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Abstract: We discuss measurement method for software system with the complexity of path 
searching based on an infinite server queueing theory. Our modeling framework describes 
concretely the process of the software fault detection by representing on the infinite server 
queueing system. Additionally, we discuss estimation method of parameters is our model, and 
derive a few measures for reliability assessment of software systems. Further, we derive several 
software reliability growth models from our framework. Finally, numerical illustrations based 
on our specific model, which is obtained from our modeling framework, are given by using 
actual fault counting-data. 
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1 Introduction  

Reviewing activities of each development phase and testing activities in the software 
development process is a key factor for ensuring the quality/reliability of software 
systems. Needless to say, software quality management technologies also important 
for managing the quality of the process. Among the software quality characteristics, 
we cannot ignore the reliability because the reliability is regarded as so-called must-
be quality. Especially, quantitative measurement, assessment and prediction of the 
software quality/reliability are important for checking quantitatively the quality. A 
software reliability growth models (abbreviated as SRGMs) [Pham 2000, Yamada 
2014] is known as a mathematical model. The SRGMs are useful for such 
quality/reliability assessment activities. 

Recently, generalized modeling frameworks have been discussing by many 
researchers for unifying SRGMs proposed so far. Dohi et al. [Dohi et al. 1998] 
proposed a generalized modeling frameworks for SRGMs following 
nonhomogeneous Poisson processes (NHPP), so-called NHPP models, by describing 
software detection process in an infinite server queueing theory [Ross 1992, Trivedi 
2002]. Huang et al. [Huang et al. 2003] have discussed a unified scheme for the 
discrete-time models by focusing on the several mathematical structures. Inoue and 
Yamada [Inoue and Yamada 2006] proposed an extended delayed S-shaped models 
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by describing the consecutive software failure-occurrence and fault-removing 
processes based on the infinite server queueing theory. Further, Inoue and Yamada 
[Inoue and Yamada 2007] have proposed generalized discrete software reliability 
modeling framework with program size by using the generalized order statistics 
theory [Langberg and Singpurwalla 1985].  

This paper focuses on the literature, Dohi et al. [Dohi et al. 1998]. They 
developed an infinite server queueing system describing consecutive the test case 
execution (arrival) process and the path searching time of each test execution. And 
they assumed that a path searching time of a test-case execution follows an 
independent and identically distributed random time. Further the number of observed 
faults are regarded as the number of program paths not completed searching. 
Considering an actual situation, the path searching time must be influenced from the 
complexity of the program paths to be executed by test cases. This paper develops 
infinite server queueing system for software reliability measurement with the 
complexity of the path searching. Further, we propose a few specific SRGMs 
following our modeling frameworks. And we demonstrate reliability analysis based 
on our specific proposed models by actual data collected in a software testing phase. 

2 Infinite Server Queueing Model 

A modeling framework proposed so far [Dohi et al. 1998] describes the process from 
the arrival of test-cases to the software failure-occurrence by using the infinite server 
queueing system assumed: 

(A1) Test cases have been completely prepared before the beginning of testing 
activities, and are executed by following homogeneous Poisson process 

(HPP) with mean � 

(A2) The �-th test case has the data for executing �� program path. 

(A3) The each path searching time �  follows the distribution function �(�) ≡Pr
� ≤ �� (i.i.d.). 

We introduce the counting process 
�(�), � ≥ 0�  representing the number of 

faults detected up to testing time �. Treating the number of detected faults as the 

number of program paths still executing at testing time �, we have 

Pr
�(�) = �� = � exp�−��� (��)���
� !                                             × Pr
�(�) = �| �% + �' + ⋯ + �� = )�. (1) 

Eq. (1) implies the stochastic process follows a compound Poisson process with 

parameter � and jump size ��. Now we assume that the one test-case has the data for 
executing one program path and one program path has one software fault at most, i.e., �� = 1 (� = 1, 2, ⋯ ) . At this time, the process 
�(�), � ≥ 0�  is recognized as the -///∞ queueing system. Then, we can obtain 

Pr
�(�) = �� = �� 1 �̅(�)3�4! �5�! exp 7−� 8 �̅(�)3�4
! 9 , (2) 
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which can be treated as the NHPP with mean � 1 �̅(�)3�4! . In Eq. (2),�̅(�) ≡ 1 − �(�). 

From Eq. (2), we can obtain several types of NHPP models by assuming specific 
suitable path searching time distributions in Eq. (2). 

3 Extended Infinite Server Queueing Model with Complexity of 

Path Searching 

We can easily consider that the stochastic property of the path searching time depends 
on the complexity of program path. Therefore, we extend the infinite server queueing 
system discussed in Section 2 by considering with the difference of the path searching 
time. Our infinite server queueing system is developed by the following assumptions: 

(B1) Test cases have been completely prepared before the beginning of testing 

activities, and are executed by following HPP with mean �. 
(B2) One test case has the data for executing one program path and one program 

path has one fault at most. 
(B3) A test case for the low complexity program path is executed with probability : . A test case for the high complexity program path is executed with 

probability 1 − :. 
(B4) The random variables for the path searching time are independently 

distributed. However, the path searching time for the low and high 

complexity paths follow probability distribution functions ;(�)  and <(�) , 
respectively. 

