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Abstract: Embedded systems are subjected to various adversaries including software attacks, 
physical attacks, and side channel attacks. Most of these malicious attacks can lead to the 
invalid execution of programs, and launch of destructive actions or reveal critical information. 
However, most previous security mechanisms suffer from coarse checking granularity and 
unacceptable performance overhead, due to strict restriction on system resources. This paper 
presents a fine-grained hardware-based security approach to ensure runtime code integrity in 
the embedded systems by offline profiling of the program features and runtime integrity check. 
We design a hardware implemented instruction stream integrity checker (ISIC) to perform 
runtime checking of pre-extracted features. Any invalid execution of the program will trigger 
the corresponding exception signal. We implement the ISIC with OR1200 processor on 
XC5VLX50T field-programmable gate array (FPGA). The experimental results show that the 
proposed approach can detect all the attacks destructing integrity of the instruction stream, and 
the performance overhead induced by the security mechanism is less than 3.45% according to 
the selected benchmarks. 
 
Keywords: embedded system, basic block, runtime security, code integrity, hardware-based 
security 
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1 Introduction  

With the rapid development of wireless communication and the Internet of Things 
technology, embedded systems are widely employed in all spheres of our daily lives. 
As embedded systems expose themselves to the Internet and public, they have to deal 
with some new issues of security. The applications such as cell phones, wearable 
devices, financial terminals, industrial control systems, and military devices process 
and store a giant number of users’ critical information, and provide users with 
convenience as well. Apart from some security issues derived from the system 
architecture and hardware implementation, these embedded devices are increasingly 
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subjected to the adversaries that aim to get the private data of the users or control the 
behavior of the programs to perform malicious actions. 

The embedded system can be compromised either through the physical tampering 
that commits electronic jamming or electronic eavesdropping, or through the 
perpetration of program exploits that change valid program operation [Serpanos and 
Voyiatzis, 2013]. Compared with the attacks on physical devices, software security 
exploits taken advantages of vulnerabilities in operation systems or applications is 
more widely used due to the less requirements of the victim hardware details. 
Malicious adversaries exploit to tamper program code and data, inject malicious code, 
and leak critical information. These attacks are easy to implement because most 
embedded programs are written in the unsafe program languages such as C and C++, 
which are not strongly typed and allow direct access to memory without bounds 
checking [Wang et al., 2008]. Adversaries can easily inject malicious codes and data 
using these software vulnerabilities, especially as more and more embedded devices 
are connected to the Internet. Most of these attack patterns eventually lead to the 
invalid execution of the program. Such attacks, say, stack smashing can be resolved 
using the techniques such as Write XOR eXecution (W⊕X) [Fiskiran and Lee, 2004], 
Data Execution Prevention (DEP) [Ahn et al., 2014], Address Space Layout 
Randomization (ASLR) [Kanuparthi et al., 2012(a)], in-stack canaries [Shehab and 
Batarfi, 2017], and some software code integrity checkers [Bletsch et al., 2011; Abadi 
et al., 2005; Davi et al., 2014]. However, most of these techniques need to change the 
embedded system hardware structures, add redundant system modules or modify the 
instruction set architectures and the compilers. These technologies cannot be ported to 
any embedded system platform simply.  

In consideration of the potential threats to embedded system security, the 
embedded systems must have the assurance of code integrity. In other words, the 
original code and the data processed should be fetched from the original program, and 
have not been injected, cut, modified or substituted by any adversary. An intractable 
challenge for embedded system security is the constraint resources, namely limited 
performance, power and area. Embedded systems with limited resource budgets 
cannot afford abundant hardware for reliability. Well known desktop security 
solutions have large system requirement and significant performance overhead, thus 
cannot be ported to embedded systems for the lack of sufficient system resources. 
Besides, most of the widely used system security solutions, based on anti-virus 
software, are program codes themselves and difficult to avoid software 
vulnerabilities. Thus, some hardware based lightweight security methods are required 
to ensure runtime security in embedded systems. Several static techniques employ 
source code scan and review tools to strengthen code security by reducing the 
program vulnerabilities at the software design phase, without taking the runtime 
attack threats into account. Some runtime software monitoring and binary 
instrumentation techniques have been proposed since it was published systematically 
by N. Oh [Oh et al., 2002]. But these solutions inevitably increase code sizes, 
introduce performance overhead and are themselves vulnerable to corruption. 
Recently, various hardware based schemes, such as the novel runtime monitoring 
architecture proposed by D. Arora [Arora et al., 2006], ROPdefender [Shacham, 
2007], CICM [Rogers and Milenkovic, 2009], DIC [Kanuparthi et al., 2012(b)] and 
BB-CFI [Das et al., 2016], have been proposed for embedded systems, but most of 
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them either suffer from significant performance overhead or have their own 
limitations. 

In this paper, we present a hardware based technique at basic block granularity to 
ensure that the embedded program is not deviated from its intended and permissible 
behavior. It is a novel hardware based security mechanism, which enables the 
checking of specific properties of the executed program at a fine granularity of the 
basic block and provides high efficiency in violation detection. To dynamically 
prevent program code integrity from runtime malicious attacks, we propose a kind of 
hardware architecture called the instruction stream integrity checker (ISIC). Our 
mechanism comprises three steps to run. All these steps are performed after the 
program is compiled and linked. In the first step, the binary code is divided into basic 
blocks and profiling offline according to the specified basic block division rules. In 
the second step, the hash value of each basic block is computed, which is assumed as 
the golden hashes of the program. These golden hashes are stored in the specified 
hash memory of the processor at the load stage. These hash values are assumed to be 
trusted and cannot be accessed by any adversary. Here we adopt LHash [Wu et al., 
2014], a lightweight hash algorithm suitable for embedded systems, to reduce area 
footprint and power overhead. Then, the basic block address and the golden hashes 
are compressed together to form the security monitoring model for each basic block. 
In the last step, runtime security checking is conducted to enforce the instruction 
stream integrity with the pre-extracted monitoring model at basic block granularity. 
We introduce the architecture as a hardware-based monitor that can be appended to 
any embedded processor to check its dynamic execution trace, as it runs programs and 
checks whether the trace conforms to the requirements of permissible behaviors, and 
triggers appropriate response mechanism if any security violation is detected. The 
hardware architecture is implemented as a programmable module that can be 
configured to run the program with the ISIC being activated or not. 

