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Abstract: Nowadays automatic interaction systems are developed and new possibilities
for communication appeared. Digitalization of various information becomes a common
pattern, and with the development in technology simple sentences or commands can
be processed directly in the machine systems. Automatic chat-bots, question-answer
systems and various computer solutions that support man-machine interactions need
efficient methods for classification if the input is correct. The correctness of the input
secures that it shall be formulated by a human and not by another machine which is
just trying to break into the system.

In this article we present a model for language processing to verify some basic aspects of
correctness. For the proposed processing an input is decomposed by applied calculation of
language descriptors, which are forwarded to the probabilistic neural network processor
for validation. The proposed model is examined and presented in examples for English
language, and the numerical results are discussed in terms of possible advantages and
disadvantages in security aspects.
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1 Introduction

Language Interfaces (LI) are interfaces that allow users to communicate and

interact with machines (computers, robots, etc.) using a some communication

aspects from natural human language, however sometimes without any specialized

structure such as programming language as discussed in [Zhou et al.(2004)]. The

use of specialized command languages represents a major hurdle for technology

adoption. People use the natural languages in everyday life, so a possibility to
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use them also in communication with machines would give additional capacity in

some peculiar areas. This is especially true for elderly or impaired people, who

are the primary target user group of Assisted Technologies (AT). Mainly these

two groups may not be as computer proficient as other users, so technologies

that support them with computers can open new development in AT. Also the

translation of natural language to specific machine languages is computationally

complex and may require significant time, which interrupts the flow and sense

of human-computer or computer-computer dialog. While natural speech as a

computer input modality has been extensively researched for computer and

mobile systems such as speech-to-text transcription, the speech and natural

language have not yet become widely used to control robots and other personal

assistants. According to research of [Harnad(1990)] a significant barrier for robots

to understand natural language lies in the symbol grounding problem: relating

symbolic objects such as words to corresponding real world objects and actions.

The use of technology which allows entering natural language text or recording

natural speech, allows to make the AT systems as well as other smart household

appliances more usable and thus acceptable for a wider public. Therefore, language

systems provide a layer of abstraction between users and machines to bridge the

semantic gap. Despite the potential benefits there are still major challenges ahead

that limit the widespread adoption of this technology. Simple lexical analysis or

more complex semantic models such as ontologies can help to classify if the input

is correct, and therefore comes from the human user or e.g. the input makes no

sense so therefore may come from a machine that is trying to break into the

system.

As in [Shneiderman and Maes(1997)] has been argued, the essential feature

of a user interface is predictability that provides the users with the sense of

being in control. Predictability requires that the input is able to deal with

complex requests of a user in a transparent way. The mismatch between users

mental model of machines capabilities and the machines exact command set

influences all automatic communication systems. The problem is that humans

are used to formulate their tasks in terms of goals that may require a sequence

of commands to attain, while machines are programmed to recognize specific

commands matching a single action but without knowledge of a final outcome. As

the exact implementation of matching all feasible user requests with the machines

command set is not feasible, the Computational Intelligence (CI) methods can

be employed to analyze and interpret user requests. It is not a straightforward

task and requires extensive efforts. The system has to be trained on a limited

number of available examples corresponding (or even simply matching) machine

commands.

The most common authentication problems include elliptical commands which

have some required words omitted, but they can be recovered from the context;
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anaphora when pronouns (e.g., she, he, they, etc.), possessive determiners (e.g.,

her, his, their), or noun phrases (e.g., these people) are used for implicitly

denoting entities mentioned in the discourse; grammatical mistakes (e.g., missing

articles, etc.), which shall not prevent from correct understanding; interpretation

of determiners (e.g., a, each, some, every, several, etc.); conjunction; etc. The

success of solving these problems may determine how users evaluate the system

in terms of its usability, or in terms of security when unauthorized access will be

discovered.

