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Abstract: Reversals and transpositions are two classic genome rearrangement opera-
tions. Reversals occur when a chromosome breaks at two locations called breakpoints
and the DNA between the breakpoints is reversed. Transpositions occur when two
adjacent blocks of elements exchange position. This paper presents a polynomial-time
approximation algorithm for the Sorting by Reversals and Transpositions Problem. Our
algorithm applies to both signed and unsigned versions of the problem, and it treats
both cases in a unified manner. We prove an approximation factor of 2 for signed per-
mutations and 2k for the unsigned case, where k is the approximation factor of the
algorithm used for cycle decomposition, but in our practical experiments our algorithm
found results with approximation ratio better than 1.5 in more than 99% of the signed
permutations and better than 1.8 in more than 97% of the unsigned permutations. Our
analysis also shows that our algorithm outperforms any other approach known to date.
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1 Introduction

Reversals and transpositions are classic genome rearrangement operations. Re-

versals occur when a chromosome breaks at two locations called breakpoints and

the DNA between the breakpoints is reversed. Transpositions occur when two

adjacent blocks of elements exchange position.

We represent genomes as sequences of segments called syntenic blocks, which

we assume to be shared by the genomes being compared. Let n be the total

number of shared segments. We assign a unique number in the set {1, . . . , n} to

each segment such that chromosomes can be regarded as permutations. When

segments shared by two genomes have different orientations, we assign different

signs (‘+’ or ‘−’) to their unique numbers. When the orientation of the segments

is not considered, the unique numbers have no signs.
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A sequence of shared segments can be seen as a permutation of their unique

numbers, and the permutation is how we represent the genome itself. We sort

a given permutation by applying successive operations that transform it into a

permutation where all elements are positive and in ascending order. The main

goal is to find the minimum number of such operations, which represents a most

parsimonious scenario.

Reversals and transpositions lead to two classic genome rearrangement prob-

lems called “The Sorting by Reversals Problem” and “The Sorting by Transposi-

tions Problem”, respectively. The former has polynomial algorithms in the signed

version [Bergeron 2005, Hannenhalli and Pevzner 1999, Tannier et al. 2007], and

the unsigned version is NP-Hard [Caprara 1999] and the best approximation fac-

tor known is 1.375 [Berman et al. 2002]. The sorting by transpositions problem

has only the unsigned version and it is also NP-Hard [Bulteau et al. 2012]. The

best approximation factor known to date is 1.375 [Elias and Hartman 2006].

Several efforts have been made to develop algorithms that consider both re-

versals and transpositions. The first algorithms were developed by Walter, Dias,

and Meidanis [Walter et al. 1998]. They presented a 2-approximation algorithm

for the signed version and a 3-approximation algorithm for the unsigned version

of “The Sorting by Reversals and Transpositions Problem”. The signed version

uses a structure called the cycle graph whereas the unsigned version uses break-

points. The concept of breakpoints was further explored by Dias et al. to create

a greedy algorithm for unsigned permutations [Dias et al. 2014a].

In 1999, Gu et al. [Gu et al. 1999] introduced a genome rearrangement opera-

tion called inverted transposition. This operation breaks the chromosome at two

locations, then reverses the DNA between these locations and places it in another

position in the same chromosome. Gu et al. gave a 2-approximation algorithm for

the minimal number of operation needed to sort a signed permutation by rever-

sals, transpositions, and inverted transpositions. In 2002, Eriksen [Eriksen 2002]

claimed that an algorithm looking for the minimal number of such operations

will produce a solution heavily biased toward transpositions. Thus, they gave an

approximation algorithm with factor 1 + ε when the weight of reversals is 1 and

the weights of transpositions and inverted transpositions are 2.

Rahman, Shatabda, and Hasan [Rahman et al. 2008] used the cycle graph

to present a 2k-approximation algorithm for the problem of sorting unsigned

permutations by reversals and transpositions, where k is the approximation of

the algorithm used for cycle decomposition [Caprara 1999]. We adapted this

algorithm for signed permutations, which resulted in a 2-approximation algo-

rithm [Dias et al. 2014b]. At present the best known approximation ratio achiev-

able for the cycle decomposition is k = 17
12 + ε ≈ 1.4167 + ε, for any positive ε,

published by Chen [Chen 2013]. This algorithm is a modification on Lin and

Jiang’s approximation algorithm that has k = 5073−15
√
1201

3208 + ε ≈ 1.4193 + ε,
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for any positive ε [Lin and Jiang 2004]. We used the original Lin and Jiang’s

algorithm in our implementation because of its simplicity.

Here, we present an algorithm for the problem of sorting permutations by

reversals and transpositions. Our algorithm applies to both signed and unsigned

versions, and it treats both cases in a unified manner. Our algorithm does not

improve the best approximation factors of 2 and 2k for signed and unsigned

permutations, respectively. However, the only step which does not guarantee an

approximation ratio better than 1.8 and 1.8k for signed and unsigned permuta-

tions, respectively, occurs in rare situations as shown by practical experiments.

This paper is organized as follows. Section 2 defines the notation we use

throughout the paper and provides a formal presentation for our problem. Sec-

tion 3 describes a basic algorithm that can be used to optimally sort a large

number of instances, but it does not provide answers for a particular set. We

study this set and provide an approach to compute a 2.0-approximate value in

Section 4. In Section 5, we carry out a practical analysis that shows that our

algorithm outperforms other methods.

2 Background

Throughout this paper, we represent a genome with n conserved blocks as a

permutation π = (π1 π2 . . . πn), πi ∈ Z, 1 ≤ |πi| ≤ n, and |πi| �= |πj | for all

i �= j. The permutation such that all elements are positive and in ascending

order is called identity, and we represent it as ι = (1 2 . . . n).

Two kinds of permutations are possible: signed and unsigned. For a signed

permutation, every element πi has a plus (+) or minus (−) sign that indicates

the orientation of the block that it represents. For an unsigned permutation,

the block orientation is unknown. Therefore, only the order of the blocks is

represented.

A reversal is an operation ρr(i, j), 1 ≤ i ≤ j ≤ n, that reverses the order

of π[i..j] for any permutation π. This operation also changes the signs of each

element between πi and πj if π is a signed permutation. When π is unsigned,

reversals ρr(i, j) such that i = j are not considered, since they do not change the

permutation. Therefore, if π is an unsigned permutation we have (π1 . . . πi−1

πi πi+1 . . . πj πj+1 . . .πn) · ρr(i, j) = (π1 . . . πi−1 πj . . . πi+1 πi πj+1 . . .πn).

In a similar way, if π is a signed permutation we have (π1 . . . πi−1 πi πi+1 . . . πj

πj+1 . . .πn) · ρr(i, j) = (π1 . . . πi−1 −πj . . . −πi+1 −πi πj+1 . . .πn).

A transposition is an operation ρt(i, j, k), 1 ≤ i < j < k ≤ n+1, that moves a

block of contiguous elements πi . . . πj−1 to a new location between πk−1 and πk.

Therefore, (π1 . . . πi−1 πi . . . πj−1 πj . . . πk−1 πk . . . πn) · ρt(i, j, k) = (π1 . . .

πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn). Observe that a transposition does not

affect the sign of any element and thus it has the same impact on permutations

no matter if they are signed or unsigned.
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Amodel M is the set of allowed operations that can be applied to an arbitrary

permutation π. The distance dM (π) is the minimum number d of operations

ρ1, ρ2, . . . , ρd ∈ M such that π · ρ1 · ρ2 · . . . · ρd = ι. Therefore, the reversal

distance dr(π) is the minimum number of reversals that transform π into the

identity permutation, while the transposition distance dt(π) is the minimum

number of transpositions that transform π into the identity permutation. When

the model includes both reversals and transpositions, we define the reversal and

transposition distance drt(π), which is the minimum number of reversals and

transpositions that transform π into the identity permutation.

2.1 Cycle Graph

We map any signed permutation π to a cycle graph [Bafna and Pevzner 1998]

G(π) as follows. For each element πi we add two vertices to G(π), namely, −πi

and +πi. We also add the vertices 0 and −(n + 1). Therefore, the vertex set

of G(π) is {−n, . . . ,−2, −1, 1, 2, . . . , n} ∪ {0,−(n + 1)}. Two sets of edges can

be defined: the gray edge set is {(+(i − 1),−i) : 1 ≤ i ≤ n + 1}, and the black

edge set is {(−πi,+πi−1) : 1 ≤ i ≤ n + 1}. The black edges link elements that

are side by side in π and the gray edges link elements that are side by side in

ι. For example, the permutation π = (+5 − 3 − 4 + 2 + 1) generates the

vertex set {0,−5,+5,+3,−3,+4,−4,−2,+2,−1,+1,−6} and the edges shown

in Figure 1.

