
Introducing an Architectural Conformance Process in

Continuous Integration

Arthur F. Pinto, Ricardo Terra

(Federal University of Lavras, Lavras, Brazil

fparthur@posgrad.ufla.br, terra@dcc.ufla.br)

Eduardo Guerra, Fernanda São Sabbas

(Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil

{eduardo.guerra, fernanda.saosabbas}@inpe.br)

Abstract: As software evolves, developers usually introduce deviations from the
planned architecture, due to unawareness, conflicting requirements, technical difficul-
ties, deadlines, etc. This occurs in systems with an explicit division of responsibility
between groups of classes, such as modules and layers. Although there are architectural
conformance tools to identify architectural violations, these tools are underused and
detected violations are rarely corrected. To address these shortcomings, this article in-
troduces an architectural conformance process into continuous integration. Thus, the
conformance process is triggered by every code integration and, when no violations
are detected, the code is integrated into the repository. The implemented tool, called
ArchCI, supports the proposed solution using DCL (Dependency Constraint Language)
as underlying conformance technique and Jenkins as the Continuous Integration server.
We also evaluated the applicability of our proposed solution in a real-world Java project
where we incrementally introduced 44 constraints through six releases. As the result,
our process was able to detect 42 violations, which have always been fixed before the
ensuing release.
Key Words: software architecture erosion, architectural conformance, continuous in-
tegration
Category: D.2, D.2.2, D.2.7, D.2.9

1 Introduction

Software architecture is defined as the set of design decisions that are criti-

cal to the success of complex software systems. This includes how systems are

structured into components and constraints on how components must inter-

act [Fowler, 2002, Garlan and Shaw, 1996]. Assume two components View and

Model that contain classes that handle, respectively, user interface and database

persistence. As a constraint, a View component should not access a Model com-

ponent directly; such a call is a violation.

As a software evolves, developers usually introduce deviations from the

planned architecture, due to unawareness, conflicting requirements, tech-

nical difficulties, deadlines, new requirements, etc. [Perry and Wolf, 1992,

Terra and Valente, 2009]. More important, the accumulation of architectural vi-

olations leads to the phenomenon known as software architectural erosion prob-

Journal of Universal Computer Science, vol. 23, no. 8 (2017), 769-805
submitted: 28/6/16, accepted: 27/8/17, appeared: 28/8/17 © J.UCS

lem [Nierstrasz and Lungu, 2012, de Silva and Balasubramaniam, 2012], which

negatively affects software maintainability, reusability, scalability, portability,

etc. [Passos et al., 2010].

Architecture conformance solutions detect architectural viola-

tions, i.e., they identify design decisions that do not respect a de-

fined architectural constraint [Sangal et al., 2005, Verbaere et al., 2008,

Terra and Valente, 2009, Murphy et al., 1995]. Nevertheless, (i) these

tools are underused and (ii) detected violations are rarely cor-

rected [Alwis and Sillito, 2009, Terra et al., 2015]. As an example, Knodel

et al. identified almost 5,000 architectural violations in the domain of portable

measurement devices after three years without architectural tool sup-

port [Knodel et al., 2008a]. Terra et al. identified more than 2,200 architectural

violations in a human-resource management system, which most violations have

not been fixed so far [Terra and Valente, 2009]. As the last example, Sarkar

et al. estimated 2,100 person-days to reconstruct the original architecture of a

large banking application [Sarkar et al., 2009].

In order to address the software architectural erosion problem, this article

proposes an architectural conformance solution that introduces incrementally

the architectural constraints and integrates their verification in Continuous In-

tegration (CI) [Pinto and Terra, 2015]. This implies that the architectural con-

formance process is triggered at each code integration—presenting a solution

to the “architectural tools are underused” problem—and performing a config-

ured action when violations are detected, such as blocking the integration to the

remote repository or sending a technical debt alert to the software architect—

which helps to solve the “detected violations are rarely corrected” problem. More

important, we implemented ArchCI—a tool that supports the proposed solu-

tion using DCL (Dependency Constraint Language) as underlying conformance

technique and Jenkins as the Continuous Integration server—to evaluate our

proposed solution in a real-world Java project.

The remainder of this article is organized as follows. Section 2 introduces ba-

sic concepts, such as version control systems, continuous integration practices,

and architectural conformance processes. Section 3 describes our proposed archi-

tectural conformance solution. Section 4 presents the design and implementation

of ArchCI. Section 5 evaluates our solution in a real-world project. Finally, Sec-

tion 6 discusses related work and Section 7 presents our main contributions and

future work.

2 Background

This section introduces basic concepts for the understanding of this study. Sec-

tion 2.1 describes version control systems, Section 2.2 presents continuous inte-

gration practices, and Section 2.3 discusses architectural conformance processes.

770 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

2.1 Version Control

VCS (Version Control Systems) are used to manage different versions of de-

veloping artifacts in a project [Spinellis, 2005a, Spinellis, 2005b]. As their main

contribution, they provide traceability of the changes, such as when they were

made, the responsible developer, and the differences between versions. In the

context of this article, since project artifacts (source code, configuration files,

etc.) are stored in the VCS, it includes the whole input an architectural analysis

tool would require.

VCS can be centralized or distributed [Hinsen et al., 2009]. Centralized VCS

have code repositories where access and writing are restricted to a group of

developers [Rama and Patel, 2010]. Distributed VCS, on the other hand, rely

on the peer-to-peer architecture. Thus, each copy of a project contains all the

history and background related to changes made and the project metadata. This

ensures developers the ability to share the changes the way that best suits their

needs [O’Sullivan, 2009].

Among the main version control tools—CVS, SVN, Git, and Mercurial—

we chose Git1 for the development of this project because it offers the possi-

bility of development in a centralized and distributed way [O’Sullivan, 2009],

as well as being one of the most widely used VCS tools nowadays comparing

the number of Google searches and the number of questions in Stack Over-

flow [RhodeCode, 2017].

In this article, it is important to contextualize the following con-

cepts [Spinellis, 2005a, Spinellis, 2005b]: (i) tag, a symbolic name assigned to

a specific release or a branch; (ii) branch, a set of evolving source file versions,

identified by a tag ; (iii) commit, command that integrates the changes from a

developer into a local repository branch; and (iv) push, command that integrates

a series of commits from a developer into a remote repository branch.

2.2 Continuous Integration

CI is the software development practice that triggers processes to ensure the

project’s integrity as soon as members of a team incorporate changes to the soft-

ware [Fowler and Foemmel, 2006]. In this way, it is easier to detect the flaws and

errors in the early stages of the project, seeking a lower cost repair [Berg, 2012].

CI servers can be configured to check when changes are made in a reposi-

tory [Duvall et al., 2007]. It usually retrieves the latest versions of the classes,

compiles the code, and then runs tests for the integration process, displaying the

results to maintainers [Bowyer and Hughes, 2006]. Therefore, in the context of

this article, an action could be implemented in a CI server to check whether the

code changes comply with the architectural constraints.

1 http://git-scm.com/

771Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

Among the most relevant CI servers—Jenkins, TeamCity, and CruiseControl

—Jenkins2 achieves a wider reach in the open-source community [White, 2014].

As a consequence, it has a certain advantage in identifying and fixing bugs, as

well as being responsible for implementing certain improvements.

2.3 Architectural Conformance

Architectural erosion is defined as the phenomenon that occurs when

the implemented architecture of a software diverges from its planned

architecture [de Silva and Balasubramaniam, 2012]. There are several

techniques—through the process of architectural monitoring or the def-

inition of architectural constraints—that can be used in order to pre-

vent architectural erosion, such as Reflexion Models [Murphy et al., 1995],

Dependency Structure Matrices [Sangal et al., 2005], Source Code

Query Languages [Verbaere et al., 2008], Programming Language Exten-

sions [Aldrich et al., 2002], Design Tests [Brunet et al., 2011], and Constraint

Languages [Terra and Valente, 2009]. A constraint language known as Depen-

dency Constraint Language (DCL) is used in this project. We chose DCL

as the underlying conformance solution due mainly to three reasons: (i) the

simple and self-explanatory syntax, (ii) the expressiveness to treat the architec-

tural erosion problem, and (iii) an open-source implementation for Java systems.

DCL Language: DCL is a domain-specific declarative language, supports

the definition of structural constraints between modules in object-oriented

systems [Terra and Valente, 2009]. By defining structural constraints through

DCL, it becomes possible to find two types of architectural violations: diver-

gences (when a dependency that exists in the source code is not in accordance

with the system’s architectural model) and absences (absent dependencies in

the source code, which are mandatory according to the architectural model).