We implement the proposed architecture on Xilinx XC5VLX50T field-
programmable gate array (FPGA) as a prototype system, which can provide low area 
and power overhead, and high verification performance. To evaluate the performance 
of the architecture, we use various scales of benchmarks from MiBench benchmark 
suite [Guthaus et al., 2001] to generate realistic workloads. The implementation 
shows that the ISIC can detect all instruction stream integrity attacks due to fine-
grained checking granularity. The processor performance overhead induced by the 
security mechanism of the ISIC is less than 3.45% according to the selected 
benchmarks. Besides, the prototype system also has the advantages of low power 
consumption and marginal area footprint. The proposed hardware based monitoring 
architecture only traces the executing instruction and its corresponding address 
signals of the pipeline, with less intrusion to existing embedded processor 
architectures, and can be easily ported to any processor platforms. 

The remainder of this paper is organized as follows. In Section 2, we discuss the 
threat model we focus on and related works. In Section 3, we present the proposed 
security mechanism in detail. Section 4 gives some security analysis of the proposed 
mechanism. Section 5 presents our experimental results. Finally, we give a conclusion 
in Section 6. 
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2 Background 

2.1 Threat Model 

 

Figure 1: Threat model of the proposed work 

Embedded systems can be compromised in many forms, including software attacks, 
physical attacks, and side-channel attacks. Most of these malicious attacks eventually 
lead to the invalid execution of the program or the leakage of the critical information. 
Compared with physical attacks and side-channel attacks, software attacks are much 
easier to conduct because most of them are irrelevant to hardware details. Adversaries 
can gain access to the shut-down embedded systems, and modify the original code in 
the non-volatile memory. As the systems booting up, the malicious actions will be 
imported into the vulnerable systems. Some attackers take advantage of the interval 
time between the time when a program is checked for code integrity at boot time, and 
the time when the program is beginning to execution, to launch runtime attacks. They 
can access any off-chip memory to inject, modify and delete the program code and 
data. In this case, any integrity checking mechanism at boot time will out of 
effectiveness. What’s more, runtime software attacks also exploit vulnerabilities such 
as buffer overflow, format strings, and dangling pointers in operation system, 
middleware, and applications to launch malicious attacks. Most of these malicious 
attacks eventually lead to the invalid execution of the program or the leakage of 
critical information. Most physical and side-channel attacks involve direct or indirect 
tampering to the interfaces and peripherals to perform spoofing, splicing and replay 
attacks, as well as change the valid code and data in their featured method. 

Figure 1 illustrates the threat model for the embedded system we take into 
account. We define the regions on the embedded SoC chip as the trusted zone, while 
all the interfaces and wires connected to the SoC and all system components and 
peripherals off the chip are assumed to be untrusted. That is to say, all adversaries 
cannot tamper the pipeline, registers, Cache and any signal inside the embedded 
processor. The on-chip system bus, memory, peripheral controllers and any security 
enhanced architectures are also assumed to be immune to all kinds of attacks. 
Software attacks, physical attacks, and side-channel attacks can be launched at all 
design stages ranging from the program installation phase to the loading phase and 
execution phase. The targets of these attacks include the RAMs and ROMs off the 
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Chip, system components, peripherals, interfaces and some external wires. Some off-
chip external security modules are assumed to be untrusted, because they cannot 
ensure the validation of the security protection function and the interface signals. 

2.2 Related Works 

Various defense techniques have been proposed to address the security threat in 
computing systems. Almost all of them put emphasis on static or dynamic analysis of 
the source code and runtime identity verification of the protected programs. These 
security methods are implemented in different handling ways, but most of them have 
their own limitations. Especially in embedded systems, limited system resources 
make some technical proposals inapplicable any more. 

Some static techniques such as source code or binary code scan and review tools 
verify the program validation at the design phase. Buffer overflow, format strings, 
dangling pointers and some other software vulnerabilities can be detected by these 
techniques [Zitser et al., 2004; Dor et al., 2003]. Some desktop computer antivirus 
software likely techniques adopt learning algorithms to extract malicious attack 
characteristics in advance, and scan the source code to find pieces of illegal code 
according to the learned malicious features. The advantage of these static security 
methods is that they can perform security checks before software is executed to 
prevent irreparable damage to the hardware and system. But those methods can only 
detect the illegal code before execution, any load time and runtime attacks may cause 
the system to crash. 

In recent years, some hardware based techniques focusing on runtime security 
have become prevalent. Threads or process level redundancy based methods [shaye et 
al., 2007] for reliability need extra parallel hardware resources, resulting in a large 
waste of system resources. Some additional secure coprocessors and separate Trusted 
Platform Modules (TPM) are used to enhance system security. R. A. Calix proposed 
an embedded machine learning processor to detect intrusions by using network-based 
features to distinguish normal and abnormal actions [Sankaran and Calix, 2016]. But 
the interfaces and wires between the external security peripherals and the host 
processor are vulnerable to attacks. The XOM architecture [Lie et al., 2000] uses 
cryptographic techniques to encrypt the code and data in memory, and decrypt them 
at the execution phase. The session key is used to isolate the programs running on the 
same machine from others. Due to the nescience of the session key, any malicious 
manipulation of the code and data may lead to the collapse of the system. The process 
granularity of XOM is instruction, which results in serious performance losses. Roger 
proposed one runtime verification architecture encompass secure installation, secure 
loading and secure execution with programmable protection mode [Rogers and 
Milenkovic, 2009]. They append 128-bit signatures to 32-byte I-blocks. The 
discontinuous execution of the binary code may lead to the failure of the premature 
signatures. REM [Fiskiran and Lee, 2004] and SPEF [Kirovski et al., 2002] are secure 
program runtime checkers at the granularity of basic blocks. They use different hash 
functions to build the keyed Message Authentication Code (MAC) at compile time. 
But REM requires modification of Instruction Set Architecture (ISA), and it increases 
the binary size dramatically. D. Arora presented a hardware assisted mechanism to 
check both code integrity and control flow validation [Arora et al., 2006]. In addition 
to malicious modification of the program code, changes in the registers in the indirect 
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jump and branch instructions can be also detected. The multi-level checker proposed 
by Arora is coarse-grained, and thus emergent invalid procedures cannot be detected 
at once. In addition, MD4 and MD5 hash functions are used in Arora’s work, but they 
are not applicable to embedded systems. X. Wang [Wang et al., 2013; Wang et al., 
2016] presented a code security mechanism with the on-chip secure module. They 
divided the binary code into basic blocks offline, and verified them at runtime. 
Recently, some novel intrusion detection techniques have been proposed. Parallax 
[Andriesse et al., 2015] used the return-oriented programming (ROP) technique as an 
attack method for the embedded system to verify code integrity by overlapping ROP 
gadgets with instructions. The method does not rely on code checksum, so it is not 
vulnerable to cache modification attacks. The results show that Parallax can only 
protect up to 90% code bytes. 

