
Stochastic Computing with Spiking Neural P Systems

Ming Ming Wong

(School of Computer Science and Engineering

Hardware & Embedded Systems Lab (HESL)

Nanyang Technological University, Singapore

mmwong@ntu.edu.sg)

Mou Ling Dennis Wong

(Institute of Sensors, Signals and Systems

Heriot-Watt University Malaysia

Wilayah Persekutuan Putrajaya Malaysia

d.wong@hw.ac.uk)

Abstract: This paper presents a new computational framework to address the chal-
lenges in deeply scaled technologies by implementing stochastic computing (SC) using
the Spiking Neural P (SN P) Systems. SC is well known for its high fault tolerance
and its ability to compute complex mathematical operations using minimal amount of
resources. However, one of the key issues for SC is data correlation. This computation
can be abstracted and elegantly modeled by using SN P systems where the stochastic
bit-stream can be generated through the neurons spiking. Furthermore, since SN P
systems are not affected by data correlations, this effectively mitigate the accuracy
issue in the ordinary SC circuitry. A new stochastic scaled addition realized using SN
P systems is reported at the end of this paper. Though the work is still at the early
stage of investigation, we believe this study will provide insights to future IC design
development.

Key Words: Stochastic Computing, Membrane Computing, Spiking Neural P Sys-
tem, Fault Tolerance, Integrated Circuits

Category: I.1.2, I.2

1 Introduction

The rapid emergence of Internet of Things (IoT) has driven the integrated circuit

(IC) technology to scale with greater depth. Vast variety of applications with

complex computations are expected to be fabricated onto nano-devices with

stringent hardware and power constraints. Such development trend gives rise to

mounting concerns over variability, noises and uncertainties in IC manufacturing.

Subsequently, this imposes a great challenge in maintaining the paradigm of

the deterministic computing in IC design. Deterministic computation are sensi-

tives towards noises and variations and these could lead towards instability in

ICs. As a direct result, the abstraction process of mapping the logical Boolean

computations to the physical layer has become extremely complicated, expensive

Journal of Universal Computer Science, vol. 23, no. 7 (2017), 589-602
submitted: 31/3/17, accepted: 30/6/17, appeared: 28/7/17 © J.UCS



and unsustainable. In near future, it is foreseen that the conventional determin-

istic computing may no longer be practical and feasible in IC design.

These problems have later motivated fellow researchers and IC designers to

deploy a different computation domain to mitigate the shortcomings of deter-

ministic computation in handling noisy signals and computation uncertainties.

Stochastic computing (SC) [Gaines 1967] that processes signals in a probabilistic

approach has therefore appeared to be an potential alternative.

This computation framework which incorporates probability theory, is proven

to be able to handle computation uncertainties in a more effective and efficient

manner [Alaghi and Hayes 2013]. With that, SC has brought the emergence of

an unconventional and non-deterministic computation with high fault tolerance,

which is the key requirement for deep sub-micron technology [Qian et al. 2011,

Moons and Verhelst 2014, Zhang et al. 2016]. Furthermore, SC is particularly

attractive in IC design for it uses low complexity computation blocks. On the

downside, the accuracy level of SC is subjected to the randomness of stochastic

bit-streams i.e. the data has to be uncorrelated.

In this study, we intend to take this research to another level by incorporating

the membrane computing, specifically the Spiking Neural P (SN P) systems

with stochastic computation. The main objective here is to take the best out of

both computation frameworks to present a new computational model that is; 1,

small in resource consumption, 2, insusceptible towards noises, variations and

uncertainties, and 3, high in computational accuracy.

SN P systems is a class of distributed and parallel computing models inspired

by the neuro-biological behaviour of spiking neurons [Ionescu et al. 2006]. From

scientific point of view, neurons resemble electrical devices whereby they send

electrical pulses of identical voltage (termed as spikes) to the neighbouring neu-

rons. Generally, SN P systems can be visualized as a system consisted of a set

of neurons placed in the nodes of directed graph, where neurons send spikes i.e.

signals along the arcs of the graph.