Basically, this model covers any form of relationship and dependency between

classes that can be statically verified. DCL relies on modules and on architectural

constraints between the defined modules, which are defined according to the

syntax described in Figure 1.

Modules: A module is a set of classes. Assume, for instance, the following module

definitions:

1: module View: org.foo.view.*, org.foo.ui.Table

2: module DataStructure: org.foo.util.**,

3: module Remote: java.rmi.UnicastRemoteObject+

4: module Frame: "org.foo.[a-zA-Z0-9/.]*Frame"

2 http://jenkins-ci.org/

772 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

Figure 1: DCL Syntax

Module View includes all classes from package org.foo.view (operator *)

and class org.foo.ui.Table. Module DataStructure includes all classes from

package org.foo.util and all its subpackages (operator **). The + operator

matches subtypes of a given type. For example, module Remote denotes all

subclasses of java.rmi.UnicastRemoteObject. Last, module Frame is composed

by any system class that matches that regular expression, i.e., classes whose

qualified name starts with org.foo. and ends with Frame.

Constraints: Assume modules MA and MB—i.e., sets of classes—of a software

system. Assume also that dep corresponds to the possible dependencies that

can be specified through the DCL, such as create, access, declare, handle, etc.

DCL provides four types of constraints: cannot, can only, only can, and must.

A constraint on the form MA cannot−dep MB forbid classes from module MA to

depend on classes from module MB. A constraint on the form only MA can−dep MB

allows only classes from MA to depend on classes from MB. A constraint on the form

MA can−dep−only MB allows classes from MA to depend only on classes from MB.

The following example illustrates the definition of a few architectural constraints

between modules:

1: only Factory can-create Product

2: Util can-depend-only $java, Util

3: View cannot-access Model

4: Product must-implement Serializable

The constraint at line 1 specifies that only objects from module Factory can

create objects from module Product, which resembles a creational pattern. The

constraint at line 2 specifies that the classes from module Util can establish

dependencies only with the module Util itself and the default Java language

library, which resembles a reusable component. The constraint at line 3 specifies

that classes from module View cannot access classes in module Model, which

resembles a layered architecture. And finally, constraint at line 4 specifies that all

classes in module Product must implement the Serializable interface, which

resembles the persistence of Data Transfer Objects (DTOs) [Fowler, 2002].

773Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

Semantics: Assume also that MA is the complement of MA, as well as MB

represents the complement of MB . Therefore, the following semantic for finding

violations can be assigned to MA cannot-dep MB constraint:

∃A ∃B [A ∈ MA ∧ B ∈ MB ∧ dep(A, B)]

In consequence, the semantic to can only and only can constraints can be

defined based on cannot constraint function:

only MA can-dep MB =⇒ MA cannot-dep MB

MA can-only-dep MB =⇒ MA cannot-dep MB

Finally, the semantic assigned to MA must-dep MB constraint is defined as:

∃A �B [A ∈ MA ∧ B ∈ MB ∧ dep(A, B)]

Therefore, a violation occurs when an A ∈ MA does not establish a dep depen-

dency with a B ∈ MB .

3 The Architectural Conformance Solution

Although architectural conformance processes identify architectural violations,

two problems still remain: “architectural tools are underused” and “detected vio-

lations are rarely corrected” [Alwis and Sillito, 2009, Terra et al., 2015]. On the

one hand, the introduction of architectural conformance tools later in the project

can reveal a high number of violations, which can discourage the team to fix

them. On the other hand, if the constraints are introduced in the beginning of

the project and do not evolve with the architecture, their usage would not be

valuable for the team after some time.

To enable an efficient usage of architectural conformance tools as instru-

ments to define, evolve, and guarantee the correct implementation of the defined

architecture, this article proposes a solution to introduce an architectural confor-

mance process in a development environment. More important, it also matches

agile environments, where CI is a common practice. Since our solution en-

ables an incremental definition of architectural constraints, it is compatible with

patterns identified for handling architecture in agile teams [Guerra et al., 2015,

Wirfs-Brock et al., 2015]. The architectural conformance might be also included

as part of a continuous inspection process [Merson et al., 2014].

3.1 Introduction and Evolution of Constraints

An architectural conformance solution, as the one we are proposing, requires

the definition of architectural constraints. A high number of constraints implies

in the conformance process uncovering more violations. Nevertheless, we claim

774 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

775Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

Activities #3 and #4: Finding some violations from these basic constraints in

the current source code gives the idea of how the tool works and how it can be

used to help them to keep the code aligned to the architecture. After fixing these

initial violations, the initial set of constraints can be configured to be executed

as part of the CI process. It ensures that code violating architectural constraints

cannot be committed by a developer without notice (this environment is

described in the next subsection).

Activities #5 to #8: After defining the initial modules and integrating the verifi-

cation of constraints in CI, every integration of code is verified and every change

in the module definition or in the constraints triggers an architecture confor-

mance process. The team—guided by the architect or by the most experienced

developers—should choose a part of the architecture that can benefit from more

refined constraints. The following are examples of kinds of refinements and evo-

lutions that can be targeted in one iteration:

– New modules might be introduced with its respective constraints. A new

module might be the result of classes from a new feature that is being in-

troduced in the architecture in this iteration or can be classes that were not

included in the previous versions. As an example, a module “util” might not

be included in the previous versions and might be included now. As another

example, architecture now includes a class to handle asynchronous requests,

then constraints should be also included (Activities #5 and #6).

– New modules that represent external libraries or frameworks might be in-

troduced with their constraints to reflect their usage inside the architecture.

It usually occurs when new libraries are introduced into the project or have

not been included in the previous versions. For instance, a module for the

Java Servlet API might be introduced with constraints that allow its usage

(it is possible to specify the kind of dependency, such as access, declaration,

inheritance, etc.) only on controller classes (Activity #7).

– Existing constraints might be refined to reflect more precisely the kind of

dependence that is allowed. For instance, consider that a constraint pre-

scribes that domain classes can depend on Java Persistence API (JPA). A

more fine-grained constraint might refine this constraint defining that only

domain classes can use annotations from JPA (Activity #8).

– Existing modules might be separated in more granular ones to enable the

definition of more specific constraints. As an example, a module for con-

trollers might be split into modules that contain web controllers and web

services endpoints. Based on these new modules, more specific constraints

might be defined. (Activity #8).

776 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

Activity #9: The introduction of new constraints might reveal violations. When

it occurs, the team has three options: (a) rethink the constraint; (b) refactor

the code; or (c) consider the violation a technical debt. Sometimes the viola-

tion reveals that there might be some exceptions to the constraint, and the

team should rethink if that constraint is valid (case a). Another possibility

is to refactor the code to make it compatible to the defined architectural

constraints (case b). Last, the refactoring might be time-consuming, and the

team can assign that violation as a technical debt (case c). In this case, the tool

generates warnings for a constraint violation instead of blocking the commit.

Independently the option the team chooses, they can return to the architectural

refinement steps as long as they need.

The criterion used by the team to define the order in which new constraints

are added is not highly relevant. We claim it is important to review and refine

the architectural constraints periodically. The feedback received from constraints

verification at each commit, combined with the team practice to review them in

each iteration, is the key to have success in the adoption of this process.

Besides, there is no fixed constraint about when new constraints should be

added. As an advice, when a new kind of component is introduced in the ar-

chitecture, the addition of its architectural constraints can define more precisely

its role and avoid its misuse. If a refactoring demands the decoupling between

two kinds of components, the addition of a constraint that reflects the desired

decoupling might help to detect targets for refactoring. Usually, the team should

discuss what adds more benefit to the team. The architectural constraints can

even not be related to the features implemented in the iteration. For instance,

the iteration can focus on the addition of new reports and the new constraints

are related to the introduction of security constraints.

This process might be introduced in the beginning of a project or in an

ongoing one. In case of its usage in a project that does not have its architec-

tural design documented, the introduction of the constraints can also work as a

formalization and standardization of the architecture. It is recommended, how-

ever, that architects introduce the constraints at a pace that they can fix their

uncovered violations. Thus, in an ongoing project with a large code base, we

recommend to introduce constraints slower than in a project that is using them

since the beginning.

3.2 Development Environment

This section describes roles and responsibilities of actors involved in the de-

velopment environment, and the proper application of the tools used in the

architectural conformance process, as illustrated in Figure 3.

777Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

778 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

779Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

780 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

Final remarks: Table 1 summarizes the evolution of myAppointments w.r.t. the

architectural perspective. Although we rely on a toy example, this section il-

lustrates how the proposed process could be applied in real-world development

scenarios.