1.1 Related works

Many existing approaches for Human-Robot Interaction (HRI) either use simple

language understanding (e.g., keyword search), or large corpora of hand-annotated

training data to pair natural language with robot command language. For example,

[Meriçli et al.(2014)] reported results that allow users to specify a task program to

be stored and executed by the robot. Language understanding is done by keyword

search and assumes certain words in a particular order. Some approaches pair

robot actions with language descriptions, and then build high-level models that

map language instructions to action sequences as presented in [Misra et al.(2014)].

Another approach enables a robot to learn a sequence of actions and the lexical

items that refer to them from language instruction and dialog [She et al.(2014)]. In

our approach we focus on acquiring lexical items to overcome linguistic variation,

and therefore we try to omit referring to and learning from incomplete sequences.

In various research we can find approaches that propose to use semantic parsing

to facilitate language instruction for robots. It is possible to train a parser to

map natural-language instructions to control. A controlled language and a hand-

crafted lexicon can be used to map natural language to action specifications as

proposed in [Matuszek et al.(2013)]. In [Plauska and Damaševičius(2013)] was

proposed a visual language syntax, which allows formulating inputs composed of

visual graphs and mapping them to robot language based on semantic mapping

encoded in ontology.

Neural Networks (NN) are structures that show capabilities similar to human

intelligence. Therefore NN in various combinations serve in computer systems.

Sentence can be processed in decomposed parts, where each of them is forwarded

to one of NN layers: Sentence, Knowledge, Deep Case. This structure with applied

network dictionary was developed in NN based associative memory question-

answering system reported in [Sagara and Hagiwara(2014)]. Sometime hybrid

processing can improve man-machine and machine-machine interaction. It is

possible to implement image-text combined processing to model learning based on

words representation where multi-modal neurons serve as processors as discussed

by [Kiros et al.(2014)].
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In this article we present a NN model for automated processing of input

grammar structures. Proposed model is composed to serve as automated validation

based on the application of a neural network trained on proposed semantic

descriptors. In our approach we have used a model of dedicated probabilistic

neural network processor for an input vector of decomposed input. The network

is trained to validate the input language for correctness and therefore help on

some initial classification of sentences. Proposed model is trained using gradient

method which is very efficient in processing digital inputs as in our case. The

results show high potential of this method, and confirm that application of neural

classifiers can serve in automated interaction support.

2 Input processing

In our approach we have validated two methods that process inputs preserving

grammar concerns. One way is to process it as a combination of subject and

predicate what is called common grammar approach, for which we use some

basic rules: predicate describes properties of subject and contain a verb to

describe actions of the subject what is called nexus relation. However this type

of approach is hard to adapt to compose a computer system that can evaluate an

order between parts of language just from a simple input. Second way is called

modern grammar approach.

Figure 1: Sample decomposition of two correct inputs: ”Sun is shining now.” and

”Can we see the sky?” according to modern grammar approach, where A is an

argument of the predicate, B means predicate group and C represents second

argument of the predicate.

2.1 Modern grammar approach

To compose a processing model we need to describe somehow a predicate group,

in which we have a verb subgroup specific for each tense: present, past or future.

To find it we use volsunga algorithm in combination with co-occurrence matrix
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Figure 2: Sample decomposition of two incorrect inputs: ”House sits cat at.”

and ”The sky see we.” according to modern grammar approach, where A is an

argument of the predicate, B means predicate group and C represents second

argument of the predicate.

in which we have calculated numbers that describe possible neighboring for

particular language parts, e.g. after expression the most likely appears a noun or

an adjective. Volsunga algorithm in a classic form given by [DeRose(1988)] finds

optimal paths based on the Matrix of Probabilities (MP)

AT NN PPO PP$ RB V B V BD

AT 186 0 0 8 1 8 9

NN 40 1 3 40 9 66 186

PPO 7 3 16 164 109 16 313

PP$ 176 0 0 5 1 1 2

RB 5 3 16 71 118 152 128

V B 22 694 146 98 9 1 59

V BD 11 584 143 160 2 1 91

where the coefficients are given for: NN – noun, PPO – obj. personal pronoun,

PP$ – the possessive thereof, RB – adverbs, VB – verb, VBD – verb (the past),

AT – article.