In fact, the idea of using neurons to generate logic and to signal each other is

not new in circuit design. However, note that neurons’ activities rely on voltage

pulses. Hence, SN P systems is different from the level sensitive logic systems ap-

plied in ordinary deterministic computing. This characteristic is suitable for the

stochastic computation as the neurons spiking can be used to generate stochastic

bit-streams effectively. Besides, the spiking rules which govern the computation

procedures in the system are not affected by the correlation between processing

data. Therefore, the computation accuracy is guaranteed.

In a nutshell, SC that is low in complexity and high fault tolerance is modeled

using SN P systems in order to improve the computation accuracy. Along with

this concept, a new computational model, a stochastic scaled addition using SN

P systems is presented in this study.

590 Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...



The remaining of this paper is organized as follows. Section 2 describes the

background overview of both SC and SN P systems. Detailed mathematical ex-

planations of SC is then elaborated in Section 3, while the in-depth descriptions

of SN P systems is presented in Section 4. A new computational model, which is

the stochastic scaled addition modeled using SN P systems is reported in Section

5. Finally, some discussion and future works are drawn in Section 6.

2 Background

Stochastic computing (SC) [Gaines 1967], which was introduced several decades

ago has recently gained a fair amount of attentions in IC manufacturing. Unlike

the deterministic computing, SC employs the principle of randomness whereby

the value of numbers are conveyed through the statistical distribution of its

logical value. In other words, the logical Boolean computation are transformed

into stochastic computations framework, represented in probability values of

interval [0, 1].

Such characteristics enables SC to offer high fault tolerance capability

and low computation hardware area, while maintaining the equivalent per-

formance as the conventional deterministic computing. Overall, SC serves as an

promising alternative in comparison to the conventional deterministic computing

which are high in computational cost and also high inclination towards accuracy

degradation in physical implementation.

Though SC has been known for decades, very few physical realization have

been proposed. Initially, SC applications were limited to the field of neural net-

works [Brown and Card 2001] and machine controls [Dinu et al. 2002]. Until

recent years, it was discovered that SC efficiently simplifies some mathematical

functions which are computational expensive in binary computation. These func-

tions can be efficiently approximated using stochastic logic with minimal hard-

ware requirements and without significant accuracy degradation. Ever since, SC

implementation has been extended to image processing [Alaghi et al. 2013, Li

and Lilja 2011], error control coding applications [Naderi et al. 2011] and digital

filter design [Chang and Parhi 2013,Parhi and Liu 2014,Liu and Parhi 2015,Saraf

et al. 2014].

At the same time, SC comes with a few drawbacks as well. These are such

as the variance inherent in estimating the value of a stochastic signal and the

increased number of clock cycles required to accomplish a given computation

[Brown and Card 2001]. In simple, the existing SC systems suffer from large

computation latency and inaccuracy problems. However, the SC driven ICs are

relatively small in areas. This in turn provides high opportunities for massive

parallelism and this may actually alleviate the latency issue. In addition to that,

retiming (pipelining) could be employed easily in order to maximize system clock

591Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...



rate. With that, this leaves the accuracy of SC as the major consideration issue

in nano-scaled IC design.

In SC, the data are transformed and presented as stochastic sequences via

the use of stochastic number generator (SNG). The accuracy of SC framework

is highly dependent on the quality of the generated stochastic bit-streams, of

which, the data has to be both accurate and uncorrelated. Therefore, it is

concluded that the two main sources of inaccuracies in SC systems are: 1, initial

conversion error introduced by SNG; and 2, computation error caused by data

correlations of different bit-streams [Lifeng and Chakrabarti 2013].

The existing works on SC attempted to mitigate this problem by improv-

ing the design of SNG for better accuracy and highly uncorrelated random-

ized stochastic sequences generations [Lifeng and Chakrabarti 2013]. Meanwhile,

many other related studies proposed optimizations in SC circuitry design in or-

der to avoid correlations between the bit-streams throughout the computations

as well as error propagations [Chang and Parhi 2013, Parhi and Liu 2014, Liu

and Parhi 2015,Saraf et al. 2014].

In this study, we run against above-mentioned trend by incorporating bio-

inspired computing as a solution to improve the computational accuracy in SC.

Bio-inspired computing, short for biologically inspired computing, is a major

candidate in natural computation, whose aim is to abstract computing ideas

from biological systems to construct high-performance computing models and

algorithms. The abstract computing ideas include data structures, information

encoding/decoding strategy, operations with data, ways to control operations,

computing intelligence, and many more.