Observe that we draw the same graph in two forms: linear and circular. The

linear form is illustrated in Figure 1(a), where vertices are drawn on a horizontal

line in the same order as the elements of π. The black edges are drawn as linear

edges, and the gray edges are drawn as arcs. The circular form is illustrated in

Figure 1(b), where we close together the two endpoints of the line in the first

form to make a circle putting the black edges on the circumference of the circle

and the gray edges inside the circle.

For each element πi ∈ π, the vertex −πi ∈ G(π) is drawn before the vertex πi

as one can observe in Figure 1(a) by reading the vertices from left to right. This

convention is useful to retrieve the signs of elements in the original permutation.

For instance, we can see that in the cycle graph the vertex −5 happens before

+5 and hence 5 is positive in the permutation π, whereas +3 appears before −3

and hence 3 is negative in the permutation π.

When π is unsigned, we can map it to a signed permutation π′ by assign-

ing arbitrary signs to each element πi. In the end, we associate G(π′) with π.

Therefore, π can be mapped to several cycle graphs and the best graph for our

purposes is the one that maximizes the number of cycles. We postpone the defi-

nition of cycles until Section 2.2; what is important now is the fact that finding

the best graph is an NP-hard problem [Caprara 1999]. Thus, we rely on approxi-

mations to find cycle graphs for unsigned permutations. The best approximation
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Gray Edge Black Edge

0 -5 5 3 -3 4 -4 -2 2 -1 1 -6

a) b)

Linear Circular

2 4 6

c1 = (6, 4, 2)

1 3 5

c2 = (5, -3, 1)

1 2 3 4 5 6

c)

Cycles

0 -5 -3 4 2 -1

65 3 -4 -2 1 -

Figure 1: Cycle graphG(π) for π = (+5 − 3 − 4 +2+1) shown in different rep-

resentations in (a) and (b). In (c) we present the cycles c1 = (−6, 1,−2,−4, 3, 5)

and c2 = (−1, 2,−3, 4,−5, 0), which can also be represented as c1 = (6, 4, 2) and

c2 = (5,−3, 1) given the labels of the black edges in the cycles.

algorithm has approximation factor 1.4167 + ε, for ε > 0 [Chen 2013].

Since both signed and unsigned permutations can be mapped to cycle graphs,

we hereafter treat both cases in a unified manner. We will apply reversals and

transpositions directly on the cycle graph, and that will be enough to sort the

permutation (signed or unsigned) that underlies it.

2.2 Cycles

Each vertex in G(π) is incident on one gray edge and one black edge, which allows

a unique decomposition of edges in cycles of alternating colors. In Figure 1, we

have two cycles: c1 = (−6, 1,−2,−4, 3, 5) and c2 = (−1, 2,−3, 4,−5, 0). A cycle c

can be written in many possible ways depending on the choice of the first vertex

and on the direction we traverse the edges. To make the representation unique, we

assume that the first vertex v1 in the cycle is the “rightmost” element (terms like

“rightmost” or “leftmost” refer to the linear form of drawing the cycle graph).

In addition, we assume that the second element is the vertex that is linked to v1
by a black edge. The cycle representations of c1 and c2 presented in Figure 1(c)

keep these restrictions in mind.

We simplify our cycle representation by first numbering the black edges of

the cycle graph G(π) from 1 to n + 1. We assign label i to a black edge that

links −πi to +πi−1. Let (v1, v2, v3, v4, . . .) be a cycle written using the rules

previously described; the simplified representation lists the labels for the black

edges {(v1, v2), (v3, v4), . . .} in order, and we use ‘+’ or ‘−’ to recognize how

black edges are traversed. If the black edge is traversed from right to left then

it is assigned a ‘+’ sign and we say it is a positive edge; otherwise, it is assigned

a ‘−’ sign and we say it is a negative edge. Since v1 is the rightmost element in

the cycle, it is easy to see that (v1, v2) is always traversed from right to left, so
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the first black edge in our simplified representation is always positive.

Figure 1(c) presents the cycles c1 and c2 in the simplified notation. Keep in

mind that the signs are not assigned to a black edge itself, but to its label in

the cycle representation (observe the black edge labeled as 3 in c2). In addition,

the cycle graph is not a digraph and a black edge B = (a, b) can also be written

as B = (b, a). We are using arrows in Figure 1(c) only to clarify how the black

edges are being traversed inside the cycle.

We say that two or more black edges are convergent if they are in the same

cycle and have the same sign. We say that two black edges are divergent if they

are in the same cycle and have different signs.

We denote the number of cycles in G(π) as c(π). The size of a cycle is the

number of black edges in it. A cycle is odd if its number of black edges is odd

and it is even otherwise. The number of odd cycles is denoted by codd(π). The

identity is the only permutation such that every cycle has only one black edge.

Therefore, let b(G(π)) = n+1 be the number of black edges in G(π); the sequence

of operations that sort π must increase the number of odd cycles from codd(π)

to b(G(π)).

Let Δc(ρ) = c(π · ρ)− c(π) be the variation in the number of cycles, and let

Δcodd(ρ) = codd(π ·ρ)−codd(π) be the variation in the number of odd cycles when

the operation ρ is applied. Then, Δc(ρt) ∈ {2, 1, 0,−1,−2} for any transposition

ρt and Δc(ρr) ∈ {1, 0,−1} for any reversal ρr [Walter et al. 1998].

Bafna and Pevzner proved that Δcodd(ρt) ∈ {2, 0,−2} for the sorting by

transposition problem [Bafna and Pevzner 1998], which can be seen as a par-

ticular case in the sorting by reversals and transpositions problem where every

cycle has only positive black edges. The proof presented by Bafna and Pevzner

still holds for transpositions ρt(i, j, k) if the black edges i, j or k that are in the

same cycle have the same signs, which leads us to Lemma 1.

Lemma1. Let ρt(i, j, k) be a transposition such that the black edges i, j, and k

are convergent. Then, Δcodd(ρt) ∈ {2, 0,−2}.

A transposition ρt(i, j, k) acts on edges i, j, and k, (i < j < k); and a reversal

ρr(i, j) acts on edges i and j, (i < j). The next four lemmas further discuss the

impact of operations on the number of cycles in a cycle graph.

Lemma2. Let ρt(i, j, k) be a transposition that acts on two black edges that are

divergent. The third black edge may be in the same cycle or in a different one.

Then, Δc(ρt) ≤ 1.

Proof. Let i, j, and k be of the form i = (vi1 , vi2 ), j = (vj1 , vj2), and k =

(vk1
, vk2

). After the transposition, these black edges will be destroyed and three

will be created of the form (vi1 , vj2), (vj1 , vk2
), and (vk1

, vi2).
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First we consider the case where the third edge k is in the same cycle as i and

j. Since we have three edges and one pair diverges, there is a pair that converges.

Let us assume without loss of generality that i and j are divergents and j and

k are convergents. Therefore, there is a path between vi1 and vj1 that contains

neither vi2 nor vj2 , and a path between vi1 and vk1
that contains neither vi2 nor

vk2
.

1. If the path between vi1 and vj1 does not contain k, the newly created black

edges (vi1 , vj2) and (vj1 , vk2
) are in the same cycle.

2. If the path between vi1 and vj1 contains k, so the path between vi1 and vk1

does not contain j. Therefore, the newly created black edges (vi1 , vj2) and

(vk1
, vi2) are in the same cycle.

These cases lead us to the conclusion that ρt will remove the cycle from G(π)

and add at most two new cycles in G(π).

Now we consider the case where the third edge k is in a different cycle. After

we break the black edges i, j, and k, there will be three distincts paths that do

not share any vertice: (i) vi1 . . . vj1 , (ii) vi2 . . . vj2 , and (iii) vk1
. . . vk2

. The newly

create black edges (vi1 , vj2), (vj1 , vk2
), and (vk1

, vi2) will join these three paths

in a single cycle. ��

Lemma3. Let ρt(i, j, k) be a transposition that acts on two black edges that are

divergent. The third black edge may be in the same cycle or in a different one.

Then Δcodd(ρt) ≤ 2.

Proof. The proof from Lemma 2 shows that one or two cycles are removed from

G(π) and at most two new cycles are added to G(π). Therefore, the best we can

do is to assume that the removed cycles are even and that the added cycles are

odd, which would lead to at most Δcodd(ρt) = 2. ��

Hannenhalli and Pevzner proved that Δc(ρr) ∈ {1, 0, −1} for any reversal

ρr [Hannenhalli and Pevzner 1999]. We state Lemma 4 about the effect of ρr in

the number of odd cycles.