Table 1: myAppointments’ Architecture Evolution

Release Description Constraints
Added

Modules # Constraints # Violations

r0 initial release AC1, AC2, AC3,
AC4

5 4 38

r0’ refined
release r0

- - - 35 (debt)

r1 UI and
persistence

AC4 (modified),
AC5, AC6

8 +2 (added)
1 (modified)

40

r1’ refined
release r1

- - - 0

4 ArchCI

We could not find an architectural conformance tool that implements our so-

lution in CI. We therefore developed ArchCI, a tool that supports our solution

using DCL as the underlying architectural conformance technique and Jenkins

as the CI server.

4.1 Features

This section describes the six main features of our supporting tool:

– Architectural Checking: The integrations are performed in a temporary

branch. When ArchCI does not detect violations, the code is automatically

merged to the project’s main branch. However, when violations are detected,

the integration is denied and ArchCI performs the action configured in the

specific violation case.

– Atomicity: Only integrations that are in full convergence with the defined ar-

chitectural constraints are automatically accepted and merged by the server.

– Incremental Checking: ArchCI scans only the classes that have had changes

since the last integration, ensuring a better tool performance. The exception

occurs when the .dcl is changed, which requires ArchCI to verify the entire

project again.

781Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

– Architecture Evolution: The architectural checking considers the DCL spec-

ifications stored in the remote repository (architecture.dcl). However, in

case of an integration having changes in the .dcl file—to include or modify

constraints and modules—ArchCI verifies the entire project again consider-

ing the DCL specifications to be integrated into the repository. Therefore,

ArchCI has consistency, i.e., it never misses any violation.

– Local Usage: Since ArchCI performs the architectural conformance checking

only at the time of code integration, developers could adopt a local confor-

mance tool to ensure fewer violations in attempts of code integration to the

remote repository. We suggest, to a better integration with our proposed

process, the dclcheck tool [Terra and Valente, 2009]—a plug-in for Eclipse

IDE that can run local verifications based on .dcl file as well.

– Technical Debt Support: When the development team does not want to han-

dle certain violations at the moment, they can declare them as technical

debts by adding −−debt soon after the constraint definition. Doing that,

ArchCI generates warnings instead of blocking the code integration.

4.2 Underlying CI Environment

Jenkins: The proposed solution requires an underlying CI server. For this

reason, Jenkins server is used to program tasks that ensure the architectural

conformance in the integrations performed by developers. Each task that is

created in Jenkins refers to specific activities, such as architectural verification

or even sending e-mails to specific developers. Through the integration of the

proposed tool with Jenkins platform, it is possible to define tasks that trigger the

architectural verification process, where each task corresponds to a particular

software project. In the same way, it could be easily implemented a task to

send daily e-mails notifying the developers responsible for the integrations that

contained violations. These tasks can be triggered by events originating from

facts, such as time or even external triggers, allowing the adaptation to different

tools and platform operations.

Gerrit: In order to provide an environment for revision of code integrations, the

Gerrit platform is used in this project.4 For the effectiveness of the architectural

validation and verification process, the platform has its own code repository

and every integration (push) must take place at a branch (adopting the prefix

HEAD : refs/for/ followed by the target branch name), which, although it was

not defined in the repository, is provided exclusively by Gerrit to integration re-

vision. Each integration performed by the developer becomes available for future

4 https://www.gerritcodereview.com

782 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

783Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

libraries provided by the Eclipse JDT (Java Development Tools). All depen-

dencies to Java Model—a set of classes that represent and model a project

internally in the Eclipse IDE—had to be completely discarded and, for this

reason, almost every piece of code associated with the manipulation of the

classes to be validated had to be rewritten. Each class to be validated had

to be loaded externally, turned into a compilation unit and, subsequently,

its environment had to be defined stating the project path and structure, as

well as the necessary libraries to compile the given project. At last, methods

and functions from the AST class were used, so that each element could be

understood and then, the project dependencies could be determined.

– Constraint Definition Parser : Module responsible for parsing the

specified project architecture modules and constraints stored in file

architecture.dcl. When the DCL file with the constraints to be validated

is loaded, this module executes the function to interpret the name of each

specified module along with the defined constraints and, finally, stores them

separately in sets of modules and constraints.

– Architectural Conformance Checker : Module with functions to ensure the

project architectural conformance through verification and validation of ar-

chitectural deviations based on the defined architectural constraints. Each

dependency extracted by module Dependency Extractor is checked against

the constraints obtained by module Constraint Definitions Parser in order

to find architectural violations.

– Auxiliary Functions: Module responsible for providing functions to general

tasks, e.g., tracking the libraries and file paths needed to resolve the depen-

dencies.

– CI Bridge: Module containing features related to CI practices and functions

required to integrate the code to Jenkins server, which includes functions

for customizing the build, getting the workspace with the code to be inte-

grated, identifying classes to be validated, etc. Since ArchCI is structured as

a Maven project, it could operate as a Jenkins plug-in. Subsequently, we in-

cluded dependencies to classes that enable the manipulation of elements and

components related to Jenkins tasks. At last, we created classes containing

the build description and containing methods to get information provided by

the server job.

During the CI process, when ArchCI detects violations, it returns error mes-

sages. An example of a message is shown in Figure 7(c), based on the example

of dependency constraint from Figure 7(a) and the code from Figure 7(b).

784 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

785Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

5.2 Study Design

This case study consists of implementing the proposed process with the support

of the tool ArchCI in a real-world project.

System choice: We look for a software project that satisfies the following

four requirements: (a) a project that follows a development process with small

iterations to enable the introduction of new constraints on each one; (b) a

project whose development team provides free access to the source code,

architectural specification, and detected violations; (c) a project whose one

senior developer is willing to introduce our proposed solution; and (d) a Java

project in a Git repository to enable ArchCI integration.

Data collect: For each release, we need the development team to provide us

with: (a) the complete DCL specification (modules and constraints); (b) the

number of violations found for each constraint; and (c) the source code. Neither

formal interview nor questionnaire was applied to the participant developers.

Instead, we opted to monitor the process being applied, interacting with the

developer when necessary. We will take notes of those informal conversations to

discuss them (when relevant).

Qualitative Analysis: The analysis performed to answer the research

questions considers how the constraints evolved through the iterations and

which violations were found during this process. Despite the retrieved data is

quantitative, our analysis will combine them with qualitative information, such

as contextual information about the project features, the motivation of the

introduced constraints, the desired architecture, and the observations performed

during the study.

Software Visualization: To support the data analysis, we rely on a Depen-

dency Structure Matrix (DSM) [Sullivan et al., 2001, Sangal et al., 2005]. A

DSM is a weighted square matrix whose rows and columns denote software

elements, such as classes, packages, or modules. The value represented in

the cell [e1, e2] is the number of dependencies from e1 to e2. Basically, this

representation is used to better visualize the location of the violations detected

in each release of the system.

Refactoring: Concluding the case study, we will review and refactor the final

DCL specification written by the development team. Our goal is to remove un-

necessary constraints, merge related constraints, make constraints stricter, and

replace constraints with more suitable dependency types in order to motivate

the development team to keep using our proposed solution.

786 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

787Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

– (r3) Communicate with Camera PanTilt, Turn On Camera, and Turn Off

Camera.

– (r4) Move Camera PanTilt Azimuth, Move Camera PanTilt Elevation,

Reset PanTilt, Start Remote Image Capture, Stop Remote Image Capture,

and Search Images on Station.

– (r5) Save images on Database and Show images.

Feature “Search Images on Station” in r4 and all features in r5 were created

in this new code base. As a convention, this article uses a prime symbol with

the release identification to refer to a release where the detected architectural

violations were corrected. As an example, r3’ is a release where the architectural

violations found in r3 were corrected.

The project team was composed of three developers, but only one of them

was responsible to add the constraints and correct the violations. The project

team did not have a member with an explicit role of "architect", and the most

important decisions were discussed with the team with the support of an external

collaborator. Therefore, the definition of constraints, their respective implemen-

tation in DCL, and the implementation of the proposed process were imple-

mented by an experienced developer. He received some guidance in the creation

of the first release of DCL, how he should increment the DCL following the pro-

cess, and in the setup of ArchCI in the development environment. After that,

we observed how the constraints were being implemented and decided not to

interfere. The developer had some guidance again only after finishing release r5,

the last one considered in the case study.

5.4 Software Architecture Evolution

This section presents how architectural constraints evolved during the case study,

where the complete set of constraints can be found in Appendix A. Table 2

presents the system releases and their architectural constraints. Column “Cur-

rent” presents the constraints present in that release, i.e., the constraints of

the last release plus the added ones minus the removed ones; column “Added”

presents the new constraints that were introduced in the same release; and col-

umn “Removed” presents the constraints that were removed in the same release.