Following the notion of generalized modeling framework in Eq. (1), we obtain Figure 
1 depicting our extended infinite server queueing system. 

 

Figure 1: Illustration of our infinite server queueing system. 
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Let 
=(�), � ≥ 0� and 
�(�), � ≥ 0� denote the numbers of test case executed and 

faults detected up to testing time �, respectively. Further we introduce 
=%(�), � ≥ 0� 

and 
='(�), � ≥ 0� are the stochastic processes representing the number of test cases 

for the low and high complexity program paths executed up to time �, respectively. 

And 
�%(�), � ≥ 0� and 
�'(�), � ≥ 0� represents the number of faults counted from 

the low and high complexity program paths executed during (0, �� , respectively. 
Using the above stochastic processes, we formulate the infinite server queueing 
system shown in Fig. 1. 

Now we analyze the software fault-detection phenomenon occurred by the 

execution of the low complexity program paths. First of all, 
=%(�), � ≥ 0�  is 
formulated as 

Pr
=%(�) = >� = � Pr
=%(�) = >, ='(�) = 3��
? !  

                           = (:��)@>! exp�−:���, (3) 

from the modeling assumptions. Eq. (3) implies that the test cases for the low 

complexity program paths are executed in accordance with a HPP with parameter�:. 

Then, we can obtain 
�%(�), � ≥ 0�$ as 

Pr
�%(�) = A� = � Pr
�%(�) = A| =%(�) = ���
� !

(:��)��! exp�−:���, (4) 

The conditional probability, BC 
D%(�) = A|�%(�) = ��, in Eq. (4) means that $m$ 

faults are detected from � executed low complexity program paths. Therefore, we give 
the conditional probability as 

Pr
�%(�) = A|=%(�) = �� = EF �AG 
3(�)�H
1 − 3(�)��IH           (A ≤ �),
0                                                (A > �),  (5) 

where 3(�) is the probability that the path searching is not completed during (0, �� 
given that the corresponding test case has been executed up to testing time ) (< �). 

Then, C(�) is given as 

C(�) = 8 ;(̅� − ))� 3)4
!  (6) 

by the concepts of the conditional time distribution [Ross 1992]. Consequently, we 
obtain 

Pr 
�%(�) = A� = 
-%(�)�HA! exp�−-%(�)�, (7) 

where 

-%(�) = :� 8 ;(̅L)3L4
! . (8) 

As far as the software fault-detection phenomenon for the high complexity 

program paths, we can analyze 
�'(�), � ≥ 0� as: 
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-'(�) = (1 − :)� 8 <M(L)3L4
! . (9) 

by applying the same methodology in deriving 
�%(�), � ≥ 0� mentioned above. From 

the above discussions, we can obtain 
�(�), � ≥ 0� as Pr
�(�) = N� = Pr
�%(�) + �'(�) = N�                           = 
-%(�) + -'(�)�ON! exp�−
-%(�) + -'(�)��, (10) 

which is an NHPP with mean 
-%(�) + -'(�). We can see that we can obtain several 
NHPP models with the complexity of path searching by using Eq. (10) by giving 

suitable probability distribution functions of ;(�) and <(�), respectively. 

4 Specific NHPP Models 

We show specific NHPP models by following the framework discussed in Section 3. 
For examples, we develop three types of new NHPP models by assuming the path 

searching time distributions, ;(�)  and <(�) , which are for the low and high 
complexity program paths, respectively 

4.1 Model 1 

As Model 1, we assume that 

respectively. Eqs. (11) and (12) mean that the expected searching time for the high 
complexity program paths is longer than the low complexity program paths. From 
Eqs. (11) and (12), the mean of Eq. (10) is derived as 

P(�) = � Q:R (1 − SIT4) + 1 − :U V1 − SIW4XY. (13) 

4.2 Model 2 

As Model 2, we assume ;(�) and <(�) follows the following exponential distribution 

with parameters R (> 0) and Rayleigh distribution with parameter U (> 0): 

respectively. In this case, the difference of the stochastic properties for path searching 
time is represented by the shapes of the distributions. From Eqs. (14) and (15), the 
mean value function of Eq. (10) is derived as 

;(�) = 1 − exp�−R��      (R > 0), (11) <(�) = 1 − exp�−U��      (R > U > 0), (12) 

;(�) = 1 − exp�−R��      (R > 0), (14) <(�) = 1 − exp Q− Z4W['Y      (U > 0), (15) 
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P(�) = � 7:R (1 − SIT4) + U(1 − :)2 \Γ% F12G − Γ' ^12 , F �UG'_`9, (16) 

where Γ%(a) and Γ'(a, A) are the complete and incomplete gamma distributions, 

respectively. We call Eq. (16) Model 2. 