Membrane computing, initiated by Gh. Păun, is a new branch of bio-inspired

computing, which seeks to discover new computational models from the study

of biological cells, particularly of the cellular membranes [Păun 2000,Păun et al.

2010]. The obtained models are distributed and parallel bio-inspired computing

devices, usually called P systems.

In 2006, spiking neural P systems, namely SN P systems, were proposed

through modeling the way neurons communicate via electrical impulses (spikes)

[Ionescu et al. 2006]. Such systems are also known as a specific group of ingre-

dients in membrane computing [Păun 2002], and corresponding to a shift from

cell-like to neural-like architectures.

In recent years, SN P systems became the popular subject of investigation

for developing powerful neural-like computing models. In terms of motivation

of models, SN P systems fall into the third generation of neural network mod-

els [Maass 1997]. SN P systems are capable of generating and accepting the

sets of Turing computable natural numbers [Ionescu et al. 2006], generating the

recursively enumerable languages [Chen et al. 2007] and computing the sets of

Turing computable functions [Păun and Păun 2007].

592 Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...



With different biological and mathematical inspirations, lots of variants of

SN P systems have been proposed, such as SN P systems with anti-spikes [Pan

and Păun 2009,Song et al. 2013], asynchronous SN P systems

[Cavaliere et al. 2009], asynchronous SN P systems with local synchronization

[Song et al. 2012], homogeneous SN P systems [Zeng et al. 2009, Song et al.

2009], sequential SN P systems [Ibarra et al. 2009], SN P systems with rules

on synapses [Song et al. 2014, Song and Pan 2015]. The latest studies in this

area are such as SN P systems with self-organizations [Wang et al. 2016], SN P

systems with request rules [Song and Pan 2016] and SN P systems with white

hole neurons [Song et al. 2016].

For applications, SN P systems are used to design logic gates, logic cir-

cuitries [Song and Pan 2016] and operating systems [Adl et al. 2010], perform

basic arithmetic operations [Zeng et al. 2012], solve combinatorial optimization

problems [Zhang et al. 2014], diagnose fault of electric power systems [Wang et

al. 2010]. SN P systems with neuron budding and division and space-time trade-

off strategy can theoretically solve computationally hard problems in a feasible

(polynomial or linear) time [Ishdorj et al. 2010, Leporati et al. 2009,Pan et al.

2009].

3 Stochastic Computation (SC)

The basic rule of SC is that the computational data (in bit-streams) are repre-

sented as stochastic sequences and are then processed in the form on digitized

probabilities [Qian et al. 2011]. Naturally, the representations and all the in-

volved computations always lie within the real-number interval [0, 1]. Stochastic

representation can be coded in two formats: SC-unipolar and SC-bipolar [Gaines

1967].

As an example, a 2’s complement binary input bit-stream {0011}2 is repre-

sented in stochastic bit-streams S, consisted of 3 of bit ’1’ out of 24 = 16 bits

(remaining bits are zeros). This stochastic bit-streams S, is also interpreted as

p = P (S = 1) = 3/16. Such coding is termed as SC-unipolar format. On the

other hand, consider a 2’s complement binary input bit-stream {1101}2 repre-

sented in stochastic bit-streams S. By using SC-bipolar format, the deterministic

value is mapped to p = P (S = 1)/2 = 13/(16× 2) = 13/32.

In other words, stochastic representation observes the probability of 1s at

arbitrary bit position in S. Such representation serves as the main reason for

having high fault tolerance in SC. A single bit-flip in a long bit-stream causes

only a minor change in original logical value. On the contrary, a single bit-flip in

the conventional 2’s complement computation will result in huge error especially

if the bit-flip occurs on higher-order bit.

A general SC architecture consists of three major components: the stochas-

tic number generator (SNG), the stochastic computing elements (SCE) and the

593Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...



de-randomizer (as depicted in Figure 1). The SNG is used to convert the deter-

ministic binary value into stochastic bit-streams by using the (pseudo) random

number generator and a comparator [Lifeng and Chakrabarti 2013]. Meanwhile,

the de-randomizer, which is usually a binary counter, is used to decode the out-

put bit-stream back into deterministic binary value. The SCEs are the arithmetic

operators such as the multiplier, adder or subtractor which are computed using

SC.

