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Abstract: In this paper, an adaptive membrane evolutionary algorithm (AMEA) is proposed, 
which combines a dynamic membrane structure and a differential evolution with the adaptive 
mutation factor. In the AMEA, the feasibility proportion method is used to dynamically adjust 
the size of the elementary membrane in the optimization process. The results of the 
experimental indicate that the proposed algorithm outperforms other evolutionary algorithms 
on five well-known constrained engineering optimization problems. 
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1 Introduction 

In real engineering applications, such as automobile cab layout, engineering design, 
and structural optimization, many optimization problems need to ensure that the 
feasible solutions satisfy many constraints. Thus, constrained optimization problems 
(COPs) have come to the foreground in recent years. Generally, COPs can be 
formulated as follows: 
 
Minimize 

)(Xf  

Subject to 
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where n
n ExxxX  ),...,,( 21  denotes an n-dimensional vector that satisfies 

+l m  constraints and minimizes the objective function f(X); 0)( Xgi and 

0)( Xhj are the ith inequality constraint and the jth equality constraint, 

respectively; 1 2( , , ..., )nL l l l is the lower bound vector, and 

),...,,( 21 nuuuU   is the upper bound vector. 

A number of engineering design optimization problems can be formulated as 
COPs. However, solving such problems is computationally complex and traditional 
optimization techniques are currently inadequate. In this study, an adaptive membrane 
evolutionary algorithm combining dynamic membrane structure and differential 
evolution with an adaptive mutation factor is developed to solve constrained 
engineering optimization problems (CEOPs). Experimental results on five well-
known CEOPs indicate that the proposed algorithm outperforms other evolutionary 
algorithms.   

The remainder of this paper is organized as follows. In section 2, a brief review of 
the literature is presented. Section 3 proposes an adaptive membrane evolutionary 
algorithm for CEOPs. In section 4, the simulation results and analyses are reported. 
Section 5 concludes the paper and describes future work. 

2 Related work 

In the past decade, various optimization algorithms have been proposed to solve 
constrained engineering design problems. [Lee et al., 05] proposed a new meta-
heuristic algorithm based on the harmony search to solve CEOPs. [Wang et al., 08] 
developed a new ranking selection-based particle swarm algorithm to solve 
optimization problems in engineering design. [Wang, 10] applied level comparison to 
a simple differential evolution algorithm to solve CEOPs. [Zhao, 12] developed a 
hybrid genetic algorithm and applied the flexible allowance technique to this 
algorithm with the aim of optimizing constrained engineering design problems. 
[Kashan, 11] adapted a league championship algorithm (LCA) for solving mechanical 
engineering design problem. [Melo, 13] put forward a multi-view differential 
evolution algorithm that applied mutation strategies to solve constrained engineering 
design problems. [Bulatovic, 14] proposed an improved cuckoo search (ICS) 
algorithm to solve CEOPs, and this algorithm gave better solutions than the standard 
CS algorithm. [Xiao et al., 16] developed an improved membrane algorithm based on 
the P system, particle swarm optimization and differential evolution (PSO/DE) for 
solving CEOPs. [Askarzadeh et al., 16] put forward a novel crow search algorithm to 
solve CEOPs. [Kohlia et al., 17] applied chaos theory to the gray wolf optimizer 
algorithm with the aim of optimizing the constrained engineering design. 