3 Architectures for Runtime Verification 

3.1 Model of Permissible Procedures  

To detect the attacks involving code integrity tampering, it is not appropriate to use 
instruction by instruction verification approach. The proposed fine-grained security 
approach uses the techniques including offline static extraction of program properties 
and hardware based runtime verification to ensure the security of embedded systems. 
There are some retrieve rules for the security related program properties. First, the 
selected properties must be sufficient to indicate all security issues concerned, that is, 
any security exception of the program will cause the selected properties to be 
tampered. Besides, they should be easy to be derived from the source code or binary 
code. In consideration of the limited system resources and performance, the selected 
monitor model must be the minimum effective set of these properties. After the 
selection and extraction of the monitor model, the ISIC is adopted to perform runtime 
validation of these pre-processed features. 

In our work, we employ hash value matching by basic blocks cryptographic hash 
results to perform integrity validation. These pre-computed hash values will be copied 
to the monitor model memory of the ISIC at load time, and verified during program 
execution. For the message xi and its cryptographic hash value Hash(xi), it is 
computationally not easy to find another xj, such that xi ≠ xj, and Hash(xi) = Hash(xj). 
Especially in the instruction integrity verification case, the input messages are the 
instructions in basic blocks. It is infeasible for adversaries to find a malicious 
instruction sequence that can be legally executed by the processor and has the same 
hash value as the original code. In consideration of the performance and area margins 
in the embedded system, we employ LHash in our scheme. This lightweight hash 
algorithm can map the digest sizes of 80, 96 and 128 bits, providing pre-image 
security from 64 bits to 120 bits, second pre-image security and collision security 
from 40 bits to 60 bits.  

In the design phase, the binary code is divided into basic blocks, and the program 
properties are extracted from each basic block as the indicators of invalid program 
behaviors. Systems can be compromised in software installation, loading, and 
execution phases. All malicious manipulation from the previous stages, including 
injection, modification, deletion and any attacks tampering the program code, will be 
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transmitted to the execution phase and executed in the processor pipeline. Therefore, 
we place the security monitoring node in the execution phase. The runtime code 
integrity checker can detect all previous attacks accumulated in the execution stage. 

 
Procedure 1: instruction stream check flow 
1:    Inputs: PC, insn, monitor model M(BB_S, LHASH_G) 

2:    Output: invalid_status 

3:    BB  set of basic blocks bbi 

4:    BB_S  set of basic block start addresses bb_si, 1≤ i ≤ total of basic blocks 

5:    INSNi  set of instructions of the ith basic block insnij, 1 ≤ j ≤ total 
instructions in the ith basic block 

6:    LHASH_G  set of golden hashes lhash_gi, 1≤ i ≤ total of basic blocks 

7:    for all bbiBB do 

8:        pc= index (bbi) 

9:        if pc = bb_si : bb_siBB_S then 

10:          for all insnij INSNi do 

11:              LHashi = fLHash(insni1, insni2, ... ,  insnij) 

12:          if LHashi = lhash_gi then 

13:              invalid_status = NULL  /* no error */ 

14:          else invalid_status = 01    /* LHash value error */ 

15:       else invalid_status = 10       /* start address error */ 

 
The inputs of the ISIC connected to the embedded processor are the PC and the 

INSTRUCTION signals from the instruction decode (ID) stage in the pipeline. At 
runtime, when the ISIC detects the start of a basic block, the LHash engine of the 
ISIC is enabled. With the execution of the basic block, current and subsequent 
instructions are continuously pumped into the LHash engine until an instruction of the 
end type, which is a branch or a jump instruction, is detected. At the same time, the 
LHash engine absorbs the instruction sequence and calculates the LHash value within 
2 clock cycles. Then the controller reads the corresponding monitor model from the 
pre-stored memory, and separates out the credible golden LHash value. The 
dynamically computed LHash values are compared with the pre-stored golden 
features. If the pre-stored and the computed values are different, an alarm is raised 
and a malicious code is detected. Procedure 1 listed above describes the instruction 
stream check flow at the granularity of the basic block. 

During the execution of the program, once the ISIC detects a violation of code 
integrity, it will assert invalid signals and feed the error type back to the processor. A 
2-bit special register is used to tag the error types when the hardware ISIC is 
implemented. This is used to divide the violations into three broad categories. 

 Violation due to the start address loss from the monitor model. The branch and 
jump instructions are the boundaries between basic blocks, and the ISIC 
automatically divides the basic blocks according to these instructions. If a 
branch or jump instruction is generated or replaced by adversaries, then this kind 
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of violation will occur. In this way, the golden hash of current basic block 
cannot be indexed successfully. 