Multiplication of two inputs streams, which is computational intensive in

conventional signed binary computing, can be performed using single XNOR

gate in SC. Assuming that the stochastic input bit-streams, X1 and X2 are

suitably uncorrelated, the output for their multiplication, Y , is derived as,

y = P (Y = 1)

= P (X1 = 1)P (X2 = 1)

+(1− P (X1 = 1))(1− P (X2 = 1))

SC multiplication in bipolar format is clearly a logical XNOR operation between

input bit-streams, X1 and X2 in digital circuit. For unipolar format, the multi-

plication is performed using a logical AND operation instead. SC multiplier for

both unipolar and bipolar formats are as depicted in Figure 2.

Addition in SC is performed using a special operation, termed as scaled

addition. The addition is scaled such that the value always lies between the

probability interval [0, 1]. With S is a constant scale, the sum of two independent

stochastic bit-streams X1 and X2, Y , is defined as,

y = P (Y = 1)

= P (S = 1)P (X1 = 1) + (1− P (S))(P (X2 = 1))

= SX1 + (1− S)X2

Thus, multiplexer with conditional select line S, set as P (S) = 1

2
can be used

to realize the scaled addition of two stochastic bit-streams in digital circuit.

Subtraction in SC is similar to the adder except that the scaled substractor

requires an additional inverter and such processing is only applicable in bipolar

format. Both the SC scaled adder and scaled substractor are illustrated in Figure

3.

Generally, through SC, arithmetic operations can be efficiently computed in

simple circuit using standard logic elements. Thus, realization of an SC system

is in fact very low in hardware cost.

594 Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...



Figure 1: General Architecture of Stochastic Computing (SC) system.

595Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...



Figure 2: Stochastic Multiplier for (i) Unipolar and (ii) Bipolar rformats.

Figure 3: Stochastic Scaled Adder/Substractor

4 Spiking Neural P (SN P) Systems

An SN P system degree m ≥ 1 is a construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where

– O = {a} is a singleton alphabet (a denotes spike);

– σ1, σ2, . . . , σm are neurons of the form σi = (ni, Ri) with 1 ≤ i ≤ m, where

(1) ni ≥ 0 is the number of spikes initially placed in σi;

(2) Ri is a finite set of rules to process information of the following forms:

– Spiking rule: E/ac → ap; d, where E is a regular expression over {a},

c ≥ p ≥ 1 and d ≥ 0;

– Forgetting rule: as → λ with s ≥ 1 and as /∈ L(E) ∪ L(E′) for any

any spiking rule E/ac → ap; d and request rule E′/aq ← ar;

– syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} is the set of synapses between neurons,

with restriction (i, i) /∈ syn (no self-loop synapse);

– in, out ∈ {1, 2, . . . ,m} indicate the input and output neuron; where the input

neuron can read spike trains from the environment, and the output neuron

can emit spikes to the environment.

596 Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...



The spiking rule from any Ri of the form E/ac → ap; d with c ≥ p ≥ 1 is

called an extended spiking rule or extended rule; if p = 1, the rule is called a

standard spiking rule or standard rule. If L(E) = {ac}, the rule can be simply

written as ac → ap; d; in addition, if d = 0, the rule can be simply written as

ac → ap.

Spiking rules are used as follows. If the neuron σi contains k spikes, and

ak ∈ L(E), k ≥ c, then spiking rule E/ac → ap; d ∈ Ri can be applied. By

using the rule, neuron σi fires with consuming c spikes (k − c spikes remain

in the neuron) and sends p spikes to its neighboring neurons (having synapses

connections) after d time units (as usual in membrane computing, a global clock

is assumed, marking the time for the whole system, hence the functioning of the

system is synchronized). If d = 0, then the p spikes are emitted immediately; if

d = 1, then the p spikes will be emitted one time unit later, etc. In general, if the

rule is used in step t and d ≥ 1, then in steps t, t+1, . . . , t+ d− 1 the neuron is

in close status (this corresponds to the refractory period from neurobiology), so

that it cannot receive new spikes (if a neuron has a synapse to a closed neuron

and tries to send several spikes along it, then these particular spikes are lost).