Lemma4. For any reversal ρr(i, j), Δcodd(ρr) ∈ {2, 0,−2}.

Proof. If i and j are black edges in different cycles, then the reversal will remove

two cycles from G(π) and add a new cycle. If both the removed cycles are odd,

then the new cycle is even and Δcodd = −2. If at least one removed cycle is even,

then Δcodd = 0.

If i and j are black edges in the same cycle, then ρr(i, j) will remove one

cycle and add one or two cycles. If it adds only one cycle, then Δcodd = 0.

Otherwise, (i) if the removed cycle is odd, then Δcodd = 0, and (ii) if the removed
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cycle is even, then the new cycles must be both odd (Δcodd = 2) or both even

(Δcodd = 0). ��

Lemmas 1, 3 and 4 lead to Lemma 5.

Lemma5. Δcodd(ρt) ≤ 2 and Δcodd(ρr) ≤ 2.

The sequence of operations that sorts a non-identity permutation π increases

the number of odd cycles from codd(π) to b(G(π)). Since, from Lemma 5, the

maximum increase due to a single operation is 2, a lower bound on drt(π) follows.

Theorem 6. drt(π) ≥
b(G(π))−codd(π)

2 .

2.3 Complement Graph

Assume that we have a cycle graph in linear form computed from an unknown

permutation. To obtain the permutation, we start by assigning the label 0 to

the leftmost vertex. After that, we can safely assign the label −1 to the vertex

linked to 0 by a gray edge. The two vertices 0 and −1 are linked to each other

by a gray edge and linked to other two vertices by black edges. We can make no

assumption about the labels of these vertices based solely on the black edges.

However, we know that a vertex e is always side by side with −e and hence we

assign labels to two new vertices (1 and −(n + 1)). Next, we follow the gray

edges linked to these two new vertices and repeat the same procedure.

In summary, our procedure has two steps: (i) find the label of a vertex x

based on a gray edge and (ii) assign the label −x to the element that is side by

side with x but is not linked to it by a black edge. The procedure stops when

we eventually reach the rightmost element.

A graph called the complement graph and hereafter referred to as Ḡ(π) high-

lights this procedure. We derive the complement graph from the cycle graph by

removing the black edges and inserting the complement edges linking x and −x

for every x ∈ {1 . . . n}. We also place a complement edge linking 0 and −(n+1).

In Figure 2 we illustrate the steps to build the complement graph. The cycle

graph G(π) for permutation π = (+3 −2 −1 +4 −5) is given. We remove from

G(π) the black edges leading to the graph shown in Figure 2(b), which contains

only gray edges. In Figure 2(c) we add the complement graphs linking x and −x

for every x ∈ {1 . . . n}; and we rearrange gray edges so a Hamiltonian cycle is

easily noticeable.

The same steps can be made for any permutation and, by construction, it

will always generate a Hamiltonian cycle in the complement graph.

2.4 Configuration and Component

Let G(π) = (V,E) be a cycle graph. A configuration is a graph C = (V ′, E′)
built from G(π) by removing one or more cycles. Let U be the set of vertices

875Rodrigues Oliveira A., Dias U., Dias Z.: On the Sorting ...



1 2 3 4 5 6
0 -3 3 2 -2 1 -1 -4 4 5 -5 -6

0 -3 3 2 -2 1 -1 -4 4 5 -5 -6

0      -1    +1     -2    +2    -3    +3   -4      +4    -5    +5    -6 

+ + + + +

+ + + + +

a)

b)

c)

Figure 2: Steps to build the complement graph. In (a) we show the cycle graph

G(π) for π = (+3 − 2 − 1 +4 −5). In (b) we remove the black edges. In (c) we

place the remaining gray edges side by side, and we add complement edges linking

x and −x for every x ∈ {1 . . . n}. It is clear that there is a Hamiltonian path

from 0 to −(n+1) in the complement graph. Since we also include a complement

edge linking 0 and −(n+ 1), the complement graph has a Hamiltonian cycle.

in the cycles we are removing, and let F be set of edges incident on elements

of U , V ′ = V − U and E′ = E − F . We say that C is a subset of G(π), which

is represented as C ⊂ G(π). The subset relation may be generalized to any

configuration, we say that C2 ⊂ C1 if C2 is obtained after removing cycles from

C1.

Some black edges were removed from G(π) to build C, so we need to reassign

labels to remaining ones in C such that each black edge receives a label in

the range {1..b(C)}, where b(C) now represents the number of black edges in

the configuration C. Note that we keep the relative ordering of black edges

unchanged, meaning that if two black edges were labeled b1 and b2 in G(π) and

are now labeled as b′1 and b′2 in C, respectively, then b1 < b2 if and only if b′1 < b′2.

Theorem 6 also holds for configurations since it uses properties that are com-

mon both for cycle graphs and configurations. Let b(C) be the number of black

edges in C and codd be the number of odd cycles in C. Theorem 7 is the Theo-

rem 6 counterpart for configurations.
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Theorem 7. drt(C) ≥ b(C)−codd(C)
2 .

A complement configuration C̄ for C is build in a similar way we built com-

plement graphs for G(π). Let b1 be a black edge in C, 1 ≤ b1 ≤ b(C)−1; we build

complement edges linking the rightmost vertex of b1 with the leftmost vertex of

b1 + 1 and linking the leftmost vertex of the black edge labeled as 1 with the

rightmost vertex of the black edge labels as b(C).

We say that a configuration C is complete if its complement graph C̄ has one

Hamiltonian cycle; otherwise it is incomplete. When C is complete, it is possible

to find a permutation σ such that C is equal to G(σ). That is not possible when

C is incomplete, because Ḡ(σ) has one Hamiltonian cycle for every permutation

σ as shown in Section 2.3.

Figure 3 depicts an incomplete configuration both in linear and circular

forms. It is incomplete because C̄ shown in Figure 3(c) and Figure 3(d) has

two cycles instead of a single Hamiltonian cycle.

Gray Edge Black Edge

0 a a b b c c d d e e- 6- - - - -

a) b)

0-6

+a

-a

+b

-b

+c -c

+d

-d

+e

-e

Gray Edge Complement Edge

0 a a b b c c d d e e- 6- - - - -

c) d)

0-6

+a

-a

+b

-b

+c -c

+d

-d

+e

-e

Configuration

Complement Graph

Figure 3: We present an incomplete configuration in linear (a) and circular (b)

forms. Therefore, this configuration cannot be built from any permutation. The

configuration is incomplete because its complement graph, as shown in (c) and

(d), has two cycles instead of a Hamiltonian cycle.

Let g1 be a gray edge that links the black edges labeled as x1 and y1, and let

g2 be a gray edge that links the black edges labeled as x2 and y2. Let us assume,

without loss of generality, that x1 < y1 and x2 < y2. We say that g1 intersects

g2 if x1 < x2 < y1 < y2, or in the case that x1 < x2 = y1 < y2, g1 must link to

the rightmost vertex in y1.
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We say that two cycles c and d intersect if there is a gray edge in c that

intersects with a gray edge in d. One configuration C is connected if, for any two

cycles c1 and ck, there are cycles c2, . . . , ck−1 such that ci intersects with ci+1,

for 1 ≤ i ≤ k − 1.

A configuration C is a component if it is complete and connected. Let C be

a component in a cycle graph G(π); we can always find a permutation σ such

that G(σ) = C. Therefore, if we consider the component as a whole, it is also a

small cycle graph for another permutation.

2.5 Equivalence Class

All configurations can be rotated to the right or left using the circular form,

which will lead to different permutations with similar cycle graphs as we can see

in Figure 4. The cycle graphs built from permutations (−2 + 1), (−1 − 2), and

(+2 −1) are equivalent, because one can be reached from the other by cyclically

shifting the graph in the circular form as shown in Figure 4(a). This equivalence

is hard to observe if we examine the graph only in the linear form shown in

Figure 4(b). We say that these graphs (and as a consequence the permutations

that lead to them) are in the same equivalence class.

Since these permutations have the same graph in the circular form, the se-

quence of operations that sorts one of them can be adapted to sort another. Let

π and σ be two permutations in the same equivalence class, each operation that

affects G(π) has an equivalent in G(σ). We first identify the black edges acted

upon by the operation in G(π) and locate their counterparts in G(σ). After that,

we identify the operation that acts on these black edges in σ. Since we can do

this to any operation, we know π and σ have the same distance.

