience with limited programming skills as well as an academic

audience.

4 Evaluation of a Sample Approach

We evaluated the functionality of WoDiCoF by implementing a well-known de-

tection algorithm presented by [Cabuk et al., 2004, 2009]. The paper was initially

published in ACM CCS 2004. In 2009, an extended version of the paper was

published in ACM Trans. Inf. Syst. Security (TISSEC). In sum, Google Scholar

reveals more than 500 citations of these publicaitons.

In the following, we first introduce the selected detection algorithm by Cabuk

et al. and then explain how we extended the evaluation of their algorithm in

comparison to the original work of the authors using WoDiCoF and compare

our evaluation results with those of Cabuk et al. To the best of our knowledge,

this is the first re-evaluation of a major covert channel detection algorithm.

Enabling such re-evaluations (or proofs), as proposed in [Wendzel et al., 2017],

was a major goal of WoDiCoF.

4.1 Description of the Used Detection Approach

The underling scenario of Cabuk et al. are storage and timing channels that

transfer data in the following ways:7

1. storage channel: either send data within pre-defined time-frames of duration

τ , or not (indicating a zero or one bit, respectively).8

2. timing channel: Hidden data is encoded in IATs where the IAT τ encodes a

zero bit and the IAT 2τ encodes a one bit.

7 In the original paper by [Cabuk et al., 2009], this approach is described in Sec-
tion 4.1.2.

8 Note that this understanding of a storage channel is not perfectly aligned with
the typical representation of a network covert storage channel as e.g. defined
in [Mazurczyk et al., 2016]. However, in order to stay within the terminology of
the original paper, we apply the distinction used by Cabuk et al. in the remainder
of this article.
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The detection algorithm operates as follows: First, the IATs between network

packets IAT1 . . . IATn are recorded for every flow. IAT values > 1 are dropped to

reduce noise. Secondly, the IATs are encoded into strings using a function which

we call E. E first rounds the IAT to the first two significant digits behind leading

zeros. E also encodes zero digits as an alphabetical character. For instance,

the authors translate the IAT 0.00247s to ‘B25’ (‘B’ represents two zeros) and

0.0247s to ‘A25’ (‘A’ represents one zero). All string-encoded IATs of a flow are

afterwards concatenated to a string S, i.e.

S = E(IAT1) || E(IAT2) || . . . || E(IATn),

with || representing a string concatenation.

Thirdly, the authors approximate the Kolmogorov complexity of S, which is

the maximum compression of a string, by compressing the string with the gzip al-

gorithm, i.e. C = gzip(S), and then calculating the compressibility (compression

rate):

κ(S) =
|S|

|C|
,

with |x| representing the length of the string x.

Cabuk et al. compare the compressibility of covert channel flows with non-

covert channel flows. Their results indicate that covert channel flows and non-

covert channel flows can be distinguished in specific cases that were presented

in the original paper (we will discuss their results in Sect. 4.3).

Cabuk et al. transferred a textual string over their covert channel, using a

connection between Purdue and Georgetown universities with τ set to 0.04, 0.06

and 0.08 sec. Their goal was to determine, whether the compressibility approach

allows to accurately detect a covert channel in a short window [Cabuk et al.,

2009]. The authors used a window size of N = 2, 000 packets. They performed a

detection of covert channel traffic and compared their results with detectability

results for legitimate traffic, including noise.

4.2 WoDiCoF-based Enhancement of the Analysis

In comparison to the original analysis by Cabuk et al., we did not reperform all

of their conducted experiments. However, we extended the evaluation of their

algorithm for the following aspects to underpin the capabilities of WoDiCoF:

1. We parallelized the algorithm to evaluate its performance depending on the

number of nodes operating in parallel.

2. We implemented the coding of string S using different precisions of digits

behind leading zeros of the IATs, i.e. not solely considering the first two

significant digits behind leading zeros.
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3. We evaluated the algorithm based on different content transferred over the

covert channel. In particular, we transferred repetitive strings in the form (i)

“ABABAB...”, (ii) “The quick brown fox jumps over the lazy dog.”, (iii) the

first page of Goethe’s Faust9, as well as Faust compressed using (iv) GZIP,

(v) ZIP, and (vi) BZIP2. No error-correcting codes were applied.

