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Abstract: Social Spider Optimization (SSO) algorithm is a swarm intelligence optimization
algorithm based on the mating behavior of social spiders. Numerical simulation results have
shown that SSO outperformed some classical swarm intelligence algorithms such as Particle
Swarm Optimization (PSO) algorithm and Artificial Bee Colony (ABC) algorithm and so on.
However, there are still some deficiencies about SSO algorithm, such as the poor balance
between exploration and exploitation. To this end, an improved SSO algorithm named wDESSO
is proposed for global optimization, which can balance exploration and exploitation effectively.
Specifically, a weighting factor changing with iteration is introduced to control and adjust the
search scope of SSO algorithm dynamically. After social-spiders have completed their search,
a mutation operator is then suggested for jumping out of the potential local optimization, thus
can further strengthen the ability of global search. The experimental results on a set of standard
benchmark functions demonstrate the effectiveness of wDESSO in solving complex numerical
optimization problems.
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1 Introduction

Many real-world engineering problems, such as bioinformatics [Zeng et al, 2016,
Zou et al, 2016, Zeng and Zhang et al, 2016], economics [Gao et al, 2012] and man-
agement science [Kulkarni and Venayagamoorthy, 2011] are transformed to find a
potential optimal solution in feasible search space by maximizing or minimiz-
ing one objective. Among the existing methods, evolutionary computation has
become a promising tool for finding near global optimum in complex solution
space [Ju et al, 2016]. Evolutionary computation usually includes two important
computing models [James and Victor, 2015]: evolutionary algorithms(EA) and swarm
intelligence based algorithms. Specifically, in EA, each individual is mutated and
recombined with some probabilities. After that, tournament selection is adopted for
comparing arbitrary two individuals from the current population, then the individuals
with better fitness value are put into the mating pool. Several typical EAs including
genetic algorithm (GA) [Holland, 1992], evolutionary strategy (ES) [Beyer et al, 2002]
and differential evolution (DE) [Storn and Price, 1997] have been widely applied for
solving multi-objective optimization [Zhang and Tian et al, 2015, Zhang et al, 2014,
Zhang and Tian et al, 2016], high dimensional [Cheng and Jin et al, 2015] and non-
convex optimization problems [Zhang et al, 2016, Cheng et al, 2016], overlapping
community detection [Zhang and Pan et al, 2017], pattern recommendation based on
multi-objective optimization [Zhang et al, 2017], etc.

The other evolutionary computation model is swarm intelligence, which has
attracted more attention due to its particular mechanism. Bonabeau has defined the
swarm intelligence as “any attempt to design algorithms or distributed problem solving
devices inspired by the collective behavior of social insect colonies and other animal
societies” [Bonabeau et al, 1999]. The term ‘swarm’ is employed to denote a group
of unintelligent individuals, which complies a few simple rules and responds to local
stimuli individually. A large number of individuals in the same population can perform
complicated tasks by cooperative ways (self-organization and labor division) among
the individuals, which can well adapt to the changes of surrounding environment.
Recently, some swarm intelligence based algorithms and computing model are
developed including ants [Dorigo, 1992], birds [Eberhart and Kennedy, 1995], bacterial
foraging [Passino, 2002], bees [Karaboga, 2005], probe machine [Xu, 2016] and so on.

Among these algorithms, a novel swarm intelligence algorithm inspired
by the unique mating behavior of social spider has been proposed by Erik
Cuevas [Cuevas et al, 2016], named social spider optimization (SSO) algorithm. In
SSO, the optimal solution is found by cooperation and mating among spiders. One key
characteristic of SSO is that the gender difference is incorporated into labor division
so as to adapt well itself to the changing of external and internal environment. Due to
cooperating and mating behaviors in SSO, population diversity has been increased for
most of optimization problems. However, the diversity of the population may decrease
with the iterations increase in some multi-modal optimization problems. In other words,
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the balance between exploration and exploitation in search strategy of SSO needs to be
further studied.

In this paper, we propose a novel algorithm, named Weighted Differential
Evolution Social Spider Optimization (wDESSO), on basis of SSO algorithm for global
optimization. To be specific, in the proposed algorithm, an adaptive weighting factor is
firstly introduced to control the movement of spiders, which can guarantee good balance
between exploration and exploitation in search strategy; secondly, after completing the
preliminary search, one mutation operator is adopted for improving the convergence
speed and avoiding premature phenomena of SSO algorithm. Finally, the proposed
algorithm wDESSO is compared with the state-of-art optimization algorithms, and the
experimental results on 15 standard benchmark functions demonstrate the effectiveness
of wDESSO in solving complex numerical optimization problems.

The rest of the paper is organized as follows: some related works and SSO algorithm
are reviewed in Section 2. In Section 3, the proposed wDESSO algorithm is illustrated
in detail. Section 4 presents a series of experiments on some well known benchmark
functions. Finally, some conclusions and future work are listed in Section 5.

2 Background

2.1 Related Works

Evolutionary computation is usually classified into two categories: evolutionary
algorithms(EA) and swarm intelligence based algorithms. Among these methods, DE,
PSO [Eberhart and Kennedy, 1995], ABC [Karaboga, 2005], and SSO algorithms are
the most popular evolutionary computation methods.

In DE algorithm, the offspring is produced by competing with its parents. One
notable feature in DE is that all solutions have equal chance of being selected as
parents, thus it can be successfully applied into some research fields, such as numerical
optimization [Qin et al, 2005] and pattern recognition [Maulik and Saha, 2009]. From
then on, the researches dedicated to improve the performance of DE algorithm.
In summary, these improved DE algorithms mainly adopted different mutation
strategies (e.g. DE/best, DE/rand, DE/current-to-best) [Price. et al, 2005], adaptive
strategies (e.g. SDE, JDE, SaDE) [Qin et al, 2009] and hybrid DE algorithm with
other optimization algorithms [Biswas et al, 2007]. These achievements have greatly
improved the performance of DE algorithm and broadened the application domains of
DE in different complex optimization problems.

For swarm intelligence based algorithms, it is important to make the balance
between exploration and exploitation. PSO and ABC algorithms are two well-known
two swarm intelligence algorithms for solving complex optimization problems in
real world. For PSO, after initialization, the positions of particles are changed in
the search space in order to find optimal value. More specifically, each particle
is changed by two factors: one is its own best position found so far (local best
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position) and the other is the best position in the whole search space (global
best position). The performance of PSO algorithm largely depends on the setting
of the initial parameters which make the algorithm easily trap