From the releases where the constraints violations were corrected, only r2’ is

present on this table because it is the only one of these releases that suffered a

change on the constraints.

The constraint evolution through the releases (i.e., the main changes in a

release) is summarized as follows:

– (r0) The first set of constraints focused on the relationship between the core

component types of the system architecture. It also contained constraints

788 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

Table 2: Constraint Evolution

Constraints
Release Current Added Removed

r0 AC1-AC8 - -
r1 AC1-AC15 AC9-AC15 -
r2 AC1-AC19 AC16-AC19 -
r2’ AC1-AC18 - AC19
r3 AC1-AC18, AC20-AC24 -

AC20-AC24
r4 AC1-AC18, AC25-AC29 -

AC20-AC29
r5 AC1-AC3,AC7-AC10,

AC12-AC18,AC20-AC44
AC30-AC44 AC4-AC6,AC11

about which component could access the more evident system libraries:

VRaptor, Esfinge, and Swing.

– (r1) This release focused on the use of Java libraries to handle files. A con-

straint on the use of database libraries by Model classes was also added.

– (r2) This release added constraints about the use of library classes and the

class used to manage the user session. A constraint about the relationship

between services and controllers was also included.

– (r2’) By verifying the constraints of the previous release, a violation de-

tected by AC19 revealed that this constraint was no longer suitable for the

application architecture and hence it was removed.

– (r3) This release added constraints regarding classes that handles HTTP

requests.

– (r4) This release added constraints regarding networking and application

services, such as security and logging.

– (r5) In this release, some constraints were removed and replaced by more

specific ones. Some large modules were split into smaller modules. There

were also some constraints that were complemented by others.

As stated in the proposed process, the constraints introduced in each iteration

could not be related to new features. This is usually true when the constraints

are related to architectural layers or to the usage of libraries that are orthogonal

to the system features. For instance, in r1 the features are related to managing

stations in the system and the new constraints focused on libraries for handling

Java files. The new constraints were related not only to classes that were added

for new features but also for the existing ones.

789Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

Based on Table 2 and on the description of each increment, we can under-

stand how the process was applied to the case study. The initial version of the

DCL had a smaller number of modules and constraints, related to the main

software layers and libraries in the architecture. The next versions refined the

modules definition, making them more granular, and added constraints that refer

to other services, such as handing files and web requests.

During the case study, constraints were added but also removed in releases r2

and r5. In r2, the removal was in a recently introduced constraint (AC19). When

violations have been detected, the developer realized that it was not suitable for

the system architecture. In r5, however, four constraints introduced in r0 and r1

were removed due to a refinement to make constraints stricter.

Moreover, Table 2 indicates most constraints search for divergences—which

restrict the spectrum of dependencies established by a module—and only one

constraint searches for absences—which verifies a mandatory relationship. It oc-

curs because the same architectural layer can perform tasks of different natures,

e.g., classes from module Service can access files, invoke remote operations, and

query the database. Although we can use a constraint to forbid other modules to

perform such operations (searching for divergences), we cannot consider manda-

tory the usage of these libraries (searching for absences).

5.5 Architectural Violations

This section analyses the architectural violations found during the proposed

process in the case study. Table 3 presents each release with its respective date,

number of modules, constraints, violations, violations per constraints, changes

that occur in that release, and overall lines of code (LOC). The column “Change”

describes the kind of modification performed in that release: (i) “DCL and Code

Increment” means that new features were migrated to the new code base and

new constraints were added in the DCL; (ii) “Violation Correction” means that

the changes in that release only corrected violations detected in the previous

release; and (iii) “DCL Correction”—a situation that occurred only once when

a wrong constraint was removed (refer to the previous section). In this case

study, 42 violations were corrected through the releases by using the proposed

process. More important, the last release of the system (r5) has not presented

any violation despite the refinement of several constraints.

Figure 9 presents a visualization of the latest system release (r5) in a cus-

tomized Dependency Structure Matrix (DSM).5 A number x in a blue matrix

cell means that the module in the column depends x times of the module in the

row. A number y in a green matrix cell means the opposite, i.e., that the module

5 Since we are only interested in the dependencies established by the system classes,
we intentionally omitted rows with no establishment of dependencies and columns
related to external modules.

790 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

Table 3: Evolution of the architectural constraints through the releases

Date R
e
le

a
s
e

M
o
d
u
le

s

C
o
n
s
t
r
a
in

t
s

V
io

la
t
io

n
s

Violations
per Constraint Change LOC

14-Aug-15 r0 9 8 9 AC5(9) DCL and Code Increment 8,490
14-Aug-15 r0’ 9 8 0 Violation Correction 8,493
26-Aug-15 r1 17 15 5 AC8(3), AC11(2) DCL and Code Increment 9,730
27-Aug-15 r1’ 17 15 0 Violation Correction 9,725
09-Sep-15 r2 21 19 6 AC2(1), AC5(2),

AC8(3)
DCL and Code Increment 10,908

09-Sep-15 r2’ 21 18 0 DCL Correction 10,908
21-Sep-15 r3 26 23 13 AC18(13) DCL and Code Increment 11,830
21-Sep-15 r3’ 26 23 0 Violation Correction 11,838
07-Oct-15 r4 31 28 9 AC5(9) DCL and Code Increment 12,642
07-Oct-15 r4’ 31 28 0 Violation Correction 12,640
28-Oct-15 r5 43 42 0 DCL and Code Increment 13,732

in the row depends y times of the module in the column. More important, red

cells report the number of dependencies that represent violations that occur. For

instance, on the column “Service” and row “br.com.caelum.VRaptor”, the value

“r2(1)” means that, in release r2, there was one dependency from “Service” to

“br.com.caelum.vraptor” that represents a violation.

By observing the DSM, we noticed that violations in the same constraint

occurred recurrently on different releases. For instance, AC5 states that only

“DAO” can depend on “Esfinge”. However, module “Service” has recurrently es-

tablished dependency with “org.esfinge.querybuilder.QueryBuilder”. When new

features were migrated and refactored in the new code base, developers eventu-

ally moved violations that were in the old code base. According to the responsible

developer, other violations were also prevented because developers learned with

previously reported violations.

The orange cells would not be allowed based on constraint AC19. However,

this constraint was introduced on release r2 and removed on release r2’. This is

an interesting event because it shows that a violation does not always mean that

there is a problem in the code, but it can reveal that the constraint is unsuitable

for the architecture.

5.6 Refactoring of Constraints

The fact that the constraints were able to successfully identify architectural

violations does not mean that they were defined in the most suitable way. Table 4

presents the refactoring set of 14 constraints (RAC1–RAC14) that summarizes

the 44 constraints defined in the latest system release (AC1–AC44).

791Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

Figure 9: LEONA DSM with the violations detected through the releases

This refactoring is part of the last step of the case study and aims to highlight

the good practices on constraints definitions. The refactoring on the constraints

turned the existing constraints more suitable and no new violations were found

during this process. We performed the following kind of changes:

1. Merge several related constraints into a single one: There were nine mod-

ules that only Service can depend on. Since there was one constraint for

each module, we joined nine constraints in a single one (RAC5). Despite

the DCL specification could be simpler by grouping modules with the same

constraints and related to the same architectural feature, this does not make

the constraints incorrect or less effective.

792 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

Table 4: Constraints After Refactoring

Ref Constraints After Refactoring From Constraints

RAC1 only Controller can-depend Controller,JavaxSwing,HttpSession,
VRaptor

AC1,AC2∗,AC8,
AC17

RAC2 only Controller,Service can-throw FileNotFound,ParseException AC9,AC16
RAC3 only Controller,Service,Servlet can-throw IOException AC10
RAC4 only Controller,Servlet can-depend HttpServletReq AC24

RAC5 only Service can-depend File,FileIS,InetAddress,ImageIO,
Quartz,BufferedImage,FileOS,FTP,NetURL

AC12,AC13,AC14,
AC15,AC18,AC25,
AC29,AC31,AC32

RAC6 only Servlet can-depend ServletEx,HttpServlet,HttpServletRes AC21,AC22,AC23
RAC7 only Service can-declare Security AC28

RAC8 only DAO can-depend Persistence,EntityManager,EMF,
EsfingeEMP,EsfingeRepo,EsfingeQB

AC30,AC37,AC38,
AC39,AC40,AC43

RAC9 only Model can-useannotation Entity,PersistenceGT,
PersistenceId,PersistenceGV

AC33,AC34,AC35,
AC36

RAC10 Controller must-useannotation VRaptor AC2∗

RAC11 Service cannot-depend Controller, Servlet AC3
RAC12 Model must-implement Serializable AC7
RAC13 only Model can-implement Serializable AC41
RAC14 Servlet,DAO cannot-depend SQL AC42