Natural computing is a computational process inspired by nature, and has been 
intensively studied in recent years. Types of natural computing include membrane 
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computing [Zhang, 15(a); Song, 14; Pan, 16; Song, 17], DNA computation [Xu, 16], 
evolutionary algorithms [Zhang, 15(b, c)-16(a, b)], and neural computing [Zeng, 14(a, 
b, c); Song, 15]. As a novel paradigm of natural computing, membrane computing has 
been developed rapidly at the theoretical level and has many applications to various 
complex problems [Pan, 10; Wang, 10; OnoltIshdorj, 10; Pan, 11; Niu, 11]. Inspired 
by membrane computing, [Nishida, 04(a, b)] made the first attempt in this direction 
and developed a nest-like membrane algorithms to solve TSP. After Nishida, [Huang, 
et al., 06-07] attempted to apply the membrane algorithm to solve objective 
optimization problems. [Zhao, 11] proposed a membrane evolutionary algorithm 
(MEA) with the aim of solving gasoline blending and scheduling problems. [Idowu et 
al., 13] attempted to build a new robust membrane algorithm to optimize anomaly-
based intrusion detection system. [Wang et al., 13] developed a novel membrane 
algorithm based on the tissue-like membrane system with a ring-shaped topology 
structure to optimize infinite impulse response design. [Zhang et al., 13] proposed a 
hybrid method based on tissue membrane systems and differential evolution to 
optimize the parameters in constrained manufacturing problems. [Yan et al., 14] 
developed a novel approach based on membrane computing to optimize the attribute 
weights. [Peng, 15] proposed a membrane clustering algorithm using hybrid 
evolutionary mechanisms to address data clustering problem. [Zhang(C) et al., 16] 
proposed a novel multi-objective membrane algorithm guided by the skin membrane. 
[Deng et al., 16] developed a novel approach based on the membrane computing and 
pigeon-inspired optimization algorithm to solve the parameter design problem of 
brushless direct current moto. [Singh and Deep, 16] presented a new membrane 
algorithm based on cell-like P-systems and PSO to solve Sudoku.  

In the common MEA, the size of the elementary membrane is usually a constant. 
However, there is no theoretical basis. In recent years, the random method is used to 
dynamically adjust the size of the elementary membrane in the optimization process, 
but there is a lack of the information of the current populations to guide the next 
search. In this paper, the feasibility proportion method is used to adaptively adjust the 
size of the elementary membrane in the optimization process, and an adaptive 
membrane evolutionary algorithm is proposed to solve CEOPs. This algorithm 
combines the dynamic structure of membrane computing and the differential 
evolution (DE) with the adaptive mutation factor. 

3 Adaptive membrane evolutionary algorithm for CEOPs 

3.1 P systems 

This section provides a brief background on cell-like P systems. Generally, the 
essential constituent elements of P systems include membrane structure, rules and 
objects. The membrane structure is a hierarchical arrangement of membranes. Inside 
of this structure is a main membrane, called the skin, which contains several 
membranes to delimit compartments where multisets of objects are located. The 
specific membrane structure is shown in Figure 1. If there is not any other membrane 
inside a membrane, the membrane is defined as an elementary membrane. The space 
between each adjacent pair of membranes is called a region. There are a series of 
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rules regarding the communication and evolution of the objects within the regions and 
compartments of a membrane. Generally, a P system is defined as follows [Xiao, 16]. 
 

1 1( , , , ..., , , ..., )n nO L L R R                                   (2) 

where 
 
1) 1n  is the degree of P system, 
2) O is the alphabet of objects, 
3)  represents a membrane structure, 

4) )1( niLi   are sets of strings over O, and 

5) (1 )iR i n  are the developmental rule sets of membrane computing. There are 

five main rules as follows: 

(a)   *
1 2 1 2, {1, 2,..., }, ,i i

s s i n s s O    

(Evolution rules: The object is modified by using various evolution operators.) 

(b) *
1 2 1 2[ ] [ ] , {1,2,..., }, ,i i i is s i n s s O    

(In-communication rules: an object is sent into the membrane.) 

(c) *
1 2 1 2[ ] [ ] , {1,2,..., }, ,i i i is s i n s s O    

(Out-communication rules: an object is sent out from the membrane) 

(d) *
1 2 1 2 1 2[ ] [ ] [ , ] , {1,2,..., }, ,i i i i i is s s s i n s s O    

(Merging rules: two membranes are merged into a single membrane.) 

(e) [ ] [ ] [ ] , ,i i i i i iW U W U W U O    

(Separation rules: An elementary membrane is separated into two membranes.) 
 