In the step t+d, the neuron emits the p spikes to each of its neighboring neuron

and becomes again open, so that it can receive spikes and may fire again in step

t + d + 1 with applying the rule. Because two spiking rules, E1/a
c1 → ap1 ; d1

and E2/a
c2 → ap2 ; d2, can have L(E1) ∩ L(E2) 
= ∅, it is possible that two or

more spiking rules can be used in a neuron at some moment, while only one of

them is chosen non-deterministically to apply.

It is important to notice that the applicability of the spiking rules are con-

trolled by checking the number of spikes contained in the neuron against a regular

expression associated with the rule. The regular expressions associated with the

rules can be considered as the circumstance for the application of the rules.

The rule of the form as → λ is called a forgetting rule, by which a pre-

defined number of spikes will be removed out of the neuron (i.e., removed from

the system). It has as /∈ L(E)∪L(E′) for any any spiking rule E/ac → ap; d and

request rule E′/aq ← ar, which indicates when a forgetting rule can be used, no

spiking and request rule is applicable.

The configuration of the system is described by both the number of spikes

associated with each neuron and by the number of steps to wait until it becomes

open (this number is zero if the neuron is already open). Using the rules as

described above, we can define transitions among configurations. Any sequence

of transitions starting from the initial configuration is called a computation. A

computation, starting from reading spikes through input neurons, finally halts

if it reaches a configuration where no rule in the neuron can be used. With

any computation, halting or not, it is associated a spike train, that is, a binary

sequence with occurrences of 1 indicating time instances when the output neuron

597Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...



emits a spike. The spike train can be taken as the computation result of the

system.

5 A New Model: Stochastic Scaled Addition using SN P
System

In this section, a new model of computing x + y = �x+y

2

 (stochastic scaled

addition) by SN P systems is given, where x and y stochastic bit-streams (in

binary form) with length n. The system is shown in Figure 4.

a→ a

Input1

a→ a

Input2

an+j → aj

j = 1, 2, . . . , n

1

an+j′ → aj
′

j′ = 1, 2, . . . , n

2

an

an → an;n

3

a2k+1/ak → a

a2k/ak → a

k = 1, 2, . . . , �n
2
�

a→ λ

Out

x y

Figure 4: An SN system Π computing x+ y = �x+y

2



Initially, all the neurons have no spike inside, with the exception that neuron

σ3 holds n spikes. It fires by using spiking rule an → an;n and produces n spikes,

but emits the n spikes to neurons σ1 and σ2 after n steps, i.e., at step n, due to

the delay n.

Assume stochastic numbers x and y are of the forms x = x1x2 . . . xn and

y = y1y2 . . . yn with xi, yi ∈ {0, 1}. The value represented by x is

∑
n

i
xi

n
and y

is associated with value

∑
n

i
yi

n
. The two spike trains can be read as spike trains

through input neurons σInput1 and σInput2 accordingly. The process of reading

spike train x through input neuron σInput1 is as follows, which is assumed starting

at the very beginning. If x1 = 1, neuron σInput1 receives one spike from the

environment at step 1. With the spike, neuron σInput1 fires and sends one spike

598 Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...



to neuron σ1. If x1 = 0, neuron σInput receives no spike from the environment

at step 1. Similar cases happens at steps 2, 3, . . . , n. After n steps (all the bits

have been read), neuron σ1 has a number of spikes which is equivalent with the

number of bits with value 1 in x, at most n (in case that every bit of x is 1).

This happens also to neuron σ2 with accumulate a certain number of spikes (the

number of bits with value 1 in y), after input neuron σInput2 reading spike train

y. With spikes less than n, neurons σ1 and σ2 keep inactive for no rule can be

used.

At step n+ 1, neuron σ3 emits the produced n spikes to each of neurons σ1

and σ2, such that the two neurons will fire in the next step with using spiking

rules an+j → aj and an+j′ → aj
′

. Neuron σ1 sends j spikes and neuron σj′ sends

j′ spikes to neuron σout. Note that, number j is exactly the number of bits with

value 1 in x, and j′ is the number of bits with value 1 in y. In this way, neuron

σout accumulate j + j′ spikes inside, which can be odd or even number.

With spiking rules a2k+1/ak → a and a2k/ak → a with k = 1, 2, . . . , �n
2
�

in neuron σout, it is not hard to find that neuron σout will emit � j+j′

2

 spikes.