∗Partially

2. Replace a constraint with a more suitable or a broader dependency type:

Another problem of the defined DCL constraints was the overuse of “can-

declare” and “cannot-declare” types of constraint. These constraints verify

a weak relationship between the classes, i.e., just declarations of the other,

and it was not the most appropriate dependency type to be used in the

DCL. As an example, RAC7 states that Model must implement Serializ-

able, which corrects AC7 that incorrectly forbade declare dependencies. In

other constraints, these types could be easily exchanged for “can-depend”

or “cannot-depend”, which refer to a broader dependency type. As another

example, RAC6 states that only Servlet can depend on three modules, which

corrects AC21–AC23 that incorrectly stated only declare dependencies. Sim-

ilarly, RAC9 states that only Model can use annotation of four modules,

which corrects the AC33–AC36 that also incorrectly stated only declare de-

pendencies. As the last example, AC2 specifies that only Controller can de-

clare VRaptor. RAC1 specifies it using a broader dependency type (depend

rather than declare) and RAC10 complements it ensuring that Controller

uses annotations (a more suitable dependency type) from VRaptor. There-

fore, after the case study, the DCL specification was refactored to express

the most appropriate dependency type and no additional violation was de-

tected. Even though there potentially were other types of violations (creates,

accesses, etc.) along with the forbidden declarations, when the developer was

fixing the forbidden declarations, implicitly they also fixed the other types

of violations as well.

793Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

3. Make the constraints stricter: There are constraints that could be more pre-

cise in the way they were defined. For instance, AC43 stated that Con-

troller cannot declare Serializable. However, the developer noted that—

besides changing the dependency type to implement—the constraint could

restrict the implementation of Serializable from Model only (RAC13). An-

other issue occurred when developers were incorrectly using constraints on

the form can dependency-type only. For instance, AC19, which was included

in r2 and removed in r2’—stated that Service can depend only on Controller.

The developer argued that such constraint resulted in an explosion in the

number of violations. However, we mentioned to him that the right side of

the constraint should contain $java, which refers to any class from the Java

API, otherwise it raises countless errors.

4. Removal of irrelevant constraints w.r.t. the architecture: The developer has

noted that some constraints are not particularly important from the archi-

tectural perspective—namely AC20, AC26, AC27, and AC44—and removed

them. For instance, AC27 stated that only Service could declare ArrayList,

which is not architecturally relevant. A similar scenario occurs with AC6 (re-

moved in r5) when the developer noted that module View no longer existed.

5.7 Discussion

In this section, we directly answer the case study research questions.

RQ1 - Is the proposed solution suitable to be applied in a real-world project?

Based on the proposed process, the constraints were increased and refined

through the releases. As the proposed process uses an iterative constraint defi-

nition, the experience of defining constraints and verifying them in the current

code base is relevant for further definitions. Thus, after each release, the devel-

opers are more mature about how to define the constraints and how they can

add value to the team.

The introduction of the proposed process increased the awareness of the

architectural constraints by the developers. The constant review of the set of

constraints enforces developers to frequently rethink the architectural solutions

and constraints. This simple awareness, according to a developer, helped to

avoid the introduction of new violations, especially on new features. It could

be observed in release r5, where all new code features were introduced without

violating any constraint.

RQ2 - Is ArchCI suitable to support the proposed process? In the case study,

the usage of ArchCI can be considered successful. The integration of the tool

in the existing CI process was natural and the centralization did not demand

794 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

the installation on each developer machine. More important, it prevented the

architectural conformance checking to be ignored in a commit by a developer.

The feature of blocking commits with violations was considered suitable to

be used with the proposed process. Since the introduction of new constraints

and new pieces of code occurred in small increments, it was feasible to correct

the violations to enable the code commit. As reported in Table 3, the corrections

were released soon after they were detected. According to the team, performing

the correction did not impact significantly the project activities and hence there

was no need to use the technical debt feature.

RQ3 - Is our proposed solution effective to detect architectural violations? As we

can see in Table 3, ArchCI detected 42 architectural violations in five constraints

through the releases. A new release correcting the violations was almost always

released on the same day. The reasonable number of violations detected in each

release make viable for it to be handled in a short term.

5.8 Threats to Validity

Next, we identify threats to validity in our case study.

Internal Validity: Several steps of this case study involved one specific developer

of the team. Although one could question the representativeness of qualitative

results (might be biased or based on a single opinion), the development team

has no relationship with any of us and such developer guaranteed that his

opinion reflects the team’s one.

External Validity: First, despite the successful implementation of the process in

this case study, we cannot claim that our approach will provide equivalent results

in other systems (as usual in case studies in software engineering). Although the

evaluation using other systems would be desirable, this kind of study is hard

to apply in a large scale since it needs the process to be applied on a system

with a non-trivial architecture for several releases (which is the reason we chose

LEONA).

Second, our case study relies only on a Java Web application (one particular

architectural style) and therefore we cannot claim equivalent results to other

kinds of applications, especially based on innovative architectures. However,

we argue that LEONA architecture follows a well-known reference architecture

that uses several architectural patterns and common practices.

Conclusion Validity: The development team of our case study is composed of two

full-time and one part-time developers. Although there is no evidence the process

would not be suitable for a larger team, we acknowledge we cannot conclude it.

795Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

6 Related Work

We divided the related work in three groups: (i) architecture conformance check-

ing, since our approach needs to identify architectural violations; (ii) architecture

repair, since our approach can block integrations of code with violation; and

(iii) CI approaches, since our approach monitors code integration.

Architecture Conformance Checking: Several techniques have been proposed to

deal with the architecture erosion problem [Passos et al., 2010]. In a survey, Silva

and Balasubramaniam indicated a combination of strategies that might help con-

trol architecture erosion [de Silva and Balasubramaniam, 2012]. They expressed

an opinion that an architecture conformance approach to point out violations

together with an architecture repair approach to assist developers in fixing them

are likely to extend the lifetime of the software. Our proposed process somehow

follows their idea and ensures the planned architecture by forcing developers to

fix violations before integrating the code.

Reflexion Models (RM) compares the source code to planned

architecture of a system [Murphy et al., 1995, Murphy et al., 2001].

As a result, the technique highlights the detected differences in

terms of divergences and absences in what the authors called a re-

flexion model. It is a popular technique with several commercial

tools [Knodel et al., 2006, Lindvall and Muthig, 2008, Knodel et al., 2008b]

and studies extending it to support, for example, hierarchical struc-

tures [Koschke and Simon, 2003], behavioral design [Ackermann et al., 2009],

and software variants [Koschke et al., 2009, Frenzel et al., 2007].

Dependency Structure Matrices (DSMs) provide a scalable view of the de-

pendencies among classes of a system [Sullivan et al., 2001, Sangal et al., 2005].

A DSM is a weighted square matrix whose rows and columns denote classes

from an object-oriented system. The LDM tool6 provides a simple language to

declare design rules that the target system implementation must follow (e.g.,

A cannot-use B) and visually represents the detected violations in a DSM.

ArchLint [Maffort et al., 2016, Maffort et al., 2013a, Maffort et al., 2013b]

implements a lightweight approach for architecture conformance that does not

require a manual specification of the architecture. Constraints are mined from

version repositories using a combination of static and historical source code anal-

ysis. Goldstein and Segall [Goldstein and Segall, 2015] implemented a similar

approach for the automatic detection of architectural violations based, in turn,

on predefined and user-defined patterns, which does not require prior knowl-

edge of the intended architecture. Their article somehow inspires ours since they

proposed to leverage their solution as part of the nightly build process used by

6 http://www.lattix.com

796 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

development teams to achieve continuous automatic validation of the software

architecture.

Besides the aforementioned architectural conformance techniques, there

are others based on source code query languages [de Moor et al., 2007],

unit tests [Brunet et al., 2009, Brunet et al., 2011], and custom checks of

existing static analysis tools [Merson, 2013, Merson et al., 2014]. Currently,

our proposed approach relies on architectural violations detected by

DCL [Terra and Valente, 2009], which was previously described in Section 2.3.

However, we argue that it is straightforward to adapt our approach to

the aforementioned conformance techniques and tools (e.g., RMs or DSMs).

For instance, one could rely on ArchLint when architectural documen-

tation (if available) is outdated or when dealing with walking architec-

tures [Unphon and Dittrich, 2010].

Although aforementioned architectural conformance techniques aim to point

out architectural violations, nothing guarantees developers fix them. Our pro-

posed process, on the other hand, aims to avoid software architecture erosion by

only integrating code that has been successfully passed through an architectural

conformance checking. In this way, the code base is always in conformance with

the planned architecture.