 Violation due to the mismatch of basic block cryptographic hash results between 
the pre-computed and runtime generated. The matching of hash results is 
validated once at the end of a basic block. This can occur if the instructions in 
this basic block suffer from attacks of injection, cut, modification and 
substitution.  

 Violation due to the execution of illegal instructions. Some adversaries can 
modify a block of instructions within a basic block to fulfil the match check of 
the cryptographic hash and the relative address. But this may induce the illegal 
instructions cannot be executed by the processor or invalid access addresses 
outside the space bounds.  

When a violation is detected, the processor will get the error type and make the 
corresponding response according to some further security requirements. One 
common form is to terminate the program, flush the processor pipeline and then 
switch the processor to a secure mode. 

3.2 Basic Blocks and Profiling 

The purpose of profiling is to extract the basic block features of the target program. 
According to the extracted information, some hardware modules can be used to 
validate the execution of the program. Profiling operation plays an important role in 
our approach. In our work, the input of the profiling process is the binary code instead 
of any high level programming languages, such as C/C++ and Java. Thus there is no 
special requirement for the programing language and the compiler used by the 
programmer. Especially in some bottom designs of embedded systems, cross 
application of the assembly language and high level languages is required. Some 
source code based profiling methods mentioned in [Arora et al., 2006], [Das et al., 
2016], and [Li et al., 2016] needs more special consideration in this case. Similar to 
most profiling methods [Kanuparthi et al., 2012; Arora et al., 2006; Das et al., 2016; 
Mao and Wolf, 2010], we assume that the profiling process and the inputs of the 
profiling stage are trusted.  This means that any software bug and modification in the 
binary code before input to the profiling stage cannot be detected, which is acceptable 
because the programmer can guarantee that the binary code is consistent with the 
expected design scheme when the software development is complete. The status after 
the program delivery is the key to security. 

The basic block is defined as a piece of binary code containing only the 
instructions which will be executed sequentially. In order to avoid the addition of 
extra tags to indicate the end of a basic block, we use jump and branch instructions as 
marks to divide the binary code into basic blocks. Therefore, the ending instruction of 
each basic block is a jump instruction or a branch instruction. In order to normalize 
the range of basic blocks, the start address of each basic block is defined as the next 
instruction of a previous jump/branch instruction, or the target address of a previous 
jump/branch operation. Such partition method may cause overlap of basic blocks. 
Compared with some non-overlapping strategies, this method reduces the number of 
dynamic matches at the same storage cost.  
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The monitor model defines the reliable monitor features of each basic block. As 
mentioned above, the monitor model of the proposed approach contains the start 
address and the pre-computed LHash value of each basic block. Taking a 32 bits 
RISC-based embedded processor as an example, each instruction and the 
corresponding address is 32 bits. The data and instructions are all aligned to 4 bytes. 
Thus the lower 2 bits of the address will be fixed to 2’b00. The actual useful value for 
the start address is PC[31:2]. Taking the storage overhead into account, only the lower 
16 bits in the PC[31:2] are used in the proposed monitor model. This would give the 
programmer at most 256 KB addressable space. Larger address space can be achieved 
if more bits are employed in the monitor model. 

For the LHash segment, we set the 32 bits instruction as the message block 
XORed to part of previous permutation state and enter into the next permutation 
engine in the extended sponge function. The optional block size of the LHash internal 
permutation is 96 bits and 128 bits in this situation. The security properties of the 
LHash algorithm based on the sponge construction can be concluded as Equation 1 
[Bogdanov et al., 2013]: 
 

/2 c/2

c/2

c c/2

Collision resistance : min{2 , 2 }

Second preimage resistance : min{2 , 2 }

Preimage resistance : min{2 , 2 , max{2 , 2 }}

n

n

n n r









 (1) 

 
Where, n is the digest size, c represents the capacity size of the internal 

permutation, and r represents the length of the input message blocks. As shown in 
Table 1, six versions of the LHash algorithm are constructed based on two types of 
permutations F96 and F128, where b represents the size of the fixed permutation. The 
absorbing size r is fixed to 32 for the 32 bits RISC processor instructions. The 
parameters and security bounds can be found in this table. In tag-based applications, 
64 or 80 bits security is often appropriate instead of complex constructions providing 
high security primitives, such as a 512 bits output hash function [Guo et al., 2011]. In 
our case, we require at least 64 bits preimage resistance security, and 48 bits collision 
and 2nd preimage resistance security. Therefore, only the parameters in the last two 
rows can meet the security requirement. To avoid any waste of area or computing 
power, we set the digest size to 96 bits. 

 

Parameter Security Bounds 

b r c n Preimage 2nd Preimage Collision 

96 32 64 80 48 32 32 

96 32 64 96 64 32 32 

96 32 64 128 64 32 32 

128 32 96 80 48 40 48 

128 32 96 96 64 48 48 

128 32 96 128 96 48 48 

Table 1: Alternative parameters and security bounds for LHash implementation 

523Wang X., Wang W., Xu B., Du P., Li L., Liu M.: A Fine-Grained Hardware ...



 

To keep the hardware overhead lower, only a few bits of the pre-computed LHash 
output are selected to constitute the monitor model for each basic block. That means 
adversaries need to guess fewer bits to bypass the integrity check. If we select the bits 

in the fixed bit positions, we have 
1

P( , )
2n

m n  , where P(m, n) denote the 

probability for adversaries to guess the tag value, m represents the digest size of the 
selected hash function, and n represents the length of the selected LHash bits. As n 
becomes smaller, the value of P(m, n) will become unacceptable. Thus we use a 
random number generator to determine the selected positions of the bits in the output 

hash values. Then we have 
1

P( , )
C( , ) 2n

m n
m n




, where C(m, n) is the number of 

ways of choosing n bits out of the m bits output hash value. In our case, we 
implement the hardware LHash engine with pipelined 32 bits input and 96 bits output, 
and choose 16 bits from the 96 bits digest. Thus the chance that the adversary guesses 

the correct hash value for a basic block is 16

1

C(96,16) 2
, instead of 

16

1

2
in theory. 