 

 

Figure 1: The membrane structure 

In P systems, different computational processes correspond to different 
evolutionary rules. However, the implementation of these rules follows the principles 
of non-determinacy (system random selection rules) and maximum parallelism. In the 
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initial configuration, the rules are implemented in a maximally parallel and non-
deterministic manner. The configuration of a P system is updated once every time the 
rules are implemented. When no rules can be used in any region, the system will halt 
and the configuration will be produced. Then, the output result or a multiset of objects 

can be obtained in region 0i .  

3.2 Differential evolution  

Differential evolution (DE) was first mentioned by [Storn, 97]. DE is a population-
based evolutionary algorithm that is used to solve multidimensional optimization 
problems involving continuous variables. DE has been extended to address integer, 
discrete and mixed-integer problems. Compared with other evolutionary algorithms, 
DE has a simple structure, is easy to use, is quick to compute, and is robust. The main 
idea of DE is to obtain a difference vector by subtracting two different individuals, 
which are randomly selected from the population. Next, add the difference vector to a 
third vector to obtain the mutated vector. Then, compare the mutated individual with 
the third individual. If the mutated individual is better, it is accepted into the next 
generation. The pseudocode of DE is shown in Algorithm 1. 

Like other heuristic algorithms, DE is sensitive to its tuning parameters. The 
proper parameters are essential to the performance of the algorithm. In DE, the 
mutation factor F controls the scaling ratio of the differential vector, and can improve 
the local exploitation and global exploration of DE. In the classical DE, F is a 
constant and cannot reflect the actual search process. In the paper, the self-adaptive 
parameter-setting technique of the mutation factor is defined as follows [Wang, 15]. 

max

max

1
1

min max min( )
Iter

Iter tF F F F e


                               （3） 

where max
Iter and t are the maximum and current iteration number, respectively. 

minF and 
maxF  denote the minimum and maximum value of the mutation factor, 

respectively.  
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3.3 Adaptive membrane evolutionary algorithm 

This section will introduce our proposed algorithm, AMEA, which combines P 
systems and adaptive differential evolution. The AMEA uses a dynamic P systems-
like framework by implementing the merging rule and separation rule of membrane 
computing. In each iteration, the size of the elementary membrane can adjust 
adaptively by using the feasibility proportion of the current population. The 
algorithmic flowchart of the AMEA is demonstrated in Figure 2.  
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Construct the membrane structure
and set the parameters, t=1

Evaluate the fitness each individual
and compute the number of feasible

solutions

Implement local search in each
elementary membrane

Implement the merging rule

Implement global search in the
elementary membrane mglobal,

evaluate the fitness

Is the stopping
condition met?

Output and save the best individual

No

Yes

Rand<(NP-NF)/NP

Implement the separation rule,
mglobal is separated into mt

elementary membrane

Implement the in-communication
rule,  all individuals are sent to mt

elementary membrane

No

t=t+1

 

Figure 2: The flowchart of the AMEA  

Next, we describe the steps of the adaptive membrane evolutionary algorithm in 
details. 

Step 1: Initialize the parameters of the AMEA, including the population size NP, the 

crossover rate CR, the scaling factor R, the max number of iteration max
Iter , 

and the dynamic membrane structure 0 1 1 2 2 0[ [ ] [ ] [ ] ]
t tm m  with tm  

elementary membranes and a skin membrane 0 at iteration t=1, where m is an 
unfixed number in the optimization process. 
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Step 2: In each elementary membrane, generate / tNP m    individuals by randomly 

and uniformly sampling search space, evaluate the fitness and the degree value 
of constraint violation for each individual, and compute the number of feasible 
solutions NF in all elementary membranes. 

Step 3: If rand< (NP-NF)/NP, the evolutionary rule based on the adaptive differential 
evolution is simultaneously implemented in each elementary membrane, and 
the individuals are updated inside. Otherwise, go to Step 4.  