Neural validator needs numerical values which can describe the input. We

propose a model of descriptors based on decomposition algorithm. The algorithm

takes the first word and for example - assumes that it is a verb. In the next

step, we calculate probability that next word is another part of speech. For this

purpose, the algorithm uses MP. We calculate the product of all the probabilities

using the following formula

η =

n−1∏
i=1

p(wi, wi+1) (1)

where n is the number of words in analyzed input and wi is a particular word.

Probability that word w1 occurs next to w2 is described as p(w1, w2). For the
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input decomposition we find all possible paths and select the one that has the

highest probability η. In each iteration, a new word is added and the next

optimal solution is searched for. At the end the most optimal path is returned.

Decomposition procedure is presented in Alg. 1.

Algorithm 1 Simplified decomposition algorithm

1: apply probability matrix

2: for all pairs of words in the NLC do

3: Calculate probability for analyzed pair p(wi, wi+1)

4: Compose path

5: Calculate probability for this path using (1)

6: end for

7: Return the best solution

2.2 Proposed descriptors

We propose a model for decomposition of the input. Intention of the model is

to introduce measures that can be used for descriptions of relations between

words that in a numerical form can be presented to neural network. In each

sentence we have the main part: the predicate that sets relations between other

words to compose clear information about the action. These relations are to state

who is acting and what are conditions of acting. In the proposed model input is

decomposed. Decomposition starts with position of subject and verb, which are

used to calculate descriptors

Φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φsubject =

√√√√√√
n∑

i=0

(wi)
2

p(NN,wi)

subject

φpredicate =

√√√√√
n∑

i=0

(wi)
2

c · p(V B,wi) + c · p(V BD,wi)

verb

(2)

where n is the number of words in input and probabilities are taken from MP.

Additionally we compute statistical descriptors of other arguments

Γ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ1 =

√√√√1

η

n∑
i=0

p(wi, verb) + p(wi, subject)

c · p(wi, RB)

γ2 =

√√√√1

η

n∑
i=0

p(wi, verb) + p(wi, subject)

c · p(wi, PPO) + c · p(wi, PP$)

(3)
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and

Ω =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1 =

J∑
j=1

p(wj , wj+1)

cj

ω2 =

M∑
m=1

p(wm, wm+1)

cm

(4)

where cj is the number of words in j-th argument and cm is the number of words

in the group. Coefficient c is 0 if evaluated pair of words is incorrect or 1 in other

case. However if e.g. p(word1, word2) for any pair is equal to 0, therefore in case

of division by 0 we assume the descriptor to be equal to 0. Descriptor Γ represents

the average amount of information for subject and predicate in input and Ω is

descriptor of words in the predicate group. For each of the processed inputs we

compose a descriptor vector that will be forwarded to the neural network for

validation. This vector is composed of descriptors Φ, Γ , Ω and coefficients

x = [η, φsubject, φpredicate, γ1, γ2, ω1, ω2, verb, noun, cj , cm] (5)

what represents a numerical description of the processed input.

3 Proposed neural validation

Validation of proposed descriptor is based on Probabilistic Neural Network (PNN)

architecture. We use a topology of Feed Forward Neural Network (FFNN) but

activation functions are based on statistical distributions therefore we call it Radial

Basis Probabilistic Neural Network (RBPNN). [De-Shuang(1999)] developed this

approach what gave introduction to the research on various possible applications.

3.1 Structure and Topology

Applied neural network is constructed of 11 neurons in the input layer that accept

descriptors, 7 neurons calculated as 11 − �√11 · 1� composed in �√11 · 1� = 3

hidden layers and 1 neuron in the output layer to validate. Input neurones supply

descriptor values to the neurones in the hidden layer. These pattern units calculate

product (·) of descriptor vector x by a weight vector W(0). As an activation

function proposed RBPNN uses exponential probabilistic distributions for the

j-esime input neurone

ũ
(1)
i ∝ exp

( ||W(0) · x||
2σ2

)
(6)

where σ represents statistical distribution spread of words in input and weights

W(0) are computed as statistical centroids of all inputs in training set. Rest of
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Figure 3: A sample of the proposed continuous training feedback model.

hidden layers similarly preserves PNN architecture for weighted sums of values

received from preceding neurones

u
(k+1)
i ←

11∑
j=1

wjiũ
(k)
j (7)

where wjm represents connections weights between k and k + 1 hidden layer for

k = 1, 2, 3. Similarly for these hidden units we compute an output

ũ
(k+1)
i ∝ exp

( ||W(k) · u(k)||
λ

)
(8)

where λ is the distribution shape control parameter, similar to σ applied in (6).