0 2 -2 -1 1 - 3 0 1 -1 2 - 2 - 3 0 - 2 2 1 - 1 - 3

0-3

-2

21

-1

0-3

-1

1-2

2

0-3

2

-2-1

1

a)

b)

1 2 3 1 2 3 1 2 3

Figure 4: The cycle graphs built from permutations (−2 + 1), (−1 − 2) and

(+2 − 1) are in the same equivalence class, since one can be reached from the

others by cyclically shifting the graph in the circular form as shown in (a). This

equivalence is hard to observe if we look to the same graph as depicted in (b).
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As an example, we depict in Figure 5(a) one sorting sequence for an entire

class of configurations. We save the configuration as a list of cycles and the black

edges that are affected by the operations. Figures 5(b), 5(c), and 5(d) illustrates

how one adapt the generic sorting to fit individual permutations. The transpo-

sition always affect the three black edges, so it is ρt(1, 2, 3) in all the examples.

The reversal applied after the transposition differs for each case, so we need to

keep track of which black edge in the generic configuration corresponds to each

black edge in the cycle graph for permutations. In our examples, the reversal

applied on edges y and z are mapped to the reversals ρr(2, 3) in Figure 5(b),

ρr(1, 3) in Figure 5(c) and ρr(1, 2) in Figure 5(d).

2.6 Simple Permutations

A cycle is short if it has 3 or fewer black edges; otherwise it is long. A cycle graph

is simple if it has only short cycles, and we say a permutation is simple if its

cycle graph is simple. Transforming a permutation π into a simple permutation

π̂ includes the addition of new elements to break long cycles.

We break long cycles as follows. Let b1 be a black edge in C and denote by b2
the black edge connected to b1 via a gray edge, and b3 the black edge connected

to b2 via a gray edge. Let g be the gray edge connected to b1 but not to b2. Then,

we break the edges b3 and g to insert two new vertices in the graph. Assuming

b3 = (vb, wb) and g = (wg, vg), as shown in Figure 6, we remove the edges b3 and

g. After that, we add two new vertices v and w between the endpoints of the

former black edge b3, and we create two new black edges (vb, v) and (w, wb).

Finally, we add the gray edges (wg, w) and (v, vg).

Each time we add a cycle we are increasing both the number of black edges

and the number of odd cycles. Therefore, the transformation guarantees that

drt(π) ≤ drt(π̂) and that both π and π̂ have the same lower bound in Theorem 6,

which allows us to make assertions about the approximation factor. We repeat

the procedure until no cycle of size greater than 3 is found.

A sequence that sorts π̂ can be adapted to sort π with the same number of

operations by ignoring the elements added to π̂. For example, if a reversal acts

on the elements [a, b, c, d, e] such that b, d were added to π̂ and are not in π, then

the reversal should be adapted to π by making it affect only [a, c, e].

3 The Algorithm

Our algorithm focus on applying moves that increase the number of odd cycles,

which differs from previous approaches that centered the analysis on the overall

number of cycles [Rahman et al. 2008, Walter et al. 1998]. We identify in Lem-

mas 8, 9, and 10 three major characteristics that make it feasible to increase the

number of odd cycles by 2.
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Transposition on 
x, y and z

Reversal on 
y and z

1 2 3
0 -1 1 2 -2 -3

1 2 3
0 2 -2 1 -1 -3

1 2 3
0 1 -1 -2 2 -3

1 2 3
0 -1 1 -2 2 -3

1 2 3
0 -1 1 -2 2 -3

1 2 3
0 -1 1 -2 2 -3

0 2 -2 -1 1 -3 0 1 -1 2 -2 -3 0 -2 2 1 -1 -3

Figure 5: In (a) we show a sequence of two operations (one transposition followed

by one reversal) applied to a generic configuration. In (b) we show the cycle graph

for the permutation π = (−2 1) which is in the class, and we map the sorting

sequence for the class into a sorting sequence for π. In (c) and (d) we do the

same for two other permutation: (−1,−2) and (2,−1).

Consider a triple of black edges x, y, and z belonging to the same cycle c

in G(π). Reading c induces a cyclic order on x, y, z, and, among three possible

representations of this order, we choose as canonical the one such that x is the

rightmost black edge among the three edges. We hereafter assume that triples

of black edges will be in the canonical order.

We define the distance between any two black edges b1 and b2 in the same

cycle as the number of gray edges between b1 and b2 when traversing c in the

canonical order, denoted as dist(b1, b2).

Lemma8. Let x, y, z, be a triple (in the canonical order) of black edges in c.
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Figure 6: Procedure to transform a permutation into a simple permutation.

We show in (a) the procedure itself and in (b) an example using the input

permutation π = (+4 + 3 − 2 + 1), which outputs π̂ = (+5 + 4 − 2 − 3 + 1).

If (i) x, y, z have the same sign in c, (ii) y < z < x, and (iii) at least two dis-

tances in the set {dist(x, y), dist(y, z), dist(z, x)} are odd, then the transposition

ρt(y, z, x) increases by 2 the number of odd cycles.

Proof. A transposition ρt(y, z, x) replaces c with three new cycles c1, c2 and c3
whose sizes are dist(x, y), dist(y, z) and dist(z, x), respectively. Two of the new

cycles will be odd if c is even. Otherwise, three odd cycles will be created. In

any case, the number of odd cycles will be increased by 2. ��

Lemma9. Let x,y be two black edges in an even cycle c = (. . . ,−x, . . . , y, . . .)

such that dist(x, y) is odd. The reversal ρr(x, y − 1) increases by 2 the number

of odd cycles if 0 < x < y. Otherwise, if 0 < y < x, the reversal ρr(y, x − 1)

increases by 2 the number of odd cycles.

Proof. Since x and y are divergent black edges, the reversal that breaks both

edges will split the cycle in two. One of the cycles will have size dist(x, y), which

is odd as stated by the lemma itself. Since c is even, then the other new cycle

with the remaining edges must be odd. So the reversal will remove from G(π)

an even cycle and it will add two odd cycles to it. ��

Lemma10. Let x, y be two black edges in the even cycle c = (. . . , x, . . . , y, . . .)

such that dist(x, y) is odd and let z be a black edge in another even cycle d. The

transposition that acts on x, y and z increases by 2 the number of odd cycles.

Proof. The transposition will remove the cycles c, and d from G(π) and it will add

two new cycles c′ and d′ such that c′ is smaller than c by dist(x, y) black edges

and d′ is greater than d by dist(x, y) black edges. Since c and d are even and

dist(x, y) is odd, then c′ and d′ are odd. Therefore, this transposition increases

by 2 the number of odd cycles. ��
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Our algorithm starts by applying several steps supported by Lemmas 8, 9,

and 10. Step i is executed only if steps 1 to i− 1 are not possible for the current

configuration. Algorithm 1 presents the pseudocode. The algorithm stops in two

situations: (i) if none of the steps can be applied or (ii) if we succeed in sorting

the input permutation.

Algorithm 1: BasicAlgorithm(π)

1 distance← 0

2 flag ← false

3 while π �= ι and not flag do

4 flag ← true

5 i← 1

6 while i ≤ 6 and flag do

// Line below uses six steps explained in Section 3

7 candidates← find candidates(π, Step i)

8 if length(candidates) ≥ 1 then

9 ρ←select candidate(candidates)

10 π ← π · ρ

11 distance← distance+1

12 flag ← false

13 i← i+ 1

14 return π, distance

We now detail the steps that were mentioned in Algorithm 1, Line 6.

Step 1: Lemma 8 explains how to break one cycle c of a given size s to create

three new cycles whose sizes are a, b and c such that a+ b+ c = s. If c has

three black edges, then the three new cycles will have only one black edge

each.

Step 2: Lemma 9 explains how to break one even cycle c of a given size s to

create two odd cycles whose sizes are a and b such that a + b = s. If c has

two black edges, the two new cycles will have only one black edge each.

Step 3: Lemma 8 explains the characteristics that a triple of black edges x, y,

z in a cycle c of size s should have in order to find a transposition that

increases by two the number of odd cycles. One of the characteristics states

that at least two distances in the set {dist(x, y), dist(y, z), dist(z, x)} are

odd. If we further constrain this property to guarantee that these two odd

distances are in fact equal to 1, we guarantee that we will generate three
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new cycles whose sizes are 1, 1, and s − 2. Therefore, this step searches for

cycles of any size such that two distances in the set {dist(x, y), dist(y, z),

dist(z, x)} are exactly one.

Step 4: This step looks for transpositions that satisfy Lemma 8, which are those

transpositions that increase by two the number of odd cycles while also in-

creasing by two the overall number of cycles. Every triple x, y, z that satisfies

Lemma 8 is a candidate for this step and one of the characteristics states that

at least two distances in the set {dist(x, y), dist(y, z), dist(z, x)} are odd.

