
A Software Reliability Growth Modeling Framework

with Complexity of Path Searching

Shinji Inoue
(Kansai University, Takatsuki, Osaka

ino@kansai-u.ac.jp)

Shigeru Yamada
(Tottori University, Tottori, Tottori

yamada@tottori-u.ac.jp)

Abstract: We discuss measurement method for software system with the complexity of path
searching based on an infinite server queueing theory. Our modeling framework describes
concretely the process of the software fault detection by representing on the infinite server
queueing system. Additionally, we discuss estimation method of parameters is our model, and
derive a few measures for reliability assessment of software systems. Further, we derive several
software reliability growth models from our framework. Finally, numerical illustrations based
on our specific model, which is obtained from our modeling framework, are given by using
actual fault counting-data.

Keywords: Reliability assessment, software systems, test cases, path searching time, infinite
server system, generalized modeling framework
Categories: D.2

1 Introduction

Reviewing activities of each development phase and testing activities in the software
development process is a key factor for ensuring the quality/reliability of software
systems. Needless to say, software quality management technologies also important
for managing the quality of the process. Among the software quality characteristics,
we cannot ignore the reliability because the reliability is regarded as so-called must-
be quality. Especially, quantitative measurement, assessment and prediction of the
software quality/reliability are important for checking quantitatively the quality. A
software reliability growth models (abbreviated as SRGMs) [Pham 2000, Yamada
2014] is known as a mathematical model. The SRGMs are useful for such
quality/reliability assessment activities.

Recently, generalized modeling frameworks have been discussing by many
researchers for unifying SRGMs proposed so far. Dohi et al. [Dohi et al. 1998]
proposed a generalized modeling frameworks for SRGMs following
nonhomogeneous Poisson processes (NHPP), so-called NHPP models, by describing
software detection process in an infinite server queueing theory [Ross 1992, Trivedi
2002]. Huang et al. [Huang et al. 2003] have discussed a unified scheme for the
discrete-time models by focusing on the several mathematical structures. Inoue and
Yamada [Inoue and Yamada 2006] proposed an extended delayed S-shaped models

Journal of Universal Computer Science, vol. 24, no. 12 (2018), 1680-1689
submitted: 26/1/18, accepted: 15/11/18, appeared: 28/12/18  J.UCS

by describing the consecutive software failure-occurrence and fault-removing
processes based on the infinite server queueing theory. Further, Inoue and Yamada
[Inoue and Yamada 2007] have proposed generalized discrete software reliability
modeling framework with program size by using the generalized order statistics
theory [Langberg and Singpurwalla 1985].

This paper focuses on the literature, Dohi et al. [Dohi et al. 1998]. They
developed an infinite server queueing system describing consecutive the test case
execution (arrival) process and the path searching time of each test execution. And
they assumed that a path searching time of a test-case execution follows an
independent and identically distributed random time. Further the number of observed
faults are regarded as the number of program paths not completed searching.
Considering an actual situation, the path searching time must be influenced from the
complexity of the program paths to be executed by test cases. This paper develops
infinite server queueing system for software reliability measurement with the
complexity of the path searching. Further, we propose a few specific SRGMs
following our modeling frameworks. And we demonstrate reliability analysis based
on our specific proposed models by actual data collected in a software testing phase.

2 Infinite Server Queueing Model

A modeling framework proposed so far [Dohi et al. 1998] describes the process from
the arrival of test-cases to the software failure-occurrence by using the infinite server
queueing system assumed:

(A1) Test cases have been completely prepared before the beginning of testing
activities, and are executed by following homogeneous Poisson process

(HPP) with mean �

(A2) The �-th test case has the data for executing �� program path.

(A3) The each path searching time � follows the distribution function �(�) ≡Pr
� ≤ �� (i.i.d.).

We introduce the counting process
�(�), � ≥ 0� representing the number of

faults detected up to testing time �. Treating the number of detected faults as the

number of program paths still executing at testing time �, we have

Pr
�(�) = �� = � exp�−��� (��)���
� ! × Pr
�(�) = �| �% + �' + ⋯ + �� =)�. (1)

Eq. (1) implies the stochastic process follows a compound Poisson process with

parameter � and jump size ��. Now we assume that the one test-case has the data for
executing one program path and one program path has one software fault at most, i.e., �� = 1 (� = 1, 2, ⋯) . At this time, the process
�(�), � ≥ 0� is recognized as the -///∞ queueing system. Then, we can obtain

Pr
�(�) = �� = �� 1 �̅(�)3�4! �5�! exp 7−� 8 �̅(�)3�4
! 9 , (2)

1681Inoue S., Yamada S: A Software Reliability Growth Modeling Framework ...

which can be treated as the NHPP with mean � 1 �̅(�)3�4! . In Eq. (2),�̅(�) ≡ 1 − �(�).