The monitor model of each basic block is a 32-bit message, which contains the 
current basic block start address and the golden LHash value. The high 16 bits of the 
monitor model are used to store the lower bits of the virtual start address of the 
current basic block, while the low 16 bits are for the randomly selected golden LHash 
bits. The monitor model structure of a basic block is shown in Table 2, and the 
definitions of monitor targets in Table 2 are as follows.  

Current block start address: 
The lower 16 bits virtual start address of current basic block in original binary code 

Golden LHash value: 
The randomly selected 16 bits trusted LHash value of current basic block extracted 
from original binary code 
 

Monitor Targets Width Range 

Current block start address 16 bits [31:16] 
Golden LHash value 16 bits [15: 0] 

Table 2: Monitor model of a basic block 

The storage overhead for each basic block monitor model is 4 Bytes. Thus the 
storage overhead for a program is 4 bytes times the number of basic blocks. 
Additionally, an extra 96-bit message is added at first in the monitor model to indicate 
the 16 selected bits in the 96 bits digest values. This constitutes the overall monitor 
model file for a program. In the process of monitor model extraction, we have 
developed a Perl script to generate the monitor model from the compiled binary code. 
Some GNU tools such as objcopy and objdump are invoked by this script. Besides, 
the random number is generated from the Linux kernel entropy pool by the developed 
script. 
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Address Opcode Store/load Lhash-16 Branch/jump Successive addr
… … … … … … …

 000021c4   l.movhi r3,0x0 000021c4 movhi * *
 000021c8   l.sw -0x4(r1),r9 000021c8 sw store *
 000021cc   l.ori r3,r3,0x0 000021cc ori * *
 000021d0   l.sfeqi r3,0x0 000021d0 sfeqi * *
 000021d4   l.bf 000021f0 000021d4 bf * branch

 000021d8   l.addi r1,r1,-0x4 000021d8 addi * *
 000021dc   l.movhi r3,0x2 000021dc movhi * *
 000021e0   l.movhi r4,0x3 000021e0 movhi * *
 000021e4   l.ori r3,r3,0xd8a0 000021e4 ori * *
 000021e8   l.jal 0000f000 000021e8 jal * jump

 000021ec   l.ori r4,r4,0x7ec 000021ec ori * 0E07 * 000021f0

 000021f0   l.movhi r3,0x2 000021f0 movhi * *
 000021f4   l.ori r3,r3,0xf8b4 000021f4 ori * *
 000021f8   l.lwz r4,0x0(r3) 000021f8 lwz load *
 000021fc   l.sfeqi r4,0x0 000021fc sfeqi * *
 00002200   l.bf 00002228 00002200 bf * branch

… … … … … … …

A413
00002228/
00002204

Binary Code

B32F

AF5A

000021f0/
000021d8

0000f000

Code Integrity Control Flow

 

Figure 2: An example of monitor model extraction case for a code segment in the 
selected OpenECC benchmark 

Figure 2 illustrates an example of monitor model extraction for a code segment in 
the OpenECC benchmark. According to the basic block partitioning strategy, branch 
and jump instructions divide the binary code into three basic blocks: BB1, BB2 and 
BB3. At the same time, the start address and hash result of each basic block can be 
acquired. Then the successive addresses of each basic block are extracted and 
analyzed. If a successive address is the start address of an existing basic block, no 
extra processing is required. If not, a new basic block is generated. The successive 
address is set as the start address of the new basic block. The end address of the new 
basic block is the address of the nearest branch or jump instruction. In this example, 
one of the BB1’s successive addresses is 0x000021f0, which is not the start of a basic 
block. Thus BB4 and the corresponding basic block features are generated. After 
several iterations, the monitor model for this code segment will be generated. 

3.3 Microarchitecture Details 

The aim of our architecture is to ensure the integrity of the instruction stream. Our 
architecture monitors the execution of the target program by automatically separating 
the binary code into basic blocks, and checking related properties to verify whether 
the program is executed properly and whether the integrity of the codes is corrupted. 
Before the online running of the software code, a tool written in Perl is utilized to 
decompile the binary file and separate the codes into basic blocks. Then the software 
extracts the information on basic blocks, and constructs the monitor model which is 
going to be downloaded into specified memory.  

A basic block is a code fragment in which instructions are executed sequentially 
without a jump instruction except for the last instruction of the block. For a basic 
block, the first instruction is the entry of the basic block, and the last instruction of the 
basic block is the end which will lead the stream to jump or branch to a start of a new 
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basic block. It is possible that basic blocks overlap some other basic blocks, but it will 
not influence the consumption of memory or the overhead of the system performance. 
Information of basic blocks is the start address and the offline computed LHash value, 
both of them are the 16-bit message stored in monitor model memory.   

 

 

Figure 3: Details of the proposed microarchitecture 

Some details of the proposed microarchitecture are shown in Figure 3. In order to 
be more related to modern industry, an embedded processor with an in-order five-
stage pipeline is used here. Our architecture continuously extracts binary instructions 
and PC addresses from the Instruction Decode stage. Then, the extracted instructions 
are computed by the LHash module, and the start address of the current basic block is 
compared with the pre-extracted valid start address in memory of the monitor model. 
Then the dynamic computed LHash value will be compared to the pre-stored 
information. The monitor sends a validation status signal after the comparison. An 
illegal signal will be sent whenever a violation between results computed in the 
process of execution and those computed in the pre-process is detected. The illegal 
signal will be used to freeze the processor temporarily until the problem is processed. 
The integrity of the instruction stream should be checked by verifying instructions 
one after one theoretically, but because of the restriction on the consumption of 
memory and instantaneity of the response to the violation, our architecture 
implements the LHash algorithm to check the integrity of the instruction stream based 
on basic blocks. In order to further reduce the performance impact of the security 
enhanced system, ISIC will sample the delayed I-Cache tag signal to bypass the hash 
match check of the cached and checked basic blocks. 