Therefore, this step searches for cycles of any size such that two distances in

the set {dist(x, y), dist(y, z), dist(z, x)} are exactly odd.

Step 5: This step looks for reversals that satisfy Lemma 9, which are those

reversals that increase by two the number of odd cycles while increasing by

one the number of cycles. Therefore, this step searches for an even cycle with

divergent edges, and if that can be found, we apply a reversal that increases

by two the number of odd cycles.

Step 6: This step looks for transpositions that satisfy Lemma 10, which are

those transpositions that transform two even cycles into two odd cycles.

This step is important, because it guarantees that after applying the basic

algorithm the resulting permutation has at most one even cycle. In addition,

this even cycle has no divergent edges; otherwise, the previous step would

have had a candidate. Therefore, this step searches for two even cycles, and

if that can be found, we apply a transposition that increases by two the

number of odd cycles while keeping the overall number of cycles unchanged.

Algorithm 1 runs in O(n4) time. The worst case scenario for Steps 1, 3 and

4 occurs if the cycle graph has only one cycle. In that case, identifying the black

edges x, y, z that satisfy Lemma 8 may take O(n3) time. Step 2 runs in O(n)

time, since we just need two edges with different orientations. Steps 5 and 6 run

in O(n) time if any reversal that satisfies Lemma 9 and any transposition that

satisfies Lemma 10 are allowed. However, both steps may take O(n3) time, if one

decides to list all such operations to filter the best one. Since we need at most

O(n) operations to sort the input permutation, the stated complexity follows.

These six steps are sufficient to optimally sort many random permutations.

Unfortunately, some permutations have cycle graphs where none of the six steps

can be applied. In these cases, Algorithm 1 will finish before reaching the identity

permutation.

To deal with these cases, we generated a database with enough configurations

to guarantee that we can find a sequence of operations in the database in any

situation such that Algorithm 1 stops prematurely. These operations bring us

close to the identity permutation, and Algorithm 1 can be executed again after
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applying them. This behavior is described in Algorithm 2. We provide all the

details regarding how the database is created and used in Section 4.

Algorithm 2: CompleteAlgorithm(π)

1 distance ← 0

2 while π �= ι do

3 σ, opCount← BasicAlgorithm(π)

4 if opCount> 0 then

5 π ← σ

6 distance ← distance+opCount

7 if π �= ι then

8 sequence ← DatabaseSearch(π) // Algorithm 3

9 π ← applyOperations(sequence)

10 distance ←distance+length(sequence)

11 return distance

Algorithm 2 makes a call to Algorithm 1. This call may be followed by a

database search that executes in O(n) time. Therefore, Algorithm 2 also runs in

O(n4) time.

A better explanation for the database search is given in Section 4.3 and the

pseudocode is presented in Algorithm 3.

4 The Database

Algorithm 1 provides a rearrangement sequence for many permutations, but it

has no answer for permutations π whose cycle graphs have all of the following

properties: (i) there is no triple of the form required by Lemma 8, otherwise

Step 1 or Step 4 would be applied; (ii) no black edge inside an even cycle is

traversed from left to right, otherwise Step 2 or Step 5 would be applied; (iii)

there is at most one even cycle, otherwise Step 3 or Step 6 would be applied.

Our first step to deal with this issue is to transform the cycle graph G(π) into

a simple cycle graph G(π̂). The transformation maintains the three properties

as shown by Lemma 11 with the addition of a fourth property that states that

G(π̂) has only short cycles.

Lemma11. The operation that transforms a permutation π into a simple per-

mutation π̂ maintains the properties (i), (ii), and (iii).

Proof. We prove that π̂ maintains each property as follows.
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• Property (i) asserts that G(π) has no triple of the form required by Lemma 8.

Let b3 be the black edge that the transformation will break, b2 be a black

edge linked to b3, and b1 be the black edge linked to b2 that is not b3. Two

new cycles will be created such that one of them has the form (b′3, b2, b1).

If this cycle has the triple required by Lemma 8, than the triple (b3, b2, b1)

in G(π) would have the same property because b′3 is placed in G(π̂) in the

same position b3 was in G(π) relative to b2 and b1.

In regard to the second cycle, let (a1, a2, . . . , am) be the black edges in the cy-

cle being broken in G(π) such that ai /∈ {b1, b2, b3} for 1 ≤ i ≤ m. Two black

edges b1, b2 are removed from the cycle and the black edge b′′3 replaces b3 in

the same reading order and in the same position. Therefore, if dist(ai, aj),

was odd (even) before the transformation, it should be odd (even) after the

transformation, so there should be no triple (ai, aj , ak), 1 ≤ i, j, k ≤ m, as

required by Lemma 8 unless it existed before the transformation. In addi-

tion, if dist(ai, b3), 1 ≤ i ≤ m, was odd (even) before the transformation,

dist(ai, b
′′
3) should be odd (even) after the transformation, and since b′′3 re-

places b3, there should be no triple (ai, aj , b
′′
3) as required by Lemma 8 in

G(π̂) unless (ai, aj , b3) had the required property in G(π).

• Property (ii) asserts that no black edge inside an even cycle is traversed from

left to right in G(π). This property is maintained because the transformation

breaks one black edge b3 and creates two black edges b′3 and b′′3 in different

cycles. Let b2 and b4 be the black edges linked to b3 by gray edges in G(π)

and let us assume that b2 goes to the same cycle as b′3, and b4 goes to the

same cycle as b′′3 in G(π̂). Since b2 and b3 are convergent in G(π), b2 and b′3
are convergent in G(π̂). Analogously, since b3 and b4 are convergent in G(π),

b′′3 and b4 are convergent in G(π̂). As in G(π) every black edge is traversed

from right to left, this situation cannot be changed by the transformation

into a simple permutation.

• Property (iii) asserts that G(π) has at most one even cycle. This property is

maintained because each transformation breaks a cycle of size l and creates

two new cycles such that one of them has size 3 and the other has size l− 2.

Therefore the number of even cycles in G(π̂) is the same as the number of

even cycles in G(π).

��

Until the end of this section, we assume that every permutation we consider

complies with the four properties stated for G(π̂).

The key point is how we build a database that contains a sequence of op-

erations for all possible permutations of this form. We address this issue in

Section 4.1 by describing a procedure to build the database. Section 4.2 details

the outcome of using this procedure. In Section 4.3, we show how we use the

885Rodrigues Oliveira A., Dias U., Dias Z.: On the Sorting ...



database to sort any input permutation.

4.1 Building the Database

Only a limited number of cycles may compose G(π̂) to satisfy all the four con-

straints: it may have at most one even cycle of the form (2, 1) and one or more

cycles in the set {(3, 2, 1), (3,−2, 1), (3,−1, 2), (3, 2,−1), (3, 1,−2), (3,−2,−1),

(3,−1,−2)}. The cycles in the set {(3,−2,−1), (3, 1,−2), (3,−1, 2)} have fea-

tures in common because one can be found from the others by rotation as shown

in Figure 4. Therefore, these cycles are in the same equivalence class. The same

happens with the set {(3,−1,−2), (3,−2, 1), (3, 2,−1)}.

Previous sections stated that we will select several configurations and include

them in a database with sequences of operations that sort them. Some consider-

ations about the approximation factors of these sequences need to be made. Let

s = 〈ρ1, ρ2, . . . , ρd〉 be a sequence of operations such that π · ρ1 · ρ2 · . . . · ρd = σ

and each ρi can be either a reversal or a transposition. Note that the best we

can do is to create 2d odd cycles, since we are using d operations from π to σ.

Therefore, the approximation for this sequence is 2d
codd(σ)−codd(π)

. Observe that

we do not enforce σ = ι.

Since we made no restriction on the number of cycles, there is an infinite

number of cycle graphs. Although our database cannot store all of them, it should

have enough information to build a sequence of operations for any of them.

We accomplish this task by storing connected configurations instead of cycle

graphs. Remember that configurations were defined as subsets of cycle graphs.

Therefore, if we have a configuration C and we know a sequence of operations

that can be applied on C, then we can adapt this sequence of operations so we

can use it on any cycle graph G(π) such that C ⊂ G(π). Thus, we need only to

guarantee that for each cycle graph that is not in the database we have at least

one configuration that is a subset of the cycle graph. In this case, a sequence of

operations for the cycle graph can be computed from the sequence of operations

for the configuration.