Pattern units process inputs nonlinearly and hidden units selectively sum received

signals. Output unit is nonlinearly validating an input sequence since input layer

is matching input vector size, whereas hidden units match the number of proposed

7 descriptors for input. RBPNN validation is trained with Back Propagation

Training Algorithm (BPTA), where we adjust weights between hidden units and

output unit. Weights between pattern units and first hidden layer are not adjusted

in adopted training since they directly represent statistical centroids of all inputs

in the training set.

3.2 Training with Active Critic

In proposed model an adaptive-critic reinforcement learning was applied with

BPTA as training procedure presented in Fig. 3. In training process RBPNN

model takes advantaged of two critics: active and adaptive. Active function is

introduced to act on each decision and in case of incorrect validation returns

the input to repeat training process. Adaptive function is introduced to confirm

results of validation. Therefore proposed model is trained to validates inputs: filter

outputs to confirm correct decisions and reject wrong suggestions what actively
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Algorithm 2 RBPNN training algorithm

1: Generate random weight

2: Forward calculated descriptors vector (5)

3: while global error>0.1 do

4: for all layers in RBPNN do

5: for all neurons in layer do

6: Calculate activation for input (6), hidden and output (8)

7: end for

8: end for

9: for all all layer in network do

10: for neuron in output layer do

11: Calculate error using (9)

12: Correct weights (13)

13: end for

14: for all neurons in previous layer do

15: Calculate error using (10)

16: Correct weights (13)

17: end for

18: end for

19: Show results to active critic for validation

20: end while

stimulates validation process. Training process is using ξ as error function, for

output unit

ξ(K) = −β∂ũ(K)
i (1− ∂ũ

(K)
i )(ρ− ∂ũ

(K)
i ) (9)

where ρ is expected output, and for other units we have

ξ(k) = −β∂ũ(k)
i (1− ∂ũ

(k)
i )ũ

(k)
i . (10)

For applied gradient descent algorithm weight modification vector Δw(k) to

modify weights for k = 1, 2, 3 is

Δw
(k)
ji = −β ∂ξ(k)

∂w
(k)
ji

= −β ∂ξ(k)

∂ũ
(k)
j

∂ũ
(k)
j

∂u
(k)
i

∂u
(k)
i

∂w
(k)
ji

(11)

and for output unit is

Δw
(K)
j1 = −β ∂ξ(K)

∂w
(K)
ji

= −β ∂ξ(K)

∂ũ
(K−1)
j

∂ũ
(K−1)
j

∂u
(K)
i

∂u
(K)
i

∂w
(K)
ji

(12)

where for β learning rate, we use ũj as the activation function output of j-esime

neuron in each of layers, and similarly ui is the input signal from preceding
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neurons both calculated for error function ξ from (10) in hidden layers and (9)

in output layer. In applied training process weights are corrected with Δw(k)

change for output and other layers{
W(K) = W(K) −Δw(K)

W(k) = W(k) −Δw(k)
. (13)

Training process continues with all the training data, while the training results

are saved or discarded according to decision of active critic as shown in Alg. 2.

4 Benchmark tests

Proposed model was verified for 200 sample inputs, similar in construction to

examples given in Fig. 1 and Fig. 2, where about 40% of them were grammatically

incorrect. Samples used in the research are presented in Tab. 1, random 160

inputs were used as training set and all of them were used for validation.

In Tab. 1 we present samples of sentences processed in the system. Also

according to complexity, the sentences can be assumed as:

– Simple sentence: A sentence with one independent clause and no dependent

clauses.