The LHash Algorithm is a lightweight cryptographic algorithm with less 
overhead on the speed and source consumption. During the absorbing period, the 
binary instructions extracted from the ID stage will be firstly XORed with part of the 
internal message one by one. When a jump instruction is detected by the architecture, 
the current basic block ends, and our architecture will terminate the absorbing period 
to start a squeezing period. Then the LHash value of the basic block will be calculated 
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and outputted in the squeezing period. In the pre-process, the binary instructions are 
calculated in the same way as that in the execution. After the value during the 
execution is executed, the LHash value will be compared with the one from a basic 
block with a matching start address. If any violation between two LHash values is 
found, it is considered that the code is attacked and the architecture will send an 
illegal signal. If there is no difference between such two values, a legitimate signal 
will be sent, and the processor will run as usual. 

For implementation, a primitive message is initialized first, and is used to XOR 
all forthcoming binary instructions. The primitive message is a binary message 
padded by a single bit 1 mixed with necessary 0 bits. In the absorbing period of the 
algorithm, a newly coming instruction will be XORed, and then the message is 
permuted by a predetermined internal permutation. Such process is executed once 
whenever a new instruction is extracted from the ID stage. Here only the bits 
indicating the type of the instruction will be absorbed by the message because run-
time operands are unpredictable in the compilation, and are not pre-stored in the 
specific memory. After a jump instruction is detected and absorbed, the squeezing 
period begins, and the LHash value of the basic block is calculated from the message. 

The search of the current basic block information in the software monitor model 
also consumes some clock cycles, which may affect the performance of the system. A 
hardware implementation of the LHash cache is used to optimize the problem. The 
LHash cache is a ring buffer and is used to suspend few of the latest basic blocks’ 
information. If the basic blocks that have cached information are executed again, they 
are no longer need to be searched from the software monitor model. When the 
calculation of the LHash value of the basic block is over, the LHash value will be 
compared to the pre-stored LHash value of the basic block. A stall signal will be sent 
when the difference between two values is found as difference here is regarded as the 
existence of a corruption in the basic block. In this case, the violation indicates at least 
one instruction of the basic block is corrupted by attacks or electromagnetic radiation. 
The timing diagram of the worst case in the runtime integrity validation is shown in 
Figure 4.  

 

 

Figure 4: Timing diagram of the worst case in the runtime integrity validation 

The worst case occurs only when the I-Cache and the LHash cache are both 
misses for the current basic block. T1 represents the basic block retrieval time from 
the software monitor model. Once a new basic block is detected, the starting address 
will be used for the search task. T2 represents the time to complete the dynamic hash 
calculation since the golden LHash is ready. T3 indicates the time that the dynamic 
monitor model is compared with the static one and output the validation status. Once 
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the monitor detects a possible violation behavior, it asserts the alert signal to generate 
a highest-priority interrupt to the processor. Moreover, this signal will trigger an 
interrupt response, such as terminating the program and switching the processor to a 
secure mode. The frozen signal is asserted when the monitor loses the pace of 
processor execution. This signal is treated as the normal state, while all pipeline 
stages are frozen till the monitor catches up with the processor. 

Our architecture runs parallel to the processor when it searches for the 
corresponding information of the executing block and calculates in the absorbing 
period of the LHash algorithm. The squeezing period and a simple comparison 
between executing the information of the LHash value, the end address of the basic 
block and the start address of the successive basic block is executed after the basic 
block is over.  

3.4 Design Flow 

In this part, we describe the proposed design flow in steps by which the embedded 
system is enhanced with the security of code runtime integrity. Some code analysis 
processes have a close relationship with the processor instruction set, and we describe 
OR1200, one OpenRISC 1000 architecture processor, as an example in the illustration.  

The first step of the design flow is to process the compiled binary code and get 
the basic block details required in the monitor model. At first, a script is designed to 
ensure whether the format of the program file is correct, and is targeted toward the 
OR1200 platform. Then a GNU tool or32-elf-objdump is used to disassemble the 
binary code, and the regular expression is employed to search all jump instructions. 
The basic block starting and ending addresses can be determined by the details as 
listed in Table 3. As OR1200 has a delay slot after jump instruction, the process is 
slightly different. The GNU tool can be used to give the starting address of functions 
according to the program's symbol table, thus the script will get this kind of basic 
block starting address indirectly. The interrupt entry address can be also inferred by 
OR1200 standards. At the same time, the script will get the starting and ending 
addresses pair of the basic block by sorting them. Then, a software implemented 
LHash function is referred to calculate the golden LHash value of each basic block. 
Finally, the script will output the monitor model arranged in a specific format. At the 
end of the preparation stage, we employ a specified Makefile to complete the compile 
and monitor model extraction work. Besides, some works such as code selection, 
compiling, target program analysis and program initiation will be completed at this 
stage. 

 

Instructions Starting Address Ending Address 

l.j jump target address next address 

l.bf/ l.bnf/l.jal/ l.jalr jump target address and the 
next address next address 

l.jr None next address 

l.rfe None current address 

Table 3: The details to determine the starting and ending addresses 
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Following the first preparation stage, the second stage is the testing. In order to 
obtain the execution time of the basic block, and to solve the problem of the basic 
block loss as much as possible, we must first go through a test stage before the formal 
operation. At this stage, the program will run in the real environment, and the 
execution time in clock cycles of each basic block will be measured by the security 
module. The security module will also record the missing basic block. The 
information obtained in the testing stage will be recorded and used to update the 
monitor model. Of course, when talking about tests, we will face the test coverage 
problem. This design does not require full test coverage of basic blocks, because we 
have both the basic block starting address verification mechanism and code checksum 
validation mechanism. In any case, higher coverage among basic blocks will mean 
that the system will be of higher security and accuracy. 

At the formal operation stage, the updated monitoring model has been loaded into 
the specified monitor model memory. In our experiment environment, the monitoring 
model is placed in the FPGA BRAM, and therefore the proposed ISIC can easily 
access it. First, the security module will detect the beginning of the program. After 
beginning, the security module will detect jump instruction. It will treat next 
instruction after jump as the basic block ending address, and the second instruction 
after jump as the next basic block starting address. Whenever a new basic block 
begins and information search is completed, the security module will check the LHash 
value, and the next basic block starting address. Exception message is recorded if 
abnormal situation has been met. Finally, when the program ends, the security module 
will output the exception message. 