Hence, the spike train generated by the system Π contains � j+j′

2

 bits with value

be 1, which is exactly the value of �x+y

2

.

6 Discussion and Future Works

Today’s integration circuits are built using silicon technologies with deterministic

computation which are sensitive towards noises and uncertainties often result in

instability and unreliability in digital systems. The problem is further amplified

as the semiconductor device fabrication node is getting smaller and smaller. This

issues has led to the need of fault tolerant computational model.

In this work, a new computational model that performs non-deterministic

addition through SC is constructed using SN P systems. Performing basic arith-

metic operations using SN P systems is no longer new in the literature. How-

ever, to the best of our knowledge, this is the first work to construct stochastic

scaled adder using SN P systems. This non-deterministic computation is able

to compute arithmetic operations more efficiently compared to the conventional

deterministic computing. Therefore, the resultant SN P system is observed to

be relatively small and simple in its structure.

To be exact, the proposed stochastic scaled addition using SN P systems

is consisted of 6 neurons where two specified neurons are use for inputting the

addends and one neuron is used for outputting the obtained result. In other

words, only 3 neurons are required to perform the computation.

In comparison to the deterministic adder modeled using SN P systems, such

as reported in [Zeng et al. 2012,Tian et al. 2016], the system is composed of 10

neurons. Furthermore, in the same work, the subtractor system is different from

599Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...



the adder system [Zhang et al. 2016]. The proposed SN P subtractor system is

more complex with 12 neurons in total. On the other hand, in SC, scaled adder

and scaled substractor shared the same computation in bipolar format except

that one of the inputs needs to be inverted (refer Figure 3). This implication

is important in IC design as this enable resource sharing and hence promote

effective hardware size reduction.

Overall, the aim of this work is to deploy SC which computes arithmetic

operation probabilistically (results in high fault tolerance) on a bio-inspired sys-

tem; the SN P systems. SN P spiking rules are applied and subjected to the

neuron spiking activities only and thus the system accuracy will not be affected

by the correlation or the randomness of the processing data. As an end result,

a stochastic scaled addition which is smaller in its SN P system structure is

realized and presented in this study.

The concept presented in this research is still at the early stage of investiga-

tion, where there are several issues and problems that ought to be put into con-

siderations. A potential next research direction would be to model a stochastic

multiplier in SN P systems. Both multipliers and adders are needed to construct

the inner-product core, which is the main computational unit in FIR and IIR

digital filter designs. Therefore, it would be interesting to study on the feasibility

to model a digital filter using SN P systems.

Acknowledgments

The authors thank Tao Song for his valuable comments and suggestions to

this work during his visiting fellowship at Swinburne University of Technology

Sarawak Campus.

References

[Adl et al. 2010] Adl,A., Badr,A., and Farag, I. Towards a spiking neural P systems
OS, arXiv preprint arXiv:1012.0326.

[Alaghi and Hayes 2013] Alaghi, A. and Hayes, J.-P. “Survey of stochastic comput-
ing,” ACM Trans. Embed. Comput. Syst., vol. 12, no. 2s, pp. 92:1–92:19, May 2013.

[Alaghi et al. 2013] Alaghi, A., Li, C. and Hayes, J.-P. “Stochastic circuits for real-
time image-processing applications,” in Design Automation Conference (DAC),
2013 50th ACM/EDAC/IEEE, May 2013, pp. 1–6.

[Brown and Card 2001] Brown, B.-D. and Card, H.-C. “Stochastic neural computa-
tion. I. Computational elements,” Computers, IEEE Transactions on, vol. 50, no.
9, pp. 891–905, Sep 2001.

[Cavaliere et al. 2009] Cavaliere, M., Ibarra, O. H., Păun, G., Egecioglu, O., Ionescu,
M. and Woodworth, S. Asynchronous spiking neural P systems, Theoretical Com-
puter Science 410 (24) (2009) 2352–2364.

[Chang and Parhi 2013] Chang, Y.-N. and Parhi, K.-K. “Architectures for digital
filters using stochastic computing,” in Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, May 2013, pp. 2697–2701.

600 Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...



[Chen et al. 2007] Chen, H., Freund, R., Ionescu, M., Păun, G. and Pérez-Jiménez,
M. J. On string languages generated by spiking neural P systems, Fundamenta
Informaticae 75 (1) (2007) 141–162.