Step 4: Implement the merging rule. tm  elementary membranes are merged into a 

single membrane globalm ; the individuals of each elementary membranes are 

put into the elementary membrane globalm  together. 

Step 5: In globalm , implement the adaptive differential evolution for all individuals, 

evaluate the fitness and the degree value of constraint violation for each 
individual, and compute the number of feasible solutions NF. 

Step 6: The out-communication rule is implemented, and a copy of the current best 

individual in the elementary membrane globalm  is sent to the skin membrane. 

Step 7: If the stopping criterion is met, stop and output the best individual. Otherwise, 
go to Step 8.  

Step 8: Implement the separation rule. The elementary membrane globalm  is 

separated into tm  elementary membranes. In the paper, tm is defined as 

follows: 

 max max min( )t

NP NF
m m m m

NP

      
                （4） 

In above equation, tm  is the number of elementary membranes at iteration t; 

maxm  and minm  are the maximum and minimum number of elementary 

membranes, respectively.  

Step 9: Implement the in-communication rule. The individuals selected in elementary 

membrane globalm are sent into tm elementary membrane. The sending 

process is defined as follows: (1) Randomly select an individual from the 

elementary membrane globalm ; (2) Find / 1tNP m     nearest individuals 
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of the selected individual using the minimum Euclidean distance; (3) 

Implement the in-communication rule and / tNP m   individuals are sent to 

an elementary membrane. Repeat the above processes until all individuals are 
sent into each elementary membrane. Set 1t t  , and return to Step 3. 

4 Simulation results 

To evaluate the effectiveness of the proposed algorithm, five well-known engineering 
optimization examples [Sadollah, 13] are considered. In the experiment, the AMEA is 
executed in Matlab 7.0 on a PC with Intel CPU 3.6 GHz 12GB RAM. Each example 
is performed 50 times, independently. The size of the population is 60; the maximum 
number of iteration is 5000; the crossover rate CR is 0.1. The maximum and 

minimum number of the elementary membrane are 10 and 5, respectively. minF  and 

maxF  of ADE are set 0.2 and 0.9, respectively.  

4.1 Welded beam design problem 

In 2000, [Coello et al., 00] first proposed the welded beam design problem (WBDP). 
The objective is to minimize the cost of a welded beam subject to constraints, 
including end deflection (δ) in the beam, shear stress (τ), buckling load (Pb) of the bar, 
bending stress (σ) of the beam and side constraints. Four design variables of this 
problem are shown in Figure 3, namely, h, l, t and b.  
 

 

Figure 3: Welded beam design problem 

The problem can be formulated as follows: 
Minimize: 

21.10471 0.04811 (14 )f lh tb l                                                   (5) 
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Subject to: 
 

max 0                                                                                                 (6) 

max 0                                                                                               (7) 

0h b                                                                                                     (8) 
20.10471 0.04811 (14 ) 5 0h tb l                                                  (9) 

0.125 0h                                                                                           (10) 

max 0                                                                                               (11) 

0cP P                                                                                                  (12) 

0.1 , 2h b                                                                                            (13) 

0.1 , 10l t                                                                                            (14) 

where:  

    2 2( ) 2 ( ) ,     ,     
2 2

l P MR

R Jhl
                           (15) 

( )
2

l
M P L                                                                                           (16) 

2
2( )

4 2

l h l
R


                                                                                    (17) 

2
22 2 ( )

12 2

l h t
J hl

      
   

                                                               (18) 

2

6PL

bt
                                                                                                      (19) 

 
3

3

4PL

Ebt
                                                                                                     (20) 

2 6

2

4.013 ( / 36)
(1 )

2 4c

E t b t E
P

L L G
                                              (21) 

6 66000 lb,    14 in,    30 10  psi,     12 10  psiP L E G        (22) 

 

max max max13600 psi,    30000 psi,    0.25 in                        (23) 

The best solution generated by the AMEA is ( , , , )h l t b =(0.20572963978, 

3.47048866562, 9.03662391035, 0.20572963978). The statistical simulation results 
are listed in Table 1. From Table 1, it can be observed that the proposed algorithm can 
find better solutions than those found by GA3 [Coello, 00], GA4 [Coello, 02], SC 
[Ray, 03], PSO-DE [Liu, 10], CPSO [He, 07(a)], HPSO [He, 07(b)], UPSO 
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[Parsopoulos, 2005], (μ + λ)-ES [Mezura-Montes, 05], and MBA [Sadollah, 13], 
except for IDMEA [Xiao, 2013] in terms of Best. However, the AMEA can obtain 
better values than those by the IDMEA in terms of Worst, Mean and Std. 
 