The design flow of the proposed approach is based on the OR1200 processor. As 
described before, the proposed hardware based monitoring architecture only traces the 
executing instruction and its corresponding address signals of the pipeline, and can 
detect runtime code tampering automatically. This method can work effectively 
without any requirement of the modification on the compiler or the processor core. 
The proposed ISIC is a hardware module that is independent of the processor. If the 
embedded system developers try to transplant the security method into other systems, 
they only need to adjust off-line static extraction and analysis tools according to the 
target instruction set. Because different target processor may have different 
instruction set, and the division strategy of basic block is strictly depend on the jump 
and branch instruction. Besides, the online hardware hardly needs any modification, 
except for the automatic recognition of the start and end of the basic blocks related to 
the instruction set. Thus the proposed hardware security approach for runtime code 
integrity is of high scalability and can be easily ported to any processor platforms. 

4 Attacks and Security Analysis  

After construction of the proposed architecture, the efficiency of the architecture is 
analyzed based on different common threat models. Code injections have always 
occupied a big proportion of all kinds of attacks. With the development of the 
technology, buffer overflow attacks based on stack smashing and advanced attacks 
such as code reused attacks flourish today. In this section, defenses against some 
common attacks are presented by analysing attack scenarios. 
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There are only a few sets of signals between the proposed security module and 
the processor. In our work, the security boundary is the embedded processor chip, 
thus any direct attacks on the security enhanced processor, such as changing the 
internal state or tampering monitor models are considered impossible. But this also 
causes the problem that the monitor model cannot be modified directly by the 
developer. This is acceptable for the security consideration of the embedded system. 
If the monitor model needs to be updated, we need to add a set of direct connections 
from the security module to the outside through a credible process. Security of the 
credible load of the monitor model is not concerned with this work. 

Attacks tampering branch and jump instructions can be categorized as either 
starting address absence violation or hash mismatch violation. If the operation code of 
the processor is tampered to become a different type of instruction, it will be 
identified as an address absence violation. And the corresponding basic block golden 
hash value cannot be derived from the monitor model successfully. The end position 
of the current basic block will not be correctly identified, which causes the 
instructions within the basic block to be considered to be much more, resulting in the 
hash validation failure.  

The code injection attack is one of the most common attacks. The adversaries 
inject the code into executable codes and change the original intent of the basic block 
into the malicious one. When any code is injected into executable codes, at least the 
LHash value of one of the basic blocks must be changed. It is computationally 
infeasible for LHash value collision attacks when the number of instructions is not the 
same. Although some adversaries can modify a block of instructions within a basic 
block to fulfil the match of the cryptographic hash and the relative address, they may 
induce the illegal instructions cannot be executed by the processor or invalid access 
addresses outside the space bounds. When the LHash value is calculated and 
compared in the implementation, the difference between the corrupted basic block’s 
new LHash value and the pre-stored LHash value can be found. Then the attack can 
be detected, and the CPU will be frozen by receiving a stall signal, and thereby the 
proposed architecture can detect code injection attacks. 

Stack-based, Heap-based buffer overflows, dangling pointer references, format 
strings vulnerabilities are normal overflow attacks. The purpose of this kind of attacks 
is to run the injected code not originate from the source program. Generally, the 
injected code has been placed in stack or head, which is not in the executable range 
defined by the security module. The security module can detect this kind of attacks 
successfully. Return-to-libc, heap-spraying, non-control data attacks are advanced 
overflow attacks. The security module can only defense heap-spraying attacks, 
because its purpose is also to run the injected code. Return-to-libc and non-control 
data attacks have never injected code or tampered code. Therefore, the security 
module will often fail to protect the program. 

As mentioned above, most code tampering will fail. However, there are still three 
situations requiring more consideration. a) The security enhanced processor cannot 
detect the tampering immediately. This is because the basic blocks are the checking 
unit of the monitor model, so as long as the program runs to the ending address of the 
basic block it should detect the attack. Even if the jump or branch instruction has 
tampered, the regular work of the security module will not be affected until the new 
end of the basic block is detected. b) In the case of the loss of the basic block, the 
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proposed ISIC cannot derive the monitor model of the current basic block 
continuously. Because of lack of protection of strong code checksum value, the attack 
may be successful. If we want to prevent such attacks completely, we should make 
sure that all basic blocks have been detected during the preparation and the testing 
stages. Besides, we also need to set out the security policy to treat the loss of the basic 
block as an abnormal situation. c) Collision attacks of LHash values suffer from 
algorithm collision attacks. This attack will succeed if the attacker replaces a code of 
the basic block, and it is guaranteed that the checksum value did not change. This is 
very difficult to implement in the process of protecting the processor instructions. The 
attacker must ensure that the input message sequences are legal instructions that can 
be executed by the processor, while the attacker has a collision attack. Although we 
only have 16 bits for the LHash algorithm, it is reasonable to believe that it is not 
likely to be compromised considering the limited number of instructions and 
meaningful instruction combinations. Some advanced hash algorithm will have a 
lower success rate of collision attacks. However, if high security is needed, it can be 
upgraded to a 32-bit or higher checksum algorithm or advanced algorithms like SHA 
and MD5, although this will cause performance loss and on-chip memory resource 
consumption. 

5 Experiment Results 

In terms of platform building, the OR1200 processor which is a 32-bit scalar RISC 
with a Harvard micro architecture is used in this work. The OR1200 soft core is 
configured with 4KB Instruction Cache and 4KB Data Cache. The frequency of the 
core is @100 MHZ. Then the SoC with the proposed architecture is implemented on 
the Xilinx Virtex 5 FPGA platform. The configuration of the system on chip is listed 
in Table 4. The FPGA resource used for the proposed instruction stream integrity 
checker is shown in Table 5. 
 