[Dinu et al. 2002] Dinu, A., Cirstea, M.-N. and McCormick, M. “Stochastic implemen-
tation of motor controllers,” in Industrial Electronics, 2002. ISIE 2002. Proceedings
of the 2002 IEEE International Symposium on, 2002, vol. 2, pp. 639–644 vol.2.

[Gaines 1967] Gaines, B. R. “Stochastic computing,” in Proceedings of the April 18-
20, 1967, Spring Joint Computer Conference, New York, NY, USA, 1967, AFIPS
’67 (Spring), pp. 149–156, ACM.

[Ibarra et al. 2009] Ibarra, O. H., Păun, A. and Rodŕıguez-Patón, A. Sequential SNP
systems based on min/max spike number, Theoretical Computer Science 410 (30)
(2009) 2982–2991.

[Ionescu et al. 2006] Ionescu, M., Păun, G., and Yokomori, T. Spiking neural P sys-
tems, Fundamental Informaticae 71 (2) (2006) 279–308.

[Song and Pan 2016] Song, T., Pan, Z. Wong, D.M., Wang, X., Design of Logic Gates
Using Spiking Neural P Systems with Homogeneous Neurons and Astrocytes-like
Control, Information Sciences, 372, (2016) 380-C391

[Ishdorj et al. 2010] Ishdorj,T.-O., Leporati, A., Pan, L., Zeng, X. and Zhang, X. De-
terministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-
computed resources, Theoretical Computer Science 411 (25) (2010) 2345–2358.

[Leporati et al. 2009] Leporati, A., Mauri, G., Zandron, C., Păun, G. and Pérez-
Jiménez, M. J. Uniform solutions to SAT and Subset Sum by spiking neural P
systems, Natural Computing 8 (4) (2009) 681–702.

[Lifeng and Chakrabarti 2013] Lifeng, M. and Chakrabarti, C. “A parallel stochastic
computing system with improved accuracy,” in Signal Processing Systems (SiPS),
2013 IEEE Workshop, October 2013, pp. 195–200.

[Li and Lilja 2011] Li, P. and Lilja, D.-J. “Using stochastic computing to implement
digital image processing algorithms,” in Computer Design (ICCD), 2011 IEEE 29th
International Conference on, Oct 2011, pp. 154–161.

[Liu and Parhi 2015] Liu, Y. and Parhi, K.-K. “Lattice FIR digital filter architectures
using stochastic computing,” in Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on, April 2015, pp. 1027–1031.

[Maass 1997] Maass, W. Networks of spiking neurons: the third generation of neural
network models, Neural Networks 10 (9) 1659–1671.

[Moons and Verhelst 2014] Moons, B. and Verhelst, M. “Energy-efficiency and ac-
curacy of stochastic computing circuits in emerging technologies,” Emerging and
Selected Topics in Circuits and Systems, IEEE Journal on, vol. 4, no. 4, pp. 475–486,
Dec 2014.

[Naderi et al. 2011] Naderi, A., Mannor, S., Sawan, M. and Gross, W.-J. “Delayed
stochastic decoding of LDPC codes,” Signal Processing, IEEE Transactions on,
vol. 59, no. 11, pp. 5617–5626, Nov 2011.

[Pan and Păun 2009] Pan, L. and Păun, G. Spiking neural p systems with anti-spikes,
International Journal of Computers, Communications & Control, IV (3) (2009) 273–
282.

[Pan et al. 2009] Pan,L., Păun, G. and Pérez-Jiménez, M. J. Spiking neural P systems
with neuron division and budding, Science China Information Sciences 54 (8) (2011)
1596–1607.

[Parhi and Liu 2014] Parhi, K.-K. and Liu, Y. “Architectures for IIR digital filters
using stochastic computing,” in Circuits and Systems (ISCAS), 2014 IEEE Inter-
national Symposium on, June 2014, pp. 373–376.

[Păun and Păun 2007] Păun, A. and Păun, G. Small universal spiking neural P sys-
tems, BioSystems 90 (1) (2007) 48–60.

[Păun 2000] Păun, G. Computing with membranes, Journal of Computer and System
Sciences 61 (1) (2000) 108–143.

[Păun 2002] Păun, G.Membrane computing: an introduction, Springer, 2002.

601Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...