Architecture Repair: When an IT company relies on an architectural confor-

mance approach, the next task is to replace the detected violations with im-

plementation decisions consistent with the intended architecture. However, this

reengineering effort is usually a non-trivial and time-consuming task because

software erosion is mostly a silent process that accumulates over years. For

example, Knodel et al. described their experience of applying an architecture

conformance process to a product line in the domain of portable measure-

ment devices [Knodel et al., 2008a]. As a result, they identified almost 5,000

architectural divergences in three products of this product line. In a previous

work [Terra and Valente, 2009], we described our own experience in applying

conformance techniques to a human-resource management system. In this pro-

cess, we were able to detect more than 2,200 architectural violations. As the last

example, Sarkar et al. reported their experience in modularizing a large banking

application [Sarkar et al., 2009]. Reconstructing the original architecture of this

system demanded 2,100 person-days just for coding and testing. These argu-

ments favor approaches (like the one we are proposing) that do not allow the

integration of architecturally questionable code.

In a certain point, architecture repair techniques could be used to

modify the source code in order to reestablish the conformance with

the planned architecture. In these cases, developers could apply refactor-

ings [Fowler, 1999]—e.g., Extract Method, Move Method, and Move Class—or

rely on more sophisticated solutions, such as ArchFix that formalizes a set

797Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

of architectural repair recommendations to fix violations raised by static

architecture conformance checking approaches [Terra et al., 2015]. How-

ever, when architecture erosion is neglected over the years, the software

architecture becomes a set of strongly-coupled and weakly-cohesive compo-

nents [Borchers, 2011]. In these scenarios, architecture conformance and repair

techniques present them mostly ineffective and a complete modularization can

be the only solution [Hochstein and Lindvall, 2005, Rama and Patel, 2010,

Anquetil and Lethbridge, 1999, Mitchell and Mancoridis, 2006,

O’Keeffe and Cinnéide, 2006]. These conditions also favor approaches (like

the one we are proposing) that favor incremental architectural evolution and

avoid the accumulation of architectural erosion over the years.

Continuous Integration Approaches: We claim the originality and applicabil-

ity of our proposed architectural conformance process. However, existing tools

could be adapted to follow our process like ArchCI does. Deissenboeck et

al. [Deissenboeck et al., 2008] list several tool support for continuous quality

control—such as Sotograph and iPlasma—that fit in their System analysis work-

benches category, as ArchCI does.

As an example, although a general-purpose static analysis tool, Sonargraph-

Architect [Hello2morrow, 2017] provides an architecture Domain Specific Lan-

guage (DSL) that can be used by developers to design their architectures. Next,

a Jenkins plug-in [Kellner et al., 2017] allows developers to define if the build

should be marked as “unstable” or “failed” when Sonargraph-Architect finds ar-

chitectural violations. It is not exactly what our process contemplates, but it

could be (with a reasonable effort) adapted to.

As another example, SonarQube is an open-source platform to track and

manage the quality of a project [Campbell and Papapetrou, 2013]. It provides

information about test coverage metrics, dependency matrix, compliance to good

code practices, technical debt, etc. In addition to providing tools and metrics

for quality analysis at different moments of development, SonarQube provides

integration with IDEs and CI servers. In the software architecture perspective,

by establishing architectural rules in the SonarQube, it becomes possible to

obtain information about the conformance as part of the CI process. Based on

this idea, Merson et al. [Merson et al., 2014] defined custom rules on different

aspects of development as well as to set architectural constraints, and later

exported them to use in quality analysis tools, code review, or even CI servers.

The authors demonstrated how to use the API from Checkstyle—an open-source

tool focused on static Java code analysis—to verify the conformance of the code

with manually implemented rules. The rule set, which runs on Checkstyle, could

be easily integrated with SonarQube.

Although these studies have features related to the evaluation of software

quality during the CI process, none focuses directly on an instrument for ar-

798 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

chitectural conformance checking. As mentioned by Merson [Merson, 2013], it is

possible to create custom rules for this purpose, but his approach demands an

excessive work and effort, requiring the creation of a class for each rule. Un-

der these circumstances, a simple rule definition, combined with verification and

validation as part of the CI process, emphasizes the originality of the proposed

solution on this article.

7 Conclusion

The software architecture erosion problem fractures significant characteristics of

software systems, such as maintainability, reusability, scalability, portability, etc.

Our proposed solution addresses this problem by using a stringent conformance

process into CI, i.e., we allow code integrations when no violations are detected.

Besides formalizing an architectural conformance process, we implemented tool

support and conducted an evaluation of a real-world project.

The contribution and novelty of our architectural conformance process are

sixfold: (i) it addresses the “architectural tools are underused” problem and pro-

motes the use of conformance tools since it is integrated with CI servers; (ii) it

addresses the “detected violations are rarely corrected” problem since it mostly al-

lows code integrations when no violations are detected (except for item v); (iii) it

contemplates both continuous and evolutive aspects of architectural constraints,

besides an always up-to-date formal architectural definition; (iv) it is fully sup-

ported by the ArchCI tool; (v) it supports Industry reality allowing violations

that do not need to be immediately corrected to be configured as technical debt;

and (vi) it was successfully applied in a real-world project.

As future work, it is intended to: (i) apply the proposed solution in other

real-world development scenarios to evaluate its applicability, expressiveness,

and performance; (ii) evaluate the tool usability, e.g., best way to perform the

checking, best way to present violations, as well as most important features

for acceptance of the developers, regarding different approaches for reporting

violations; and (iii) define severity levels for the architectural constraints, which

would allow developers to set predetermined actions for each severity level, e.g.,

block the integration for violations that affect security and send an e-mail alert

for violations that affect performance.

Acknowledgements

This work is supported by CNPq (grant 445562/2014-5) and FAPESP (grant

2014/16236-6). We acknowledge the valuable contribution of Nicolas Fontes, as

the developer who applied the proposed process and collected the data in the

case study.

799Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

References

[Ackermann et al., 2009] Ackermann, C., Lindvall, M., and Cleaveland, R. (2009). To-
wards behavioral reflexion models. In 20th International Symposium on Software
Reliability Engineering (ISSRE), pages 175–184.

[Aldrich et al., 2002] Aldrich, J., Chambers, C., and Notkin, D. (2002). ArchJava:
Connecting software architecture to implementation. In 24th International Confer-
ence on Software Engineering (ICSE), pages 187–197.

[Alwis and Sillito, 2009] Alwis, B. d. and Sillito, J. (2009). Why are software projects
moving from centralized to decentralized version control systems? In 2nd Cooperative
and Human Aspects on Software Engineering (CHASE), pages 36–39.

[Anquetil and Lethbridge, 1999] Anquetil, N. and Lethbridge, T. (1999). Experiments
with clustering as a software remodularization method. In 6th Working Conference
on Reverse Engineering (WCRE), pages 235–255.

[Berg, 2012] Berg, A. (2012). Jenkins Continuous Integration Cookbook. Packt Pub-
lishing.

[Borchers, 2011] Borchers, J. (2011). Invited talk: Reengineering from a practitioner’s
view – a personal lesson’s learned assessment. In 15th European Conference on Soft-
ware Maintenance and Reengineering (CSMR), pages 1–2.

[Bowyer and Hughes, 2006] Bowyer, J. and Hughes, J. (2006). Assessing undergradu-
ate experience of continuous integration and test-driven development. In 28th Inter-
national Conference on Software Engineering (ICSE), pages 691–694.

[Brunet et al., 2009] Brunet, J., Guerreiro, D., and Figueiredo, J. (2009). Design tests:
An approach to programmatically check your code against design rules. In 31st
International Conference on Software Engineering (ICSE), New Ideas and Emerging
Results Track, pages 255–258.

[Brunet et al., 2011] Brunet, J., Guerreiro, D., and Figueiredo, J. (2011). Structural
conformance checking with design tests: An evaluation of usability and scalability.
In 27th International Conference on Software Maintenance (ICSM), pages 143–152.

[Campbell and Papapetrou, 2013] Campbell, A. and Papapetrou, P. (2013). Sonar-
Qube in Action. Manning.

[Cavalcanti, 2013] Cavalcanti, L. (2013). VRaptor - Desenvolvimento ágil para web
com Java. Casa do Código. (in Portuguese).

[Cavaness, 2006] Cavaness, C. (2006). Quartz Job Scheduling Framework: Building
Open Source Enterprise Applications. Prentice Hall.