Content Details 

CPU 
OR1200 (svn rev 853) 
@100 MHz with 4K I/D-$ 

SoC based on ORPSOCv2 

ISIC 16 BB LHash Cache 

FPGA board Digilent Genesys XC5VLX50T 

Table 4: The configuration of the system on chip 
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Slice Logic Utilization Used Available 

Slice Registers 421 28,800 

Slice LUTs 1,428 28,800 

occupied Slices 469 7,200 

LUT Flip Flop pairs used 854 - 

bonded IOBs 127 480 

BlockRAM/FIFO 48 60 

BUFG/BUFGCTRLs 2 32 

Average Fanout of Non-Clock Nets 4.21 - 

Table 5: FPGA resource used for the proposed ISIC 

Benchmarks Total 
Instructions 

Jump & 
Branch 

Total 
BB 

Memory 
Size(KB) 

AES 22170 2926 3535 13.81 
openECC 56313 5439 6734 26.30 
quicksort 6707 854 1018 3.98 
bitcount 19684 2760 3344 13.06 
blowfish 19128 2685 3247 12.68 
patricia 23130 3288 3853 15.05 
SHA1 20455 2822 3400 13.28 
FFT 13506 1818 2143 8.37 

CRC16 18941 2672 3231 12.62 
basicmath 26515 3667 4327 16.90 
average   3483 13.61 

Table 6: Basic blocks and storage information of the selected benchmarks 

To evaluate the performance and area overhead of the proposed architecture, we 
select various scales of benchmarks from Mibench suite to generate realistic 
workloads. The basic block information, including the total instructions numbers, 
jump and branch numbers, total basic block numbers, and average instruction 
numbers in each basic block, of the selected benchmarks is listed in Table 6. 
OpenECC has the largest number of basic blocks, and the on chip storage requirement 
is 26.30KB. The fifth column is the memory space used for the on chip monitor 
model. This is generally accepted for runtime security monitor. 

The proposed architecture monitors the validation of the program at runtime, so 
that any modification committed from installation to execution can be checked. The 
dynamic monitoring signal is directly derived from the decode stage of the pipeline, 
and any invalid execution resulting from the previous attacks can be detected. Our 
architecture runs parallel with the processor, so that the overhead is affordable most 
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of the time. The selected benchmarks used in this experiment and the performance 
overhead are shown in Figure 5. 

 

Figure 5: The performance overhead of the core and ISIC 

The total performance overhead across the selected benchmarks is 2.50%, ranging 
from 0.04% (quilksort) to 3.45% (OpenECC). It is obvious that the overhead of 
OpenECC and basicmath is more than others. That is because the numbers of basic 
blocks in OpenECC and basicmath are much more than those of others, as can be seen 
from Table 6. As the number of basic blocks increases, the overall overhead of the 
proposed ISIC shows an upward trend. On the one hand, the large number of basic 
blocks increases the time spent in monitoring model retrieval. On the other hand, the 
program with more basic blocks has more irregular jumps and leads to a decrease in 
instruction cache and hash cache hit ratio. Besides, some complicated math programs 
can also lead to a decrease in monitoring performance. For the program like quicksort, 
bitcount, blowfish and CRC, the algorithm implementation process of these programs 
needs to conduct a lot of repetitive computing operations, and thus the ISIC 
performance overhead of these programs is low. In [Rogers and Milenkovic, 2009], 
the authors implement their work in Sim-Panalyzer ARM Simulator. The performance 
overhead in CBC-MAC CICM WtV mode, which is one of the most similar patterns 
of our work, is 43.2%, ranging from 0.17% to 93.8%, with the parameter of 4KB I-$. 
In [Arora et al., 2006], the authors evaluated the performance impact using the 
SimpleScalar 3.0/PISA architectural simulation tools, and the processor model is 
ARM920T with 16KB L1 I-$. In their work, the worst case performance overhead is 
4.94%. Compared with these two works, our approach has smaller performance losses 
or lower hardware requirements. 

A limitation of our approach is that only after a basic block is complete, can our 
architecture check the integrity of the instruction stream. Therefore, when malicious 
codes are injected or instructions are tampered, the processor has to execute the basic 
block at least one time because verification of the LHash value is executed at the end 
of basic blocks. A shadow register mechanism is a solution for this limitation in our 
architecture. When a basic block is being executed, results of instructions which do 
not update the memory will be stored in a shadow register file. Instructions for 
updating the memory will be stored in a specific store buffer until the LHash value is 
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checked by our architecture. After the validation of the LHash value of the basic 
block, the values of the shadow register file will be used to update the registers, and 
the data in the buffer will be sent to the external memory sequentially. 

6 Conclusions 

This paper proposes a fine-grained hardware based approach for runtime code 
integrity in embedded systems. The approach can perform validation of program 
runtime integrity by offline profiling of program features and runtime integrity check. 
At offline profiling stage, the binary code is divided into basic blocks, and the 
security features such as starting address and LHash based checksum are extracted. 
This security sensitive information will be load to the specified monitor model ram at 
the program load time. Then, an instruction stream integrity checker is designed for 
rapid dynamic integrity check and any invalid execution of the program will be 
detected to trigger the corresponding exception signals.  

To evaluate the performance overhead of the proposed approach, we implement a 
SoC with ISIC architecture in Xilinx XC5VLX50T FPGA as a prototype system, 
which can provide low area and power overhead, and high performance of 
verification. We use various scales of benchmarks from the MiBench suite to generate 
realistic workloads for the processor. The implementation shows that the ISIC can 
detect all attacks on instruction stream integrity. The processor performance overhead 
induced by the security mechanism of the ISIC is less than 3.45%, and is less than 1% 
at most of the time, according to the selected benchmarks. Besides, the prototype 
system also has advantages of low power consumption and marginal area footprint. 
The proposed hardware based monitoring architecture only traces the executing 
instruction and its corresponding address signals of the pipeline, with less intrusion to 
the existing embedded processor architectures, and can be easily ported to any 
processor platforms. 
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