We start an enumeration process with the smallest configurations possible,

which are configurations having a single cycle, and we try to find sequences of

operations that guarantee a given approximation bound using a branch-and-

bound algorithm. If a sequence of operations exists for a configuration C, we do

not need to consider any other configuration of cycle graph C ′ such that C ⊂ C′.
On the other hand, if the sequence of operations does not exist for C, then we

expand our analysis by considering in the next iteration configurations C′ one

cycle greater than C such that C ⊂ C′.
An extension is the process of creating a configurationC′ from a configuration

C by adding one cycle c to it. This process is done by inserting the black edges

from c somewhere in the configuration C such that at least one gray edge of c

886 Rodrigues Oliveira A., Dias U., Dias Z.: On the Sorting ...



intersects with at least one gray edge that is already in C. This restriction is

important to force C′ to be always a connected configuration.

Observe that inserting c in C will destroy complement edges in C̄ and create

new ones. Therefore, this process may transform incomplete configurations into

components and vice versa.

If it is possible to create a configuration B by adding one or more cycles to a

configuration A, then we say that B is extended from A. Let A be a not complete

configuration and let B be a component extended from A. Since B̄ has a single

Hamiltonian cycle and Ā has several cycles c1, c2, . . . , ck, k > 1, we know that

each of these cycles should be joined by the extensions to reach B. Otherwise,

there is an incomplete configuration B′ such that A ⊂ B′ ⊂ B.

From the discussion above it follows that there are two types of extensions

that are sufficient for building any component, which are (i) extensions of in-

complete configurations that join together cycles in the complement graph and

(ii) extensions of components that have no further restriction apart from the

previous one that stated that gray edges should cross in the extension process

to build connected configurations.

Let us assume we have an incomplete configuration A, and we want to extend

it; we select the smaller cycle ci in Ā and consider all the cases where at least one

complement edge of ci and at least one complement edge outside ci are affected.

If A is a complete configuration, we consider every position between two black

edges when adding a cycle to A.

Figure 7 provides an example. The initial configuration is C = {(3,−2, 1)}

and we will use the cycle c = (3,−2,−1) to extend C. First, we compute the

complement graph C̄ and since C̄ has two cycles, we consider the smaller cycle,

which has only one complement edge (a, b). When we add c to the configuration

C, we guarantee that one or two black edges from c will be added inside the

arc created by a and b and that one or two black edges from c will be added

outside this same arc. That leads to 5 extended configurations as shown in

Figure 7. After that, we filter the configurations that are in the same equivalence

class and compute one representative for each class. In the example shown in

Figure 7, the configurations {(6,−4, 3), (5,−2,−1)} and {(6,−5, 3), (4,−2,−1)}

are equivalent.

Assume, for instance, that we reach a situation where all the extended con-

figurations have sorting sequences with the desired approximation bound. We

do not need to further extend any configuration and the algorithm stops.

4.2 Individual Databases

We did not try to create one large database with all configurations. Instead of

that, we decided to create a set of small databases with particular features. They
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Figure 7: Extension process. We compute the complement graph, and we break

only the smallest cycle in it (shown in red). The extension generates 5 configu-

rations, and two of them are equivalent.

differ from each other by the initial configurations placed in the database and

the set of cycles that were used to extend configurations in each iterative step.

Convergent cycle (1.375-Database): In this database, there is only one ini-

tial configuration C = {(3, 2, 1)} and only one cycle c = (3, 2, 1) used for

extensions. Therefore, this database contains configurations that are a set of

one or more convergent cycles. Every component in this database can be com-

puted from signed permutations with no negative signs. Thus, we can sort

these permutations using only transpositions, similarly to Elias and Hart-

man [Elias and Hartman 2006], who developed an algorithm using a method

which is also based on creating databases. Therefore, we simply converted

their database to the format we need.

Table 1 shows that this database has a total number of 4,002,165 configura-

tions having a sequence of operations with 1.375 approximation factor, and

the number of cycles in those configurations ranges from 3 to 13.

The intuition to build this database is that it comprises the instances to

the well studied Sorting by Transposition Problem and these instances have

been sorted with operations that are valid to our problems (transpositions).

Therefore, we can simply use the sorting sequences and treat these instances
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as a particular case of our problem.

Even cycle (1.667-Database): In this database, there is only one initial con-

figuration C = {(2, 1)}, which has one even cycle. In addition we use the fol-

lowing cycles during the extensions: {(3, 2, 1), (3,−2, 1), (3,−1, 2), (3, 2,−1),

(3, 1,−2), (3,−2,−1), (3,−1,−2)}. This database is the only database that

has an even cycle. We computed a sequence for every configuration in this

database and it is guaranteed that a sequence with approximation factor up

to 1.667 can be found for any cycle graph having an even cycle.

Table 1 shows that this database has a total number of 1,806 configurations

having sequences of operations, and the number of cycles in those configura-

tions ranges from 2 to 4. Since all 4 cycle configurations found in the process

have a sequence of operations with approximation factor up to 1.667, we did

not extend this database to 5 cycle configurations.

The intuition to build this database is the fact that Step 6 in Algorithm 1

needs two even cycles. Since we already start with one even cycle, we just

need to create another one, which can be achieved by reverting an odd di-

vergent cycle. This database stores the optimum way of doing this in various

situations.

Odd cycles (1.8-Database): We consider as initial, the configurations that

have divergent cycles: {(3,−2, 1), (3,−1, 2), (3, 2,−1), (3, 1,−2), (3,−2,−1),

(3,−1,−2)}. These cycles plus the cycle (3, 2, 1) are also used for extensions.

In this database, we did not allow configurations with more than 4 cycles,

and we set our branch-and-bound algorithm to look for 1.8-sequences. We

found some configurations that had no 1.8-sequences, so we decided not to

include them in the database.

Table 1 shows that this database has a total number of 443,748 configura-

tions with 1.8-sequences, and the number of cycles in those configurations

ranges from 2 to 4. If we try to extend this database to 5 cycle configura-

tions, the number of instances will increase to more than 37 million, which

is prohibitive. In this case, we decided to limit the number of extensions to

generate configurations with at most 4 cycles.

The intuition to build this database is that in most situations the 1.8 ap-

proximation factor is plausible if we consider a small set of cycles that form

a configuration. Therefore, we filter these configuration and guarantee that

2.0-approximation steps will be only used in a very limited amount of cases.

Odd cycles (2.0-Database): This database has the same initial configura-

tions and extension set as the previous one. Here, however, we set our branch-

and-bound algorithm to look for 2.0-sequences. The one cycle configuration
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{(3,−2,−1)} has a sequence of two operations 〈(1, 2), (1, 1)〉 with an approx-

imation factor of 2.0, which drastically reduces the number of configurations

in comparison with the 1.8-Database. Note that (3,−2,−1), (3,−1, 2) and

(3, 1,−2) are in the same equivalence class. It was possible to find a 2.0-

approximation sequence for every cycle graph, which leads to the theoretical

approximation bound of the entire algorithm.

Table 1 shows that this database has a total number of 257 configurations

with 2.0 approximation ratio sequences, and the number of cycles in those

configurations ranges from 1 to 3. Since all the 3 cycle configurations have

a sequence of operations, the database is complete.

Database
Number of Number of

Total
cycles configurations

1.375-Database

3 1

4,002,165

4 22

5 5,696

6 53,898

7 377,877

8 1,450,662

9 1,077,521

10 1,034,940

11 1,140

12 264

13 144

1.667-Database

2 2

1,8063 161

4 1,643

1.8-Database

2 6

443,7483 1,468

4 442,274

2.0-Database

1 1

2572 6

3 250

Table 1: Number of configurations with a valid sequence for each database.
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4.3 Using Database Search to Sort Any Permutation

Algorithm 1 presented in Section 3 does not provide a sequence to sort every

input permutation. In this case, Algorithm 2 shows that the database search is

a final step that guarantees that any permutation will be sorted. Let π be the

(signed or unsigned) permutation that cannot be sorted by previous steps; we

first compute the cycle graph G(π). The cycle graph may have several compo-

nents, but since our database was built based on connected configurations, we

simply select the first component and start our database search.

Algorithm 3 describes the procedure that queries the database. The algo-

rithm receives a permutation as input, and computes a cycle graph which can

be built either for signed or unsigned permutations.

We first try to use the 1.375-Database by selecting the convergent cycles that

create connected configurations from the input cycle graph. If we can find the

configuration in the database, we immediately return the sequence of operations.

This step is shown in Algorithm 3, lines 3–8.

Since we have several databases, it may occur that we need to search for

configurations in all of them based on some arbitrary order. We decided to

search in databases that guarantee smaller approximation ratios first. In the

worst case scenario, we will find a configuration in the 2.0-Database. Therefore,

the complete algorithm has a 2.0 theoretical approximation bound.