From Eq. (2), we can obtain several types of NHPP models by assuming specific
suitable path searching time distributions in Eq. (2).

3 Extended Infinite Server Queueing Model with Complexity of

Path Searching

We can easily consider that the stochastic property of the path searching time depends
on the complexity of program path. Therefore, we extend the infinite server queueing
system discussed in Section 2 by considering with the difference of the path searching
time. Our infinite server queueing system is developed by the following assumptions:

(B1) Test cases have been completely prepared before the beginning of testing

activities, and are executed by following HPP with mean �.
(B2) One test case has the data for executing one program path and one program

path has one fault at most.
(B3) A test case for the low complexity program path is executed with probability : . A test case for the high complexity program path is executed with

probability 1 − :.
(B4) The random variables for the path searching time are independently

distributed. However, the path searching time for the low and high

complexity paths follow probability distribution functions ;(�) and <(�) ,
respectively.

Following the notion of generalized modeling framework in Eq. (1), we obtain Figure
1 depicting our extended infinite server queueing system.

Figure 1: Illustration of our infinite server queueing system.

1682 Inoue S., Yamada S: A Software Reliability Growth Modeling Framework ...

Let
=(�), � ≥ 0� and
�(�), � ≥ 0� denote the numbers of test case executed and

faults detected up to testing time �, respectively. Further we introduce
=%(�), � ≥ 0�

and
='(�), � ≥ 0� are the stochastic processes representing the number of test cases

for the low and high complexity program paths executed up to time �, respectively.

And
�%(�), � ≥ 0� and
�'(�), � ≥ 0� represents the number of faults counted from

the low and high complexity program paths executed during (0, �� , respectively.
Using the above stochastic processes, we formulate the infinite server queueing
system shown in Fig. 1.

Now we analyze the software fault-detection phenomenon occurred by the

execution of the low complexity program paths. First of all,
=%(�), � ≥ 0� is
formulated as

Pr
=%(�) = >� = � Pr
=%(�) = >, ='(�) = 3��
? !

 = (:��)@>! exp�−:���, (3)

from the modeling assumptions. Eq. (3) implies that the test cases for the low

complexity program paths are executed in accordance with a HPP with parameter�:.

Then, we can obtain
�%(�), � ≥ 0�$ as

Pr
�%(�) = A� = � Pr
�%(�) = A| =%(�) = ���
� !

(:��)��! exp�−:���, (4)

The conditional probability, BC
D%(�) = A|�%(�) = ��, in Eq. (4) means that m

faults are detected from � executed low complexity program paths. Therefore, we give
the conditional probability as

Pr
�%(�) = A|=%(�) = �� = EF �AG
3(�)�H
1 − 3(�)��IH (A ≤ �),
0 (A > �), (5)

where 3(�) is the probability that the path searching is not completed during (0, ��
given that the corresponding test case has been executed up to testing time) (< �).

Then, C(�) is given as

C(�) = 8 ;(̅� −))� 3)4
! (6)

by the concepts of the conditional time distribution [Ross 1992]. Consequently, we
obtain

Pr
�%(�) = A� =
-%(�)�HA! exp�−-%(�)�, (7)

where

-%(�) = :� 8 ;(̅L)3L4
! . (8)

As far as the software fault-detection phenomenon for the high complexity

program paths, we can analyze
�'(�), � ≥ 0� as:

1683Inoue S., Yamada S: A Software Reliability Growth Modeling Framework ...

-'(�) = (1 − :)� 8 <M(L)3L4
! . (9)

by applying the same methodology in deriving
�%(�), � ≥ 0� mentioned above. From

the above discussions, we can obtain
�(�), � ≥ 0� as Pr
�(�) = N� = Pr
�%(�) + �'(�) = N� =
-%(�) + -'(�)�ON! exp�−
-%(�) + -'(�)��, (10)

which is an NHPP with mean
-%(�) + -'(�). We can see that we can obtain several
NHPP models with the complexity of path searching by using Eq. (10) by giving

suitable probability distribution functions of ;(�) and <(�), respectively.