– Compound Sentence: A sentence with multiple independent clauses but no

dependent clauses.

– Complex Sentence: A sentence with one independent clause and at least one

dependent clause.

– Complex-Compound Sentence: A sentence with multiple independent clauses

and at least one dependent clause.

We can see that inputs used for experimental research were simple sentences

that may be used in a communication with a machine. In the research we did

not use compound sentences nor complex sentences, as these are not the purpose

of this research. Each of inputs was decomposed to define optimal order (1)

and descriptors (2)-(4) as a vector x. The training set was presented to applied

RBPNN architecture, and training was performed with parameter β = 0.6. In

Fig. 4 we can see how the relative error was changing in training process. We

can see that for common grammar approach some spikes in the training are

visible, however final error on the output layer is about 0.015 lower in comparison

to modern grammar approach. On the other hand modern grammar approach

influenced training process to make it smooth without any sudden changes and

converge to the minimum with all following epochs, what gives a proof that this

approach may work better with proposed RBPNN architecture.
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Table 1: Sample inputs that were used in the research

Sample type Grammatical

correctness

Sun is shining now declarative �

Sun is shining declarative �

Sun shining — �

Is shining house — �

Is Sun shining now ? interrogative �

Cat sits at the house declarative �

Go to bed imperative �

House sits cat at — �

We see the sky declarative �

Stay at home imperative �

Can we see the sky ? interrogative �

The sky not see we — �

I like it ! exclamatory �

Figure 4: Sample training of the proposed neural network architecture for classi-

fication using proposed decomposition descriptors model.

Trained system was used to validate, results for common grammar and

modern grammar approaches are presented in Fig. 5. Analysis of the experimental

research results was based on the measures presented by [Fawcett(2006)]. In the

experimental research we have verified proposed system to classify incorrect

inputs, measures used in benchmark are summarized in the Tab. 2. In numerical
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Table 2: Measures used for benchmark analysis of the proposed method

Measure Definition

True Positive (TP) number of incorrect inputs classified as incorrect

False Positive (FP) number of correct inputs classified as incorrect

True Negative (TN) number of correct inputs classified as correct

False Negative (FN) number of incorrect inputs classified as correct

True Positive Rate (TPR) TPR =
TP

TP + FN

True Negative Rate (TNR) TNR =
TN

FP + TN
Positive Predictive

Value (PPV) PPV =
TP

TP + FP
Negative Predictive

Value (NPV) PPV =
TN

TN + FN

False Positive Rate (FPR) PPV =
FP

FP + TN

False Discovery Rate (FDR) PPV =
FP

FP + TP

False Negative Rate (FNR) FNR =
FN

FN + TP

Accuracy (ACC) ACC =
TP + TN

P +N

F1 score (F1) F1 =
2TP

2TP + FP + FN
Information measure Inf = TPR+ TNR− 1

Marking measure Mark = PPV +NPV − 1

experiments we have verified two hypotheses for the proposed neural network

with the developed descriptors.

H0: common grammar approach is not better than modern grammar ap-

proach.

H1: common grammar approach is better than modern grammar approach.

Results are presented in Tab. 4. Numerical results in general confirmed hypoth-

esis H0, what means we can assume that there can be a difference in using

moderngrammar approach for proposed validation model. F-test was used to

discuss if double sided probabilities of both approaches differ in variances. Student

T-test and χ2-test were used to discuss if both approaches give similar results

when implemented in proposed validation model. Wilcoxon-test was used to

confirm if modern grammar approach can be more efficient for the proposed

validation model. McNemar test was used to verify if the differences between
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Table 3: Experimental validation tests results of 160 correct inputs and 40