4. We analyzed covert channel traffic using different connections: a connection

over local ethernet switches and a connection with a remote host in another

autonomous system.

4.3 Evaluation Results

In the following, we provide our results for the parameters mentioned in the

previous section and compare our results with results provided by Cabuk et al.

(if available).

4.3.1 Parallel vs. Sequential Performance

One of the design goals of WoDiCoF was to enable parallel execution of detec-

tion algorithms using the Apache Hadoop framework. To achieve parallelization,

input data are dynamically split by Hadoop and fed into the system. Hadoop au-

tomatically monitors the utilization of each node and ensures an equal workload

distribution. As expected, this simple parallelization already achieves a speed-up

as shown in Fig 2.10 We calculated the speed-up Sn of the algorithm running

on n nodes by dividing the serial execution time T1 by the time the algorithm

required to complete its execution on n nodes (Tn):

Sn = T1/Tn

This calculation is analog to the classical speed-up calculation described in

[Tanenbaum and Bos, 2015], where the theoretical speed-up is calculated depend-

ing on the available processors. However, in our case, T1 and Tn were determined

via time measurements.

We processed the NZIX-II recordings11 that were used by Cabuk et al. and

which contained 835 Mio. packets with the detection algorithm described above.

If the code was executed on only one node, it took 3:05 hrs to process all data.

When two nodes were used, the overall runtime was roughly halved (1:36 hrs,

9 The text of Faust is available under http://gutenberg.spiegel.de/buch/-3664/4.
10 Please note that this flow-based workload assignment will not work for detection

algorithms that need to consider data of multiple flows, cf. Sect. 5. Such algorithms
are, for instance, required in the case of protocol switching covert channels (PSCC).

11 https://wand.net.nz/wits/nzix/2/
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speed-up: 1.927). For three nodes, the computing time was 1:04 hrs (speed-

up: 2.890), indicating small amount of serial code. However, these values solely

include the parallel execution of the detection algorithm, not the pre-processing

of the NZIX-II data, i.e., the initial extraction of meta-data, which can take

multiple minutes for such large traffic recordings.

All nodes were equipped with the similar resources (AMD Opteron 4180 or

Intel Xeon E5603/E31260L CPUs, with eight cores each (running eight threads

for Apache Hadoop), 4-8 GBytes of RAM, 1 GBit/s network link).

Figure 2: Comparison of computing time for compressibility-based detection de-

pending on the number of nodes operating in parallel.

4.3.2 Compressibility-dependence on String Coding Precision

Cabuk et al. utilized a precision of two, i.e. the first two significant bits of the

IAT where taken into account to perform a string compression. While Cabuk et

al. selected only a few flows which all featured a κ value lower than those of their

covert storage channels, our results in Fig. 3 show that the precision (number of

utilized relevant digits behind leading zeros) clearly influences κ. As also visible,

the legitimate traffic in the NZIX-II recordings results in κ values that strongly

overlap with the κ values of covert channel traffic for all tested protocols, i.e.

legitimate UDP, TCP and ICMP traffic. However, for a higher precision, κ of
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legitimate traffic is smaller (below seven for precission 4). Moreover, storage

covert channel (SCC) and timing covert channel (TCC) traffic overlap in their

κ values.

Figure 3: Dependence of κ on the type of applied precision and traffic type.

4.3.3 Compressibility-dependence on Transferred Data Type

Cabuk et al. did not distinguish how the transferred data of the covert channel

influences the compressibility (κ). As long as encrypted, random or compressed

content is transferred, our compressibility results for storage channels are at least

similar to those of Cabuk et al., i.e. our results partially confirm the results of

Cabuk et al. (see Fig. 4). However, we also transferred different types of plaintext

over the covert channels. In particular, we additionally transferred the text Faust,

the repeating string “ABABAB...”, the GZip, BZip2 and ZIP compressed version

of Faust and the text “The quick brown fox jumps over the lazy dog” in loops

over the channel. Each traffic was transferred using the τ values used by Cabuk

et al. i.e. 0.04 sec, 0.06 sec, and 0.08 sec.