4 Specific NHPP Models

We show specific NHPP models by following the framework discussed in Section 3.
For examples, we develop three types of new NHPP models by assuming the path

searching time distributions, ;(�) and <(�) , which are for the low and high
complexity program paths, respectively

4.1 Model 1

As Model 1, we assume that

respectively. Eqs. (11) and (12) mean that the expected searching time for the high
complexity program paths is longer than the low complexity program paths. From
Eqs. (11) and (12), the mean of Eq. (10) is derived as

P(�) = � Q:R (1 − SIT4) + 1 − :U V1 − SIW4XY. (13)

4.2 Model 2

As Model 2, we assume ;(�) and <(�) follows the following exponential distribution

with parameters R (> 0) and Rayleigh distribution with parameter U (> 0):

respectively. In this case, the difference of the stochastic properties for path searching
time is represented by the shapes of the distributions. From Eqs. (14) and (15), the
mean value function of Eq. (10) is derived as

;(�) = 1 − exp�−R�� (R > 0), (11) <(�) = 1 − exp�−U�� (R > U > 0), (12)

;(�) = 1 − exp�−R�� (R > 0), (14) <(�) = 1 − exp Q− Z4W['Y (U > 0), (15)

1684 Inoue S., Yamada S: A Software Reliability Growth Modeling Framework ...

P(�) = � 7:R (1 − SIT4) + U(1 − :)2 \Γ% F12G − Γ' ^12 , F �UG'_`9, (16)

where Γ%(a) and Γ'(a, A) are the complete and incomplete gamma distributions,

respectively. We call Eq. (16) Model 2.

4.3 Model 3

In Model 3, assuming ;(�) and <(�) obey the following exponential distribution with

parameter R (> 0) and gamma distribution with a = 2 (shape parameter), we have

Then, the mean of Eq. (10) can be obtained as

P(�) = � Q:R (1 − SIT4) + 2(1 − :)2 b1 − F1 + U2 �G SIW4cY. (21)

5 Model Parameter Estimation

Following the method of maximum-likelihood based on observed fault-counting data,
we obtain the values of parameters. However, it might not be appropriate to obtain the

value of the parameter :, the probability of the execution of the low complexity

program paths, from the fault-counting data. Therefore, we consider that : = :̅ has

been given in this parameter estimation. Supposing < data pairs: (�d, ed)(a =0, 1, 2, ⋯ , <) has been observed. ed is the total number of faults detected during (0, �d� and :̅. Then, we obtain ln h(i|:̅), which is the log-likelihood function for the

counting process
�(�), � ≥ 0�. ln h(i|:̅) represents the log-likelihood function given :̅, i is the set of parameters in the model. The values of parameters can be estimated
by numerically solving the equations: j ln h(i|:̅)ji = 0, (22)

simultaneously in terms of each parameter of the model.

Γ%(a) = 8 SIk)dI%3)�
! , (17)

Γ'(a, A) = 8 SIk)dI%3)�
H , (18)

;(�) = 1 − exp�−R�� (R > 0), (19) <(�) = 1 − (1 + U�) exp�−U�� (U > 0), (20)

1685Inoue S., Yamada S: A Software Reliability Growth Modeling Framework ...

6 Software Reliability Analysis

We use fault counting data, (�d , ed)(a = 0, 1, 2, ⋯ , 36 (days)), which is observed in
actual software testing for embedded control software of printer system, which
consists of main and five sub components.

First of all, we need to obtain the value of parameter :̅ from the information of
the prepared test cases. In our numerical examples, we regard the test cases executing
within only the main component as the test cases for the low complexity program
paths. And we also regard the test cases executing through both of the main and sub
components as the test cases for the high complexity program paths. From the

information of the prepared test cases, we calculate :̅ = 0.288. We show software
reliability analysis by using Model 2 in Eq. (16) and Model 3 in Eq. (21),
respectively.

We show the examples in case of applying Model 2 in Eq. (16) to the observed

data. Model 2 has the following three parameters, �, R, and U, which are needed to
estimate from the observed data. Consequently, we estimate �s = 2.034, Ru = 0.158 and Us = 0.870 × 10' , where �s , Ru , and Us represents the

parameter estimations of �, R, and U, respectively. In Figure 2, we show the estimated Px(�) (Model 2), and its 90% confidence limits by using the estimated parameter

estimations �s, Ru, and Us . The 100: confidence limits of y�D(�)� ≡ P(�) is obtained
by

Px(�) ± {|}Px(�), (23)

where {| is the 100(1 + :)/2 quantile of the standard normal distribution [Yamada

and Osaki 1985]. The confidence limits might be useful for the process control of the
testing phase.