[de Moor et al., 2007] de Moor, O., Verbaere, M., Hajiyev, E., Avgustinov, P., Ekman,
T., Ongkingco, N., Sereni, D., and Tibble, J. (2007). Keynote address: .QL for
source code analysis. In 7th International Conference on Source Code Analysis and
Manipulation (SCAM), pages 3–14.

[de Silva and Balasubramaniam, 2012] de Silva, L. and Balasubramaniam, D. (2012).
Controlling software architecture erosion: A survey. Journal of Systems and Software,
85(1):132–151.

[Deissenboeck et al., 2008] Deissenboeck, F., Juergens, E., Hummel, B., Wagner, S.,
y Parareda, B. M., and Pizka, M. (2008). Tool support for continuous quality control.
IEEE Software, 25(5):60–67.

[Duvall et al., 2007] Duvall, P., Matyas, S., and Glover, A. (2007). Continuous Inte-
gration: Improving Software Quality and Reducing Risk. Pearson Education.

[Fowler, 1999] Fowler, M. (1999). Refactoring: improving the design of existing code.
Addison-Wesley, Boston.

[Fowler, 2002] Fowler, M. (2002). Patterns of Enterprise Application Architecture.
Addison-Wesley, Boston.

[Fowler and Foemmel, 2006] Fowler, M. and Foemmel, M. (2006). Continuous integra-
tion. Technical report, Thought-Works.

800 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

[Frenzel et al., 2007] Frenzel, P., Koschke, R., Breu, A., and Angstmann, K. (2007).
Extending the reflexion method for consolidating software variants into product lines.
In 14th Working Conference on Reverse Engineering (WCRE), pages 160–169.

[Garlan and Shaw, 1996] Garlan, D. and Shaw, M. (1996). Software architecture: Per-
spectives on an emerging discipline. Prentice Hall.

[Goldstein and Segall, 2015] Goldstein, M. and Segall, I. (2015). Automatic and con-
tinuous software architecture validation. In 37th International Conference on Soft-
ware Engineering (ICSE), pages 59–68.

[Guerra, 2014] Guerra, E. (2014). Designing a framework with test-driven develop-
ment: A journey. IEEE Software, 31(1):9–14.

[Guerra et al., 2013] Guerra, E., Alves, F., Kulesza, U., and Fernandes, C. (2013). A
reference architecture for organizing the internal structure of metadata-based frame-
works. Journal of Systems and Software, 86(5):1239–1256.

[Guerra et al., 2015] Guerra, E., Wirfs-Brock, R., and Yoder, J. (2015). Patterns for
initial architectural design on agile projects. In 4th Asian Conference on Pattern
Languages of Programs (AsianPLoP).

[Hello2morrow, 2017] Hello2morrow (2017). Sonargraph-architect. https://www.
hello2morrow.com/products/sonargraph/architect9.

[Hinsen et al., 2009] Hinsen, K., Läufer, K., and Thiruvathukal, G. (2009). Essential
tools: Version control systems. Computing in Science & Engineering, 11(6):84–91.

[Hochstein and Lindvall, 2005] Hochstein, L. and Lindvall, M. (2005). Combating ar-
chitectural degeneration: a survey. Information and Software Technology, 47(10):643–
656.

[Kellner et al., 2017] Kellner, I., Angee, E., and Hoyer, A. (2017). Sonargraph plugin.
https://wiki.jenkins-ci.org/display/JENKINS/Sonargraph+Plugin.

[Knodel et al., 2008a] Knodel, J., Muthig, D., Haury, U., and Meier, G. (2008a). Ar-
chitecture compliance checking - experiences from successful technology transfer to
industry. In 12th European Conference on Software Maintenance and Reengineering
(CSMR), pages 43–52.

[Knodel et al., 2006] Knodel, J., Muthig, D., Naab, M., and Lindvall, M. (2006). Static
evaluation of software architectures. In 10th European Conference on Software Main-
tenance and Reengineering (CSMR), pages 279–294.

[Knodel et al., 2008b] Knodel, J., Muthig, D., and Rost, D. (2008b). Constructive
architecture compliance checking - an experiment on support by live feedback. In
24th International Conference on Software Maintenance (ICSM), pages 287–296.

[Koschke et al., 2009] Koschke, R., Frenzel, P., Breu, A., and Angstmann, K. (2009).
Extending the reflexion method for consolidating software variants into product lines.
Software Quality Journal, 17:331–366.

[Koschke and Simon, 2003] Koschke, R. and Simon, D. (2003). Hierarchical reflexion
models. In 10th Working Conference on Reverse Engineering (WCRE), pages 36–47.

[Lindvall and Muthig, 2008] Lindvall, M. and Muthig, D. (2008). Bridging the soft-
ware architecture gap. Computer, 41(6):98–101.

[Maffort et al., 2013a] Maffort, C., Valente, M. T., Anquetil, N., Hora, A., and
Bigonha, M. (2013a). Heuristics for discovering architectural violations. In 20th
Working Conference on Reverse Engineering (WCRE), pages 1–10.

[Maffort et al., 2013b] Maffort, C., Valente, M. T., Bigonha, M., Hora, A., Anquetil,
N., and Menezes, J. (2013b). Mining architectural patterns using association rules. In
25th International Conference on Software Engineering and Knowledge Engineering
(SEKE), pages 375–380.

[Maffort et al., 2016] Maffort, C., Valente, M. T., Terra, R., Bigonha, M., Anquetil, N.,
and Hora, A. (2016). Mining architectural violations from version history. Empirical
Software Engineering, 21(3):854–895.

[Merson, 2013] Merson, P. (2013). Ultimate architecture enforcement: custom checks
enforced at code-commit time. In 2013 Conference on Systems, Programming, and
Applications: Software for Humanity (SPLASH), pages 153–160.

801Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

[Merson et al., 2014] Merson, P., Yoder, J., Guerra, E., and Aguiar, A. (2014). Con-
tinuous inspection. In 2nd Asian Conference on Pattern Languages of Programs
(AsianPLoP), pages 1–13.

[Mitchell and Mancoridis, 2006] Mitchell, B. S. and Mancoridis, S. (2006). On the au-
tomatic modularization of software systems using the Bunch tool. IEEE Transactions
on Software Engineering, 32(3):193–208.

[Murphy et al., 1995] Murphy, G., Notkin, D., and Sullivan, K. (1995). Software re-
flexion models: Bridging the gap between source and high-level models. In 3rd Sym-
posium on Foundations of Software Engineering (FSE), pages 18–28.

[Murphy et al., 2001] Murphy, G., Notkin, D., and Sullivan, K. (2001). Software re-
flexion models. IEEE Transactions on Software Engineering, 27(4):364–380.

[Nierstrasz and Lungu, 2012] Nierstrasz, O. and Lungu, M. (2012). Agile software
assessment. In 20th International Conference on Program Comprehension (ICPC),
pages 3–10.

[O’Keeffe and Cinnéide, 2006] O’Keeffe, M. and Cinnéide, M. Ó. (2006). Search-based
software maintenance. In 10th European Conference on Software Maintenance and
Reengineering (CSMR), pages 249–260.

[O’Sullivan, 2009] O’Sullivan, B. (2009). Making sense of revision-control systems.
Queue, 7(7):30–40.

[Passos et al., 2010] Passos, L., Terra, R., Diniz, R., Valente, M. T., and Mendonça,
N. (2010). Static architecture-conformance checking: An illustrative overview. IEEE
Software, 27(5):82–89.

[Perry and Wolf, 1992] Perry, D. E. and Wolf, A. L. (1992). Foundations for the study
of software architecture. Software Engineering Notes, 17(4):40–52.

[Pinto and Terra, 2015] Pinto, A. F. and Terra, R. (2015). Processo de conformidade
arquitetural em integração contínua. In 2nd Latin-American School on Software
Engineering (ELA-ES), pages 42–53. (in Portuguese).

[Rama and Patel, 2010] Rama, G. M. and Patel, N. (2010). Software modularization
operators. In IEEE International Conference on Software Maintenance (ICSM),
pages 1–10.

[Reenskaug, 2003] Reenskaug, T. (2003). The model-view-controller (MVC) its past
and present.

[RhodeCode, 2017] RhodeCode (2017). Version control systems popularity in 2016.
https://rhodecode.com/insights/version-control-systems-2016.

[Sangal et al., 2005] Sangal, N., Jordan, E., Sinha, V., and Jackson, D. (2005). Using
dependency models to manage complex software architecture. In 20th Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 167–176.

[Sarkar et al., 2009] Sarkar, S., Ramachandran, S., Kumar, G. S., Iyengar, M. K., Ran-
garajan, K., and Sivagnanam, S. (2009). Modularization of a large-scale business
application: A case study. IEEE Software, 26:28–35.