5 Experimental Results

We have implemented our algorithm, and we ran it on three sets of permutations.

Constant number of mutations and variable permutation size:

This experiment uses permutations of size n ranging from 10 to 100. For each

permutation, we apply 20 operations (10 reversals and 10 transpositions).

Section 5.1 discuss the results obtained from this experiment.

Fixed mutation rate and variable permutation size:

This experiment uses permutations of size n ranging from 10 to 100 with

the rate of rearrangement operations fixed on 0.2×n. Section 5.2 discuss the

results obtained from this experiment.

Fixed permutation size and variable mutation rate:

This experiment uses permutations of size 100 and we made the rate of

genome rearrangements in the range 10 to 100. Section 5.3 discuss the results

obtained from this experiment.

In Section 5.4, we considered the instances from the three experiments and

computed the expected approximation ratio of our algorithm.
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Algorithm 3: DatabaseSearch(π)

1 G(π)← CycleGraphDecomposition(π)

2 Component← GetF irstComponent(G(π))

3 Configuration← ∅

4 Cycle← Component.GetNextConvergentCycle()

5 while Cycle �= ∅ do

6 Configuration← Configuration ∪ Cycle

7 Sequence← QueryDatabase(Configuration, 1.375-Database)

8 if Sequence �= ∅ then

9 return Sequence

10 Cycle← Component.GetNextConvergentCycle()

11 Configuration← ∅

12 Cycle← Component.GetNextEvenCycle()

13 while Cycle �= ∅ do

14 Configuration← Configuration ∪ Cycle

15 Sequence← QueryDatabase(Configuration, 1.667-Database)

16 if Sequence �= ∅ then

17 return Sequence

18 Cycle← Component.GetNextCycle()

19 Configuration← ∅

20 Cycle← Component.GetNextDivergentCycle()

21 count← 0

/* We fixed the number of extensions for the 1.8-Database */

22 while Cycle �= ∅ and count < 5 do

23 Configuration← Configuration ∪ Cycle

24 Sequence← QueryDatabase(Configuration, 1.8-Database)

25 if Sequence �= ∅ then

26 return Sequence

27 count← count+ 1

28 Cycle← Component.GetNextCycle()

29 Configuration← ∅

30 Cycle← Component.GetNextDivergentCycle()

31 while Cycle �= ∅ do

32 Configuration← Configuration ∪ Cycle

33 Sequence← QueryDatabase(Configuration, 2.0-Database)

34 if Sequence �= ∅ then

35 return Sequence

36 Cycle← Component.GetNextCycle()
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The main goal of our analysis is to compare our algorithm against other

methods that provide valid sequences to sort the input permutation. First,

we have implemented the algorithms presented by Walter, Dias and Meida-

nis [Walter et al. 1998], and we refer to these algorithms as WDM on discussion

sections. The authors presented two algorithms; one is intended for signed permu-

tations, guarantees an approximation factor of 2 and has O(n3) time complexity;

the other is intended for unsigned permutations with an approximation factor

of 3 and has O(n2) time complexity.

In 2008, Rahman, Shatabda and Hasan [Rahman et al. 2008] presented a 2k-

approximation algorithm for unsigned permutations, where k is the approxi-

mation ratio of the algorithm used for cycle decomposition [Caprara 1999]. We

adapted this algorithm to run on signed permutations by removing the cycle

decomposition step. Instead, we use the unique cycle graph for the input per-

mutation as described in Section 2. Therefore, for signed permutations, the ap-

proximation factor for the algorithm is 2, and it has O(n2) time complexity. We

refer to both the original and the adapted versions as RSH.

In 2014, Dias, Galvão, Lintzmayer, and Dias [Dias et al. 2014a] presented a

greedy algorithm for the sorting by reversals and transpositions problem on un-

signed permutations. The algorithm uses the notion of breakpoints, which are

elements that are side by side in the input permutation but not in the iden-

tity permutation. We were able to apply the same ideas on signed permutations

by adapting the notion of breakpoints. We refer to both versions of this algo-

rithm as DGLD. In both cases, the algorithm runs in O(n2) and guarantees the

approximation factor 3.

We will denote as REV the optimum solution for the sorting by rever-

sals problem on signed permutations [Hannenhalli and Pevzner 1999]. Since our

problem accepts both transpositions and reversals, a sequence that applies only

reversals is a valid solution. We used the implementation provided by the pro-

gram GRIMM [Tesler 2002], which runs in O(n) time. It is possible to prove that

REV is a 3-approximation for our problem, since the effect of any transposition

can be reproduced by 3 reversals.

To run REV on unsigned permutations, we first use the cycle graph decom-

position algorithm developed by Lin and Jiang [Lin and Jiang 2004], which has

an approximation factor of 1.4193 + ε, for any positive ε. After that, we obtain

the signed permutation associated with that cycle graph, and we optimally sort

this signed permutation. The post-processing step requires us to remove reversals

ρ(i, j) such that i = j.

The same way we are using the sorting by reversals problem to obtain valid

solutions, we can use approximation algorithms for the sorting by transpositions

problem. For the unsigned case, we could use any of the approximation algo-

rithms developed for the sorting by transpositions problem, since transpositions
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do not change signs. However, for signed permutations π, a pre-processing step

is mandatory. Thus, we first identify all maximal subsequences of negative ele-

ments, and we reverse each one to find the permutation π′ whose elements are

positive. After that, we can sort π′ as if it were unsigned.

The sorting by transpositions problem has several approximation algorithms.

We decided to use the algorithm devised by Dias and Dias [Dias and Dias 2013],

because it provides the best results in a practical analysis [Dias et al. 2014a],

even knowing its approximation guarantee is 1.5 against the 1.375-approximation

algorithm presented by Elias and Hartman [Elias and Hartman 2006]. The Dias

and Dias algorithm runs in O(n5) time. The heuristic that reverses maximal

subsequences of negative elements and later uses a sequence of transpositions

will be called TRANS.

Sections 5.1, 5.2, and 5.3 show the results on different simulated experiments

designed to evaluate the algorithms.

5.1 Constant number of mutations and variable permutation size

In this experiment, we used a set composed of 190,000 signed and 190,000 un-

signed permutations. Permutation sizes range from 10 to 100 in intervals of 5,

with 10,000 permutations of each size. The permutations were added to the data

set as follows: starting from the identity permutation, we apply 10 reversals and

10 transpositions at random. Therefore, we know that 20 is an upper bound for

the distance of the permutations in our set, and we can use the upper bound for

comparison purposes.

Table 2 and Table 3 show the average distance for signed and unsigned per-

mutations, respectively. In both cases, our algorithm returns the best results. If

we take into account that 20 operations (10 reversals and 10 transpositions) were

used to create the permutations, our results are very good, since our algorithm

usually finds sequences with fewer operations. Our average is 16.82 operations

when we consider the 190,000 signed permutations, and 16.20 when we consider

the 190,000 unsigned ones. DGLD is the second best algorithm with averages of

18.19 and 16.74 operations on signed and unsigned permutations, respectively.

RSH also can return sequences with fewer operations than the 20 used to gener-

ate the scenario, the averages are 19.69 operations for signed permutations and

18.79 operations for unsigned permutations. Other algorithms return more than

20 operations on average.

Further comparing our algorithm against the other algorithms for the sorting

by reversals and transpositions problem, we observed that our sequences have

on average 10% fewer operations than RSH and WDM, no matter the permu-

tation size. Besides, for permutations having 20 or more elements, our algorithm

returned sequences that are about 30% smaller than WDM.
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n 10 20 30 40 50 60 70 80 90 100

DGLD 6.90 12.59 16.17 18.34 19.66 20.50 20.94 21.26 21.52 21.68

WDM 8.38 16.51 22.00 25.25 27.00 27.94 28.45 28.77 28.98 29.13

RSH 7.26 13.89 18.24 20.62 21.71 22.19 22.37 22.49 22.58 22.66

REV 8.76 16.95 22.50 25.75 27.51 28.48 28.97 29.29 29.49 29.62

TRANS 7.38 13.81 18.32 21.36 23.54 25.11 26.29 27.13 27.93 28.55

OUR 6.37 11.48 14.85 16.91 18.13 18.91 19.39 19.75 20.01 20.23

Table 2: Average distance for signed permutations. For conciseness, we are not

showing results for permutations with size in range {15,25,. . . ,95}. Bold numbers

highlight the best results.

n 10 20 30 40 50 60 70 80 90 100

DGLD 4.48 9.45 13.26 16.00 17.93 19.31 20.33 21.06 21.55 21.95

WDM 5.31 12.73 18.71 23.06 26.24 28.62 30.44 31.89 32.92 33.85

RSH 4.98 10.61 15.21 18.55 20.69 22.09 22.91 23.32 23.46 23.43

REV 5.76 12.49 17.97 21.93 24.62 26.46 27.65 28.40 28.83 29.15

TRANS 4.66 9.49 13.76 17.63 21.22 24.76 28.14 31.56 34.92 38.36

OUR 4.74 9.66 13.28 15.79 17.50 18.67 19.45 20.00 20.30 20.54

Table 3: Average distance for unsigned permutations. For conciseness, we are not

showing results for permutations with size in range {15,25,. . . ,95}. Bold numbers

highlight the best results.