[Păun et al. 2010] Păun, G.,Rozenberg, G., and Salomaa, A. The Oxford handbook of
membrane computing, Oxford University Press, 2010.

[Qian et al. 2011] Qian, W.,Li, X.,Riedel, M.-D., Bazargan, K., and Lilja, D. J. “An
architecture for fault-tolerant computation with stochastic logic,” Computers, IEEE
Transactions on, vol. 60, no. 1, pp. 93–105, Jan 2011.

[Saraf et al. 2014] Saraf, N., Bazargan, K., Lilja, D.-J. and Riedel, M.-D. “IIR filters
using stochastic arithmetic,” in Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, March 2014, pp. 1–6.

[Song et al. 2016] Song, T., Gong, F., Liu, X., Zhao, Y. and Zhang, X. Spiking Neural
P SystemsWith White Hole Neurons, IEEE Transactions on NanoBioscience 15 (07)
(2016) 666–673.

[Song et al. 2013] Song, T., Pan, L., Jiang, K., Song, B. and Chen, W. Normal forms for
some classes of sequential spiking neural P systems, IEEE Transactions on NanoBio-
science 12 (3) (2013) 255–264.

[Song and Pan 2015] Song,T. and Pan,L. Spiking neural p systems with rules on
synapses working in maximum spikes consumption strategy, IEEE Transactions on
NanoBioscience 1 (2015) 38–44.

[Song and Pan 2016] Song, T. and Pan, L. Spiking neural P Systems with Request
Rules, Neurocomputing 193 (2016) 193–200.

[Song et al. 2012] Song,T., Pan, L. and Păun, G. Asynchronous spiking neural P sys-
tems with local synchronization, Information Sciences 219 (2012) 197–207.

[Song et al. 2014] Song, T., Pan, L. and Păun, G. Spiking neural P systems with rules
on synapses, Theoretical Computer Science 529 (2014) 82–95.

[Song et al. 2009] Song,T., Wang, X., Zhang, Z. and Chen, Z. Homogenous spiking
neural P systems with anti-spikes, Neural Computing and Applications, (2009).

[Wang et al. 2016] Wang, X., Song, T., Gong, F. and Zheng, P. On the Computational
Power of Spiking Neural P Systems with Self-Organization, Scientific reports 6-
27624 (2016).

[Wang et al. 2010] Wang, T., Zhang, G., Zhao, J., He, Z., Wang,J. and Pérez-Jiménez,
M. J. Fault diagnosis of electric power systems based on fuzzy reasoning spiking
neural P systems, IEEE Transactions on Power Systems 30 (3) (2014) 1182–1194.

[Zeng et al. 2012] Zeng, X., Song, T., Zhang, X. and Pan, L. Performing four ba-
sic arithmetic operations with spiking neural P systems, IEEE Transactions on
NanoBioscience 11 (4) (2012) 366–374.

[Zeng et al. 2009] Zeng, X., Zhang, X. and Pan,L. Homogeneous spiking neural P sys-
tems, Fundamental Informaticae 97 (1) (2009) 275–294.

[Zhang et al. 2014] Ye Tian, Ran Cheng, Xingyi Zhang, Fan Cheng, Yaochu Jin, An
indicator based multi-objective evolutionary algorithm with reference point adapta-
tion for better versatility, IEEE Transactions on Evolutionary Computation, 2017,
in press.

[Zhang et al. 2016] Lei Zhang, Hebin Pan, Yansen Su, Xingyi Zhang, Yunyun Niu, A
mixed representation based multi-objective evolutionary algorithm for overlapping
community detection, IEEE Transactions on Cybernetics, 2017, 47(9): 2703-2716.

[Tian et al. 2016] Ye Tian, Handing Wang, Xingyi Zhang*, Yaochu Jin. Effectiveness
and efficiency of non-dominated sorting for evolutionary multi- and many-objective
optimization, Complex & Intelligent Systems, 2017, in press.

[Zhang et al. 2016] Xingyi Zhang, Ye Tian, Ran Cheng, Yaochu Jin. A decision vari-
able clustering based evolutionary algorithm for large-scale many-objective opti-
mization. IEEE Transactions on Evolutionary Computation, 2016, in press.

602 Wong M.M., Wong M.L.D.: Stochastic Computing with Spiking Neural ...