Fig. 4 shows the results for a storage channel (SCC). For τ = 0.04 sec, our

results match those of Cabuk et al. if the data is compressed with ZIP or GZip.

We achieve a lower compressibility for BZip2 and significantly larger compress-

ibility scores for Faust and highly-compressible content (“ABABAB” and “The

quick brown fox ...”).
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For τ = 0.06 and for τ = 0.08, we cannot confirm consistency with the

result of Cabuk et al. in our experiment as the compressibility of Cabuk et al.

matches approximately the compressibility of uncompressed the Faust text. For

all compressed data, we achieve lower κ values.

The texts “ABABAB...” and “The quick brown fox” resulted in high com-

pressibility scores for all tested values of τ .

Cabuk et al. observed that with an increase [of ] timing interval for IP SCC,

compressibility increases, too. Our results cannot confirm this observation as

shown in the difference for our values and the values by Cabuk et al. in Fig. 4.

Instead, our compressibility results slightly decreased or remained stable. How-

ever, it must be noted, that we did not transfer exactly the same text that was

used by Cabuk et al. (but several other texts) and used our own covert channel

tool to generate the covert traffic (no error-correcting codes were applied).

Figure 4: Dependence of κ on the type of transferred content for SCC, in com-

parison to results provided by Cabuk et al.

Unfortunately, Cabuk et al. only provided SCC results and no TCC results in

their paper. We performed the necessary experiments to show how κ is influenced

for timing channels, depending on content type and τ value (Fig. 5). As shown

in the figure, most of the κ values for TCC are in a range of 10-15. Depending

on τ , we could also observe a strong difference for the repeating sentence “The

quick brown fox ...” (colored in lilac).
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Figure 5: Dependence of κ on the type of transferred content for TCC.

We also analyzed how the κ values for legitimate traffic are distributed for

the NZIX-II data recordings. We applied a precision of two since it was used

by Cabuk et al. As shown in Fig. 6, the largest part of the legitimate traffic

(TCP, UDP, ICMP) results in κ values below ten. However, a significant amount

of legitimate traffic results in larger values. Given that κ values between 5-7

were presented as SCC traffic by Cabuk et al. and that our experiments showed

that most of the TCC traffic has values below 10, a significant amount of the

legitimate traffic would result in false positives if a detection would be performed

based on the compressibility.

4.3.4 Compressibility-dependence on Network Connection

Finally, we compared, how the type of the network connection influences the

compressibility as different connections provide different jitter and performance.

We transferred traffic over the local university network in Worms (two hops over

ethernet) and between an ISP-hosted server in Frankfurt and our university

network (seven hops for most routing paths). Again, we applied the previously

used τ values of Cabuk et al. (0.04, 0.06 and 0.08 sec) with a precision of two.

We transferred both, TCC and SCC traffic for all combinations of parameters.

As shown in Fig. 7, remote traffic resulted in overall lower compressibility

scores (4-14 instead of 5-68), which we assume is influenced by the increased

network jitter. This statement applies for all three τ values as well as for both

covert channel types, SCC and TCC.
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Figure 6: Histogram of κ values for legitimate traffic from the NZIX-II recordings.

Figure 7: Dependence of κ on the utilized network connection and τ parameters

for both, TCC and SCC traffic.

While Cabuk et al. did not compare different types of network connections,

they introduced several degrees of noise (10%-50%) to legitimate traffic and ob-
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served a decrease in compressibility. This is similar to our experiment which com-

pares a seven-hop high-jitter connection with a two-hop low-jitter connection.

We thus consider our observation as an indicator that confirms these findings of

Cabuk et al.

5 Discussion

Despite the discussed advantages, WoDiCoF is linked to a number of drawbacks.