When we consider the algorithms REV and TRANS in the analysis, we

conclude that TRANS performed well on small permutations. Observe that

the cause for TRANS being better than REV on small permutations is not

really the size of the permutation. The real reason is that we are always using 10

reversals and 10 transpositions to generate permutations, so small permutations

have the highest mutation rate. In this case, pairs of elements that are side

by side in permutations of size 10 are likely not side by side in the identity

permutation. Transpositions act on at most three pairs whereas reversals acts

on at most two, which explains why TRANS are more appropriate in these

cases.

For the unsigned case, our approach was the best for permutations longer

than 30 elements. For small permutations having the highest mutation rate, our

results have 6% more operations than DGLD and TRANS. Observe that the

good performance of TRANS happens on small permutations only, which is

expected because they are more appropriate in these cases (high mutation rate)

895Rodrigues Oliveira A., Dias U., Dias Z.: On the Sorting ...



as already discussed.

Another aspect we analyzed in our experiments is the approximation ratio

(average and maximum). We used the lower bound presented in Theorem 6. On

signed permutations, our algorithm always obtained the lowest average approxi-

mation ratio, and it was never higher than 1.4 as shown in Figure 8. Besides, on

permutations having more than 50 elements, the approximation ratio was lower

than 1.2. DGLD also presented a good performance on average with an approx-

imation factor that was about 10% greater than ours. The algorithms REV and

WDM presented average approximations higher than 1.6.

For each signed permutation, we recorded the algorithms that compute the

smallest sequence of operations. This information is used to find how often each

algorithm returns the best result, which is shown in Figure 8. Our algorithm

outperforms the others in this aspect, since we can find the smallest sequence

of operations in about 80% to 90% of the cases. REV, TRANS, and WDM

almost never find a solution better than the other algorithms.

The same analysis for unsigned permutations shows that our algorithm out-

performs the others again. On average, our algorithm returns the best approx-

imation factors as shown in Figure 9, which were always between 1.5 and 1.6.

DGLD also obtained good approximation factors on average. This is partic-

ularly true for permutation having up to 30 elements, where they performed

better than any other algorithm. RSH presented approximations between 1.5

and 1.9.

Figure 9 also shows the number of times each algorithm return the smallest

sequence of operation. Our algorithm does this in more than 80% of the cases

for permutations with more than 30 elements. TRANS and DGLD performed

best for small permutations that have the highest mutation rate, but only the

latter shows good results for longer permutations. RSH, WDM, and REV did

not perform well in this aspect.

5.2 Fixed mutation rate and variable permutation size

In the previous experiment, we kept the number of mutations constant and

changed the size of the permutations. Therefore, small permutations are much

more scrambled than longer permutations because the rate of mutations is

higher. This experiment changes the size of the permutations but keeps the mu-

tation rate fixed. Therefore, we have a better measure of how the size impacts

on algorithm performance.

Let n be the size of the permutation, we designed n to range from 10 to

100 with the rate of rearrangement operations fixed on 0.2. Therefore, if the

permutation has size 10 we apply one reversal and one transposition. If the

permutation has size 20 we apply two reversals and two transpositions and so

on.
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Signed Permutations
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Figure 8: Average approximation factor on signed permutations and percentage

of signed permutations in which each algorithm found the best result.
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Unsigned Permutations
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Figure 9: Average approximation factor for unsigned permutations and percent-

age of unsigned permutations in which each algorithm found the best result.
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Figures 10 and 11 show how the algorithms behaves on unsigned and signed

permutations, respectively. We observe few changes, which gives us a clear con-

clusion. Our algorithm outperforms the others and returns the best results in

most of the cases. Our average approximation ratio converged to a number lower

than 1.6 on unsigned permutations and to a number lower than 1.2 on signed

permutations.

5.3 Fixed permutation size and variable mutation rate

This last experiment was designed to measure how the mutation rate impacts

algorithm results. This information complements what we have discussed in pre-

vious experiments and isolates the likely cause of variation in the quality of the

solution provided by each algorithm.

We created a set of random permutations having 100 elements. Each per-

mutation was built by applying operations in the identity permutation and the

number of operations changed from 10 to 100 in intervals of 10. Therefore, the

mutation rage changed from 0.1 × n to n. Half of the operations are reversals,

and half are transpositions.

Figures 12 and 13 indicates that TRANS behavior is strongly influenced by

the rate of mutations. The higher the rate of mutations, the better the results

provided by TRANS. On unsigned permutations, TRANS outperforms the

other algorithms when we set the mutation rate to a number higher than 0.9×n,

which is a very extreme case. In this situation, different operations act on the

same places several times, which is very unrealistic. In fact, the sorting sequence

returned by the algorithms are much smaller than the scenario we used to create

the permutation. We also observe that the solutions provided by TRANS are

very poor at smaller rates.

On signed permutations, the deviation observed is not large enough and

TRANS do not surpass the others on higer rates. In fact, our algorithm is

clearly better in any mutation rate.

5.4 Expected Approximation Ratio

We tested our algorithm with 30,000 permutations of each size between 10 and

100 for signed and unsigned permutations, resulting in a total of 300,000 signed

and 300,000 unsigned permutations.

We considered the instances from the three practical experiments and com-

puted the expected approximation ratio of our algorithm. In Figure 14, the X-

axis shows the percentage of permutations used in our tests that are under an

approximation factor given by the Y-axis. The figure shows results for both

signed and unsigned permutations. We observe that our algorithm found results
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Unsigned Permutations
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Figure 10: Average approximation factor for unsigned permutations with 0.2×n

operations applied and percentage of unsigned permutations in which each al-

gorithm found the best result.
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Signed Permutations
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Figure 11: Average approximation factor for signed permutations with 0.2×n op-

erations applied and percentage of signed permutations in which each algorithm

found the best result.
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Unsigned Permutations
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Figure 12: Average approximation factor for unsigned permutations of size 100

and percentage of unsigned permutations in which each algorithm found the best

result.
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Signed Permutations
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Figure 13: Average approximation factor for signed permutations of size 100 and

percentage of signed permutations in which each algorithm found the best result.
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Signed and Unsigned Permutations
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Figure 14: Percentage of permutations used in our tests that are under a given

approximation factor for signed and unsigned permutations. The X-axis shows

the percentage of permutations used in our tests that are under an approximation

factor given by the Y-axis.

with an approximation ratio better than 1.5 in more than 99% of the signed per-

mutations and better than 1.8 in more than 97% of the unsigned permutations.

The worst case scenario, which includes those permutations such that no sorting

sequence better than a 2 approximation was found, is a very rare situation.

6 Conclusions

In this paper, we presented an algorithm for the problem of sorting permutations

by reversals and transpositions, two classic operations in the genome rearrange-

ment field. Our algorithm applies to both the signed and unsigned versions of

the problem, and it treats both cases in a unified manner.

We performed a theoretical analysis, and we proved that our algorithm has

an approximation factor of 2 for signed permutations and 2k for unsigned permu-

tations, where k is the approximation factor for the cycle graph decomposition

problem. Therefore, our approximation factor equals previous approximation

bounds. Our theoretical proof uses an enumeration of cases that populate sev-

eral databases. Each database has a different approximation factor.
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Our analysis on a group of around 300,000 signed and 300,000 unsigned in-

stances shows that our algorithm outperforms any other approach known to

date. We conclude that on larger permutations our algorithm becomes increas-

ingly superior to the others. For signed permutations, our algorithm returned

the best answer in about 80% to 90% of the cases. For unsigned permutations

longer than or equal to 40 elements, our algorithm returned the best result in

about 60% of the cases.

For future considerations, we intend to study the complexity of the sorting

by reversals and transpositions problem. We also intend to study the diameter,

which is the greatest distance between any two permutations having the same

number of elements. Every sorting by genome rearrangement problem has a

diameter problem associated with it, and few researchers have considered the

diameter regarding reversals and transpositions.
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