Algorithm Best  Mean Worst Std. 

GA3 1.748309 1.771973 1.785835 1.12e-02 

SC 2.3854347 3.0025883 6.3996785 9.60e-01 

GA4 1.728226 1.792654 1.993408 7.47e-02 

PSO-DE 1.724852 1.724852 1.724852 6.70e-16 

CPSO 1.728024 1.748831 1.782143 1.29e-02 

HPSO 1.724852 1.749040 1.814295 4.01e-02 

UPSO 1.92199 2.83721 N.A. 0.683 

(μ + λ)-ES 1.724852 1.777692 N.A. 8.80e-02 

MBA 1.724853 1.724853 1.724853 6.94e-19 

IDMEA 1.7248523 1.7248524 1.7248526 6.58e-08 

AMEA 1.7248523 1.7248523 1.7248523 1.0e-15 

Table 1: Comparison of results for the welded beam problem 

4.2 Three-bar truss design problem 

The three-bar truss design is one of the benchmarks for constrained engineering 
design problem and aims to minimize the volume of a truss subjected to constraints 
on stress (σ) by adjusting cross sectional areas. There are two decision variables as 
shown in Figure 4. 
The problem can be formulated as follows： 
Minimize: 

    2 1( ) ( 2 2 )f x x x l                                                                         (24) 

Subject to: 
 

1 2
2
1 1 2

2
0

2

x x
P

x x x


 


                                                                          (25) 

2
2
1 1 2

0
2 2

x
P

x x x
 


                                                                      (26) 

2 1

1
0

2
P

x x
 


                                                                              (27) 
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1 20 , 1x x                                                                                            (28) 

where: 
2 2100 ,   2 /  2 /,l cm kN cm P kN cm                                 (29) 

 

 

Figure 4: Three-bar truss design problem 

The best solution obtained by our algorithm is (0.78867513297, 0.40824829505). 
The comparison and statistical results are shown in Table 2.  From Table 2, it can be 
noted that the AMEA can obtain better solution than those by SC [Ray, 03] and MBA 
[Sadollah, 13] in terms of Best, Worst, Mean and Std. The results obtained by the 
AMEA are the same as the results obtained by PSO-DE and DSS-MDE, but the 
AMEA shows superiority in terms of Std.  
 

Algorithm Best Mean Worst Std. 

SC 263.895846 263.903356 263.969756 1.30e-2 

DSS-MDE 263.895843 263.895843 263.895849 9.72e-7 

PSO-DE 263.895843 263.895843 263.895843 4.50e-10 

MBA 263.895852 263.897996 263.915983 3.93e-3 

IDMEA 263.895843 263.895843 263.895843 0 

AMEA 263.895843 263.895843 263.895843 3.0e-15 

Table 2: Comparison of results for the three-bar truss design problem 

4.3 Pressure vessel design problem 

In 1994, [Kannan et al., 94] proposed the pressure vessel design problem. This 
problem aims to minimize the total cost, including the cost of welding, forming and 
the materials of the pressure vessel. There are four design variables as shown in 
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Figure 5, namely, Ts (the thickness of the shell), R (the inner radius), L (the length of 
the cylindrical section of the vessel) and Th (the thickness of the head), where Ts and 
Th are integer multiplies of 0.0625 in; R and L are continuous variables. 