First of all, WoDiCoF currently allows no live-traffic analysis as it requires

traffic recordings in the form of PCAP files or NZIX’ legacy ethernet format

files.

Our testbed is currently flow-oriented, i.e. it does not support detection al-

gorithms for inter-protocol steganography or protocol switching covert chan-

nels [Jankowski et al., 2013; Mazurczyk et al., 2016; Wendzel and Keller, 2012,

Chapter 4]. Such channels could, however, be detected if each protocol/sub-

carrier would be analyzed separately and results would then be merged in an

additional step.

What can also be considered a drawback of WoDiCoF is that it requires

a fundamental understanding of Apache Hadoop. The requirements are low if

researchers or professionals (e.g. LEA users) use the testbed with the already

implemented algorithms. However, a deeper understanding of Apache Hadoop is

required if new detection algorithms shall be added.

Currently, the visualization is based on a simple heuristic (e.g. threshold

values). This means that for a larger traffic recording with thousands of flows,

graphs are generated for all flows in combination with used parameters (e.g.

for all τ values and all configured precisions of significant digits in inter-arrival

times), resulting in several GBytes of graph outputs. The results are challenging

to select by hand and thus need decision-making support. We plan to add a

visual analytics component for WoDiCoF to aid this problem.

There is also a limitation regarding the evaluation of the compressibility

algorithm by Cabuk et al. as we applied neither error-detecting codes nor error-

correcting codes. However, this could be added and would most likely not reveal

new key insights that are significantly different from the provided content types.

Tools such as CCHEF could be used as a part of WoDiCoF to generate such

traffic.

Further, Cabuk et al. enhanced their approach by combining different mea-

sures for more accurate detectability and also modified their compressibility

approach to an approach with sliding windows. We did not performed measure-

ments to compare our results with these extended versions.

Finally, it must be noted that Cabuk et al. discuss several limitations of their

work and the problem of finding an optimal window size parameter in their orig-

inal work. Their compressibility measure can thus be seen as a sophisticated
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detection approach. However, our results underpin that if certain parameters

change (e.g. TCC instead of SCC traffic or change of transferred content), the

compressibility scores highly vary. Moreover, we could show that the compress-

ibility values of legitimate traffic can significantly overlap with the compress-

ibility values of covert traffic. Overlapping compressibility values of legitimate

and covert traffic would result in false-positives or false-negatives, depending on

whether a compressibility threshold for detection is set too low or too high.

6 Conclusion and Future Work

Firstly, we present WoDiCoF (Worms Distributed Covert Channel Detection

Framework), a testbed for experiment verification and parallelization of detec-

tion algorithms in network information hiding. Our testbed allows the imple-

mentation and evaluation of parallel and sequential detection algorithms and

the generation of tailored traffic for research.

With WoDiCoF, we were secondly able to provide additional insights in a

well-cited covert channel detection algorithm presented by Cabuk et al. The

tested algorithm is based on a compressibility score. We performed analyses

with several additional parameters not originally tested by the authors and plan

to analyze more parameters in future work, especially sliding window sizes. Our

results show that we could confirm some of the evaluation results provided by

Cabuk et al. but that under varying conditions (e.g. different content type or

different type of covert channel (timing vs. storage)), results significantly differ.

This underpins the importance of experiment verification in network information

hiding.

Thirdly, Cabuk et al. state that more parameters could be analyzed to iden-

tify covert channels but that this would require additional hardware or processing

time, and is best done in an offline manner. This is a key aspect provided by

WoDiCoF. We have tested the parallel efficiency of our testbed and could deter-

mine a speed-up for the algorithm by Cabuk et al.

Currently, we are working on the implementation of additional detection

algorithms for both, covert timing and storage channels. In particular, we plan

to implement detection algorithms for more ‘hiding patterns’. Moreover are we

planing to extend WoDiCoF with a visual analytics component to aid LEA

users’ analysis phase. WoDiCoF will further be jointly developed together with

partners of the CUING initiative and aims to provide a remotely accessible

testbed especially for academic and LEA users.
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