incorrect inputs using common grammar and modern grammar approaches

Measure common grammar modern grammar

True Positive (TP) 28 32

False Positive (FP) 28 15

True Negative (TN) 132 145

False Negative (FN) 12 8

True Positive Rate (TPR) 0.7 0.8

True Negative Rate (TNR) 0.825 0.9

Positive Predictive Value (PPV) 0.5 0.68

Negative Predictive Value (NPV) 0.92 0.94

False Positive Rate (FPR) 0.175 0.09

False Discovery Rate (FDR) 0.5 0.319

False Negative Rate (FNR) 0.3 0.2

Accuracy (ACC) 0.8 0.885

F1 score (F1) 0.6 0.73

Matthews correlation (MC) 0.467 0.667

Information measure 0.525 0.7

Marking measure 0.42 0.62

Table 4: Results of statistical verifications for the hypotheses H0 and H1 at the

level of significance α = 0.05

Applied testing procedure Results

Student T-test 0.954049635

F-test 0.932907291

χ2-test 0,999985562

Wilcoxon-test -2.740564757

McNemar test 0.828263

these two approaches are really so significant.

Results of these statistical tests confirmed that it is possible for the modern

grammar approach to improve validation results of the proposed decomposition

descriptors for RBPNN model. To show what exactly the difference between both

approaches can be we have compared classification results in Tab. 3 and Tab. 5,

and present them in Fig. 6 - Fig. 7.

Results show that proposed solution was able to verify 28 in 40 incorrect

inputs for common grammar approach and 32 in 40 incorrect inputs for modern

grammar approach, what gives validation rate of about 70% and 80% respectively.

Similarly modern grammar approach gave better validation results for correct
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Table 5: Experimental validation tests results of 160 grammatically correct inputs

and 40 grammatically incorrect inputs

Grammar Input Correctly Validation

classified Rate

common Correct 159 79.5%

Incorrect 41 20.5%

modern Correct 165 82.5%

Incorrect 35 17.5%

Figure 6: Comparison of common grammar and modern grammar approaches

when applied to presented descriptors with trained RBPNN decisions over 200

inputs.

inputs scoring 145 in 160, while common grammar approach scored 132 in 160,

what gives validation rate of 90.63% and 82.50% respectively. This results are

promising for further research on the development of this model. Therefore we

conclude that modern grammar approach applied with proposed decomposition

descriptors and RBPNN can approximately improve validation results of about

8%.

4.1 Conclusions

Proposed descriptors and adapted neural network model helped to validate inputs

in the context of grammatical correctness. More research in real environments to

counter-check the model efficiency in various interactions is necessary. Since in

the proposed approach may come an over-learning or over-fitting problem, the
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Figure 7: Detailed comparison of common grammar and modern grammar appli-

cations to descriptors with trained RBPNN for True Positive (TP), False Positive

(FP), True Negative (TN), False Negative (FN).

tests shall be conducted for a large data set, since using it we can reduce these

or for well composed training set even eliminate. We would like to improve the

idea for more accurate validation. It would be also interesting to develop this

solution for compound sentences and complex sentences, however these aspects

need more extensive research on possible grammatical approaches to precisely

describe all the relations between words in the context of information. It would

be also important to examine the system on various machines and electronic

platforms, since they all have different computing power. We think that probably

for some of them it would be necessary to simplify some parts of the proposed

modeling to reduce the amount of computing operations to the lowest possible

level.

5 Final remarks

Humans communicate with machines in various ways, similarly machines can fake

humans in this communication. The transfer of information must be sufficiently

clear in order to pass all the necessary data in an understandable way, and

therefore maintain security levels. Since technology is being developed rapidly it

is important to work on solutions devoted to interactions. Models of this type will

help on development of language based computer systems, what can be helpful

for security and in communication between people and machines. Language

processing systems will help to communicate with machines but we must be sure

that communication is clear, therefore research on models to process inputs will
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enable machine intelligence clearly understand intention and if necessary reject

unwanted access. Models of processing can involve various aspects of the way

people speak, complexity of sentences, topics, etc. It is clear that some aspects

would need more flexible systems to adjust to the domain of communication.

Moreover it is necessary to investigate models for various languages, since at this

stage it is not obvious if one model can fit more than one language. Therefore we

hope that the proposed solution brings us closer to achieve this goals and start

new possibilities for exploring it in the future research.
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