 

Figure 5: Pressure vessel design problem 

The problem can be formulated as follows: 
Minimize: 

2 2 20.6224 1.7781 3.1661 19.84s h s sf T RL T R LT RT              (30) 

Subject to: 

0.0193 0sT R                                                                                    (31) 

0.00954 0hT R                                                                                 (32) 

2 34
1296000 0

3
LR R                                                               (33) 

240 0L                                                                                                 (34) 

, [0,100]s hT T                                                                                         (35) 

, [10, 200]R L                                                                                        (36) 

The best solution obtained by the AMEA is (Ts, Th, R, L)=(0.8125, 0.4375, 
42.098445595, 176.636596108). The comparison and statistical results obtained for 
the pressure vessel design problem are shown in Table 3. From Table 3, it can be 
observed that our algorithm can get better results than those obtained by GA3 [Coello, 
00], GA4 [Coello, 02], CPSO [He, 07(a)], HPSO [He, 07(b)], UPSO [Parsopoulos, 05] 
in terms of Best, Mean, Worst and Std. However, the (μ + λ)-ES [Mezura-Montes, 05] 
can find better result than that obtained by our algorithm in terms of Best but not 
Mean, Worst or Std.  
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Algorithm Best Mean Worst Std. 

GA3 6288.7445 6293.8432 6308.4970 7.4133 

GA4 6059.9463 6177.2533 6469.3220 130.9297 

CPSO 6061.0777 6147.1332 6363.8041 86.45 

HPSO 6059.7143 6099.9323 6288.6770 86.20 

UPSO 6154.70 8016.37 9387.77 745.869 

(μ + λ)-ES 6059.701610 6379.938037 N.A. 210 

AMEA 6059.7143412 6075.854380 6370.779718 61.6432 

Table 3: Comparison of results for the pressure vessel problem 

4.4 Tension/compression string design problem 

In 1989, [Arora et al., 89] proposed the tension/compression string design problem.  
This problem aims to minimize the weight subject to constraints, including limits on 
the outside diameter, minimum deflection, surge frequency, shear stress, and design 
variables. There are three continuous design variables, namely, P (the number of 
active coils), D (the mean coil diameter) and d (the wire diameter), as shown in Figure 
6.  

 

Figure 6: Tension/compression string design problem 

The problem can be formulated as follows: 
Minimize: 

2( 2)f P Dd                                                                                      (37) 

Subject to:  
3

4
1 0

71785

PD

d
                                                                                    (38) 

3

3 4 2

4 1
1 0

12566( ) 5108

D dD

Dd d d


  


                                               (39) 

2

140.45
1 0

d

D P
                                                                                     (40) 
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1 0
1.5

d D
                                                                                         (41) 

[0.05, 2],   [0.25,1.3], [2,15]d D P                                       (42) 

The best solution obtained by our algorithm is (d, D, P)=(0.05168906111, 
0.35671774056, 11.2889657067). The comparison and statistical results obtained for 
the tension/compression string design problem are reported in Table 4. From Table 4, 
it can be seen that the proposed algorithm performs better than GA3 [Coello, 00], 
GA4 [Coello, 02], SC [Ray, 03], PSO-DE [Liu, 10], CPSO [He, 07(a)], HPSO [He, 
07(b)], QPSO [Coelho, 10], PSO [Coelho, 10], (μ + λ)-ES [Mezura-Montes, 05], 
MBA [Sadollah, 13] in terms of Best, Mean, Worst. The IDMEA [Xiao, 13] obtains 
the same results as that by our proposed algorithm in terms of Best, Mean, and Worst 
but not Std. 
 

Algorithm Best Mean Worst Std. 