[Spinellis, 2005a] Spinellis, D. (2005a). Version control, part 1. IEEE Software,
22(5):107–107.

[Spinellis, 2005b] Spinellis, D. (2005b). Version control, part 2. IEEE Software,
22(6):c3–c3.

[Sullivan et al., 2001] Sullivan, K. J., Griswold, W. G., Cai, Y., and Hallen, B. (2001).
The structure and value of modularity in software design. In 9th International Sym-
posium on Foundations of Software Engineering (FSE), pages 99–108.

[Terra and Valente, 2009] Terra, R. and Valente, M. T. (2009). A dependency con-
straint language to manage object-oriented software architectures. Software: Practice
and Experience, 32(12):1073–1094.

[Terra et al., 2015] Terra, R., Valente, M. T., Czarnecki, K., and Bigonha, R. S. (2015).
A recommendation system for repairing violations detected by static architecture
conformance checking. Software: Practice and Experience, 45(3):315–342.

802 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

[Unphon and Dittrich, 2010] Unphon, H. and Dittrich, Y. (2010). Software architec-
ture awareness in long-term software product evolution. Journal of Systems and
Software, 83(11):2211–2226.

[Verbaere et al., 2008] Verbaere, M., Godfrey, M. W., and Gîrba, T. (2008). Query
technologies and applications for program comprehension. In 16th International Con-
ference on Program Comprehension (ICPC), pages 285–288.

[White, 2014] White, O. (2014). Java tools and technologies landscape for 2014. https:
//zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/
12/.

[Wirfs-Brock et al., 2015] Wirfs-Brock, R., Guerra, E., and Yoder, J. (2015). Patterns
to develop and evolve architecture during a agile software project. In 22nd Conference
on Pattern Languages of Programs (PLoP).

803Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

A Complete Description of Architectural Constraints

Table 5 reports a complete description of the architectural constraints of Leona.

It also reports the release we added or removed (optional) the constraint.

Table 5: Constraints Evolution Rastreability

Ref Constraint Release
Added

Release
Removed

AC1 only Controller can-depend Controller r0 -
AC2 only Controller can-declare VRaptor r0 -
AC3 Service cannot-depend Controller, Servlet r0 -
AC4 only Model can-declare Persistence r0 r5
AC5 only DAO can-depend Esfinge r0 r5
AC6 View cannot-access Model r0 r5
AC7 Model must-declare Serializable r0 -
AC8 only Controller can-declare JavaxSwing r0 -
AC9 DAO cannot-declare FileNotFound r1 -
AC10 Model cannot-declare IOException r1 -
AC11 Model cannot-declare SQL r1 r2
AC12 only Service can-declare File r1 -
AC13 only Service can-declare FileIS r1 -
AC14 only Service can-declare InetAddress r1 -
AC15 only Service can-declare ImageIO r1 -
AC16 Model cannot-declare ParseException r2 -
AC17 only Controller can-declare HttpSession r2 -
AC18 only Service can-declare Quartz r2 -
AC19 Service can-depend-only Controller r2 r2’
AC20 only Servlet can-declare PrintWriter r3 -
AC21 only Servlet can-declare ServletEx r3 -
AC22 only Servlet can-declare HttpServlet r3 -
AC23 only Servlet can-declare HttpServletRes r3 -
AC24 Service cannot-declare HttpServletReq r3 -
AC25 only Service can-declare FTP r4 -
AC26 Controller cannot-declare Logging r4 -
AC27 only Service can-declare ArrayList r4 -
AC28 only Service can-declare Security r4 -
AC29 only Service can-declare NetURL r4 -
AC30 only DAO can-declare Persistence r5 -
AC31 only Service can-declare BufferedImage r5 -
AC32 only Service can-declare FileOS r5 -
AC33 only Model can-declare Entity r5 -
AC34 only Model can-declare PersistenceGV r5 -
AC35 only Model can-declare PersistenceGT r5 -
AC36 only Model can-declare PersistenceId r5 -
AC37 only DAO can-declare EntityManager r5 -
AC38 only DAO can-declare EMF r5 -
AC39 only DAO can-declare EsfingeEMP r5 -
AC40 only DAO can-declare EsfingeRepo r5 -
AC41 Controller cannot-declare Serializable r5 -
AC42 Servlet cannot-declare SQL r5 -
AC43 Model cannot-declare EsfingeQB r5 -
AC44 Servlet cannot-declare List r5 -

804 Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

B Final DCL Specification

Listing 1 reports the complete specification of modules and constraints for the

latest release of Leona.

1 %Modules

2 module Controller: br.leona.servidor.controller.*
3 module Model: br.leona.server.model.*
4 module Service: br.leona.servidor.service.*
5 module DAO: br.leona.server.dao.*
6 module Servlet: br.leona.servidor.servlet.*
7 module VRaptor: br.com.caelum.vraptor.*
8 module BufferedImage: java.awt.image.BufferedImage.*
9 module File: java.io.File.*

10 module FileIS: java.io.FileInputStream.*
11 module FileOS: java.io.FileOutputStream.*
12 module InetAddress: java.net.InetAddress.*
13 module NetURL: java.net.URL.*
14 module Security: java.security.*
15 module ImageIO: javax.imageio.ImageIO.*
16 module Entity: javax.persistence.Entity.*
17 module EntityManager: javax.persistence.EntityManager.*
18 module EMF: javax.persistence.EntityManagerFactory.*
19 module PersistenceGV: javax.persistence.GeneratedValue.*
20 module PersistenceGT: javax.persistence.GenerationType.*
21 module PersistenceId: javax.persistence.Id.*
22 module Persistence: javax.persistence.Persistence.*
23 module HttpServlet: javax.servlet.http.HttpServlet.*
24 module HttpServletRes: javax.servlet.http.HttpServletResponse.*
25 module HttpSession: javax.servlet.http.HttpSession.*
26 module ServletEx: javax.servlet.ServletException.*
27 module JavaxSwing: javax.swing.*
28 module FTP: org.apache.commons.net.ftp.*
29 module EsfingeEMP: org.esfinge.querybuilder.jpa1.EntityManagerProvider.*
30 module EsfingeRepo: org.esfinge.querybuilder.Repository.*
31 module Quartz: org.quartz.*
32 module FileNotFound: java.io.FileNotFoundException

33 module IOException: java.io.IOException

34 module Serializable: java.io.Serializable

35 module SQL: java.sql.*
36 module ParseException: java.text.ParseException

37 module HttpServletReq: javax.servlet.http.HttpServletRequest

38 module EsfingeQB: org.esfinge.querybuilder.QueryBuilder

39

40 %Constraints After Refactoring:

41 %RAC1 (AC1,AC2*,AC8,AC17)

42 only Controller can-depend Controller,JavaxSwing,HttpSession,VRaptor

43 %RAC2 (AC9,AC16)

44 only Controller,Service can-throw FileNotFound,ParseException

45 %RAC3 (AC10)

46 only Controller,Service,Servlet can-throw IOException

47 %RAC4 (AC24)

48 only Controller,Servlet can-depend HttpServletReq

49 %RAC5 (AC12,AC13,AC14,AC15,AC18,AC31,AC32,AC25,AC29)

50 only Service can-depend File,FileIS,InetAddress,ImageIO,Quartz,

51 BufferedImage,FileOS,FTP,NetURL

52 %RAC6 (AC21,AC22,AC23)

53 only Servlet can-depend ServletEx,HttpServlet,HttpServletRes

54 %RAC7 (AC28)

55 only Service can-declare Security

56 %RAC8 (AC30,AC37, AC38, AC39, AC40, AC43)
57 only DAO can-depend Persistence,EntityManager,EMF,EsfingeEMP,

58 EsfingeRepo,EsfingeQB

59 %RAC9 (AC33, AC34, AC35, AC36)
60 only Model can-depend Entity,PersistenceGT,PersistenceId,PersistenceGV

61 %RAC10 (AC2*)

62 Controller must-useannotation VRaptor

63 %RAC11 (AC3)

64 Service cannot-depend Controller, Servlet

65 %RAC12 (AC7)

66 Model must-implement Serializable

67 %RAC13 (AC41)

68 only Model can-implement Serializable

69 %RAC14 (AC42)

70 Servlet,DAO cannot-depend SQL

71

72 %Constraints that have been removed:

73 %(AC20) only Servlet can-declare PrintWriter

74 %(AC26) Controller cannot-declare Logging

75 %(AC27) only Service can-declare ArrayList

76 %(AC44) Servlet cannot-declare List

Listing 1: DCL Specification of the latest release of Leona

805Pinto A.F., Terra R., Guerra E., Sao Sabbas F.: Introducing ...