Figure 2: Estimated time-dependent behavior of Px(�), and its 90% confidence limits.

(Model 2; :̅ = 0.288)

1686 Inoue S., Yamada S: A Software Reliability Growth Modeling Framework ...

Further, ~()|�) represents the failure-free operation probability during the time

interval (�, � +)�() ≥ 0, � ≥ 0) assuming the software system is operated as the

same environment as the testing environment time interval (0, ��. Then, the functions
is obtained as ~()|�) = exp�−
P(� +)) − P(�)��, (24)

by using the stochastic properties of NHPP. Figure 3 shows the estimated software

reliability function ~�()|36). In Fig. 3, we can obtain ~�(1.0|36) ≈ 0.296.

Figure 3: Estimated ~�()|36). (Model 2; :̅ = 0.288)

Furthermore, we show numerical examples for Model 3 in Eq. (21). There exists the

three parameters, �, R and U, in Model 3. Conducting parameter estimation, we obtain �s = 2.000, Ru = 1.663 × 10I% and Us = 1.414 × 10I' , respectively. Figure 4 shows

the estimated Px(�) in Model 3 and its 95% confidence limits. And the estimated ~�()|36), which is derived from Model 3, is shown in Figure 5. we obtain ~�(1.0|36)
as 0.275 from Fig. 5.

7 Conclusions

We discussed reliability assessment of software systems by considering the difference
of the stochastic property of the program path searching time based on the infinite
server queueing theory. Several models are developed by considering the stochastic
behavior of the path searching time of the low and high complexity program paths.
Further we show application examples of our modeling framework by developing
specific models, and reliability analysis based on them by observed actual data.
Further studies are still needed to discuss more on the goodness-of-fit of models
developed by following proposed framework, and challenge to reflect more on actual
software fault-detection process.

1687Inoue S., Yamada S: A Software Reliability Growth Modeling Framework ...

Figure 4: Estimated time-dependent behavior of Px(�), and its 90% confidence limits.

(Model 3; :̅ = 0.288)

Figure 5: Estimated ~�()|36). (Model 3; :̅ = 0.288)

References

[Dohi et al. 1998] Dohi, T., Matsuoka, T., Osaki, S.: ``An infinite server queueing model for
assessment of the software reliability''; Elect. Comm. in Japan (Part 3), 85, 3 (2000) 536-544.

[Huang et al. 2003] Huang, C.Y., Lyu, M.R., Kuo, S.Y.: ``A unified scheme of some
nonhomogeneous Poisson process models for software reliability estimation''; IEEE Trans.
Sotw. Eng., 29, 1 (2003) 261-269.

[Inoue and Yamada 2006] Inoue, S., Yamada, S.: “An extended delayed S-shaped software
reliability growth model based on infinite server queueing theory”; in Reliability Modeling,
Analysis and Optimization, Pham, H. Ed. 357-372, World Scientific, Singapore 2006.

1688 Inoue S., Yamada S: A Software Reliability Growth Modeling Framework ...

[Inoue and Yamada 2007] Inoue, S., Yamada, S.: `”Generalized discrete software reliability
modeling with effect of program size”; IEEE Trans. Syst. Man, Cybern. (Part A), 37, 2 (2007)
170-179.

[Langberg and Singpurwalla 1985] Langberg, N., Singpurwalla, N.D.: “A unification of some
software reliability models”; SIAM J. Sci. Stat. Comput., 6, 3 (1985) 781-790.

[Pham 2000] Pham, H.: “Software Reliability”; Springer-Verlag, Singapore, 2001.

[Ross 1992] Ross, S.M.: “Applied Probability Models with Optimization Applications”; Dover
Publications, New York, 1992.

[Trivedi 2002] Trivedi, K.S.: “Probability and Statistics with Reliability, Queueing and
Computer Science”; John Wiley & Sons, New York, 2002.

[Yamada and Osaki 1985] Yamada, S., Osaki, S.: “Software reliability growth modeling:
Models and applications”; IEEE Trans. Softw. Eng., SE-11, 12 (1985) 1431-1437.

[Yamada 2014] Yamada, S.: “Software Reliability Modeling: Fundamentals and Applications”;
Springer-Verlag (Springer Briefs in Statistics), Tokyo/Heidelberg, 2014.

1689Inoue S., Yamada S: A Software Reliability Growth Modeling Framework ...