GA3 0.0127048 0.0127690 0.0128220 3.94e-5 

SC 0.012669249 0.012922669 0.016717272 5.90e-4 

GA4 0.0126810 0.0127420 0.0129730 5.90e-5 

PSO-DE 0.012665233 0.012665244 0.012665304 1.20e-8 

CPSO 0.0126747 0.0127300 0.0129240 5.20e-4 

PSO 0.012857 0.019555 0.071802 0.011662 

HPSO 0.0126652 0.0127072 0.0127190 1.58e-5 

QPSO 0.012669 0.013854 0.018127. 0.001341 

(μ + λ)-ES 0.012689 0.013165 N.A. 3.90e-4 

MBA 0.012665 0.012713 0.012900 6.30e-5 

IDMEA 0.012665233 0.012665232 0.012665232 1.42e-10 

AMEA 0.012665232 0.012665232 0. 012665232 6.0e-14 

Table 4: Comparison of results for the tension/compression string problem 

4.5 Speed reducer design problem 

In 2005, [Mezura-Montes et al., 05] proposed the speed reducer design problem.  This 
problem aims to minimize the weight subjected to constraints, including the 
transverse defections of the shafts, the bending stress of the gear teeth, the stresses in 
the shaft and surface stress. There are seven variables as shown in Figure 7, namely, 
x1 (the face width), x2 (the module of teeth), x3 (the number of teeth in the pinion), x4 
(the length of the first shaft between bearings), x5 (the length of the second shaft 
between bearings), x6 (the diameter of first shaft), and x7 (the diameter of second 
shaft). The variable x3 is an integer.  
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Figure 7: Speed reducer design problem 

The problem can be formulated as follows: 
Minimize: 
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1 212x x                                                                                                  (52) 

6 41.5 1.9x x                                                                                      (53) 

7 51.1 1.9x x                                                                                       (54) 

1 2 3[2.6, 3.6],    [0.7, 0.8],    [17,28]x x x                                (55) 

4 5 6 1, [7.3, 8.3],    [2.9, 3.9],    [5.0, 5.5]x x x x                       (56) 

 
The best solution obtained by the AMEA is X*=(3.5, 0.7, 17, 7.3, 

7.715319911478249, 3.35021466609, 5.28665446498). The comparison and 
statistical results obtained for the speed reducer design problem are reported in Table 
5. From Table 5, it can be observed that the proposed algorithm can obtain better 
results than those obtained by SC [Ray, 03], PSO-DE [Liu, 10], HEAA [Zhang, 08], 
SBO [Ray, 03], MDE [Montes, 06], MBA [Sadollah, 13] and IDMEA [Xiao, 13] in 
terms of Best, Mean, Worst, and Std. The proposed algorithm obtains the same results 
as that by DEDS [Zhang, 08] and DELC [Wang, 10] in terms of Best, Mean, and 
Worst but not Std.  

 

Algorithm Best Mean Worst Std. 

SC 2994.744241 3001.758264 3009.964736 4.00 

PSO-DE 2996.348167 2996.348174 2996.348204 6.40e-6 

DELC 2994.471066 2994.471066 2994.471066 1.90e-12 

SBO 2994.744241 3001.758264 3009.964736 4.00e+0 

DEDS 2994.471066 2994.471066 2994.471066 3.60e-12 

MDE 2996.356689 2996.367220 N.A. 8.20e-3 

HEAA 2994.499107 2994.613368 2994.752311 7.00e-2 

MBA 2994.482453 2996.769019 2999.652444 1.56 

IDMEA 2994.476877 2994.473265 2994.471555 1.32e-03 

AMEA 2994.471066 2994.471066 2994.471066 4.00e-15 

Table 5: Comparison of results for the speed reducer problem 

5 Conclusions and Future Work 

This paper develops an adaptive membrane evolutionary algorithm that combines the 
dynamic membrane structure and the differential evolution with the adaptive mutation 
factor for solving CEOPs. The proposed hybrid method employs the feasibility 
proportion method to adjust the size of elementary membrane dynamically in the 
optimization process. Additionally, the proposed algorithm demonstrates better 
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performance than other approaches in the literature with respect to solving five well-
known engineering design optimization problems. In the future, the improved AMEA 
will be applied to solve various optimization problems in real engineering. 
Furthermore, we will extend our algorithm to solve dynamic multi-objective 
optimization problems. 
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