4.3 Model 3 

In Model 3, assuming ;(�) and <(�) obey the following exponential distribution with 

parameter R (> 0) and gamma distribution with a = 2 (shape parameter), we have 

Then, the mean of Eq. (10) can be obtained as 

P(�) = � Q:R (1 − SIT4) + 2(1 − :)2 b1 − F1 + U2 �G SIW4cY. (21) 

5 Model Parameter Estimation 

Following the method of maximum-likelihood based on observed fault-counting data, 
we obtain the values of parameters. However, it might not be appropriate to obtain the 

value of the parameter :, the probability of the execution of the low complexity 

program paths, from the fault-counting data. Therefore, we consider that : = :̅ has 

been given in this parameter estimation. Supposing <  data pairs: (�d, ed)(a =0, 1, 2, ⋯ , <)  has been observed. ed  is the total number of faults detected during (0, �d� and :̅. Then, we obtain ln h(i|:̅), which is the log-likelihood function for the 

counting process 
�(�), � ≥ 0�. ln h(i|:̅) represents the log-likelihood function given :̅, i is the set of parameters in the model. The values of parameters can be estimated 
by numerically solving the equations: j ln h(i|:̅)ji = 0, (22) 

simultaneously in terms of each parameter of the model. 

Γ%(a) = 8 SIk)dI%3)�
! , (17) 

Γ'(a, A) = 8 SIk)dI%3)�
H , (18) 

;(�) = 1 − exp�−R��      (R > 0), (19) <(�) = 1 − (1 + U�) exp�−U��      (U > 0), (20) 
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6 Software Reliability Analysis 

We use fault counting data, (�d , ed)(a = 0, 1, 2, ⋯ , 36 (days)), which is observed in 
actual software testing for embedded control software of printer system, which 
consists of main and five sub components. 

First of all, we need to obtain the value of parameter :̅ from the information of 
the prepared test cases. In our numerical examples, we regard the test cases executing 
within only the main component as the test cases for the low complexity program 
paths. And we also regard the test cases executing through both of the main and sub 
components as the test cases for the high complexity program paths. From the 

information of the prepared test cases, we calculate  :̅ = 0.288. We show software 
reliability analysis by using Model 2 in Eq. (16) and Model 3 in Eq. (21), 
respectively. 

We show the examples in case of applying Model 2 in Eq. (16) to the observed 

data. Model 2 has the following three parameters, �, R, and U, which are needed to 
estimate from the observed data. Consequently, we estimate  �s = 2.034, Ru = 0.158 and Us = 0.870 × 10' , where �s , Ru , and Us  represents the 

parameter estimations of �, R, and U, respectively. In Figure 2, we show the estimated Px(�) (Model 2), and its 90% confidence limits by using the estimated parameter 

estimations �s, Ru, and Us . The 100: confidence limits of y�D(�)� ≡ P(�) is obtained 
by 

Px(�) ± {|}Px(�), (23) 

where {| is the 100(1 + :)/2 quantile of the standard normal distribution [Yamada 

and Osaki 1985]. The confidence limits might be useful for the process control of the 
testing phase. 
 

 

Figure 2: Estimated time-dependent behavior of Px(�), and its 90% confidence limits. 

(Model 2; :̅ = 0.288) 
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Further, ~()|�) represents the failure-free operation probability during the time 

interval (�, � + )�() ≥ 0, � ≥ 0)  assuming the software system is operated as the 

same environment as the testing environment time interval (0, ��. Then, the functions 
is obtained as ~()|�) = exp�−
P(� + )) − P(�)��, (24) 

by using the stochastic properties of NHPP. Figure 3 shows the estimated software 

reliability function ~�()|36). In Fig. 3, we can obtain ~�(1.0|36) ≈ 0.296. 
 

 

Figure 3: Estimated  ~�()|36). (Model 2; :̅ = 0.288) 

Furthermore, we show numerical examples for Model 3 in Eq. (21). There exists the 

three parameters, �, R and U, in Model 3. Conducting parameter estimation, we obtain �s = 2.000, Ru = 1.663 × 10I% and Us = 1.414 × 10I' , respectively. Figure 4 shows 

the estimated Px(�) in Model 3 and its 95% confidence limits. And the estimated ~�()|36), which is derived from Model 3, is shown in Figure 5. we obtain ~�(1.0|36) 
as 0.275 from Fig. 5. 

7 Conclusions 

We discussed reliability assessment of software systems by considering the difference 
of the stochastic property of the program path searching time based on the infinite 
server queueing theory. Several models are developed by considering the stochastic 
behavior of the path searching time of the low and high complexity program paths. 
Further we show application examples of our modeling framework by developing 
specific models, and reliability analysis based on them by observed actual data. 
Further studies are still needed to discuss more on the goodness-of-fit of models 
developed by following proposed framework, and challenge to reflect more on actual 
software fault-detection process. 
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Figure 4: Estimated time-dependent behavior of Px(�), and its 90% confidence limits. 

(Model 3; :̅ = 0.288) 

 

Figure 5: Estimated  ~�()|36). (Model 3; :̅ = 0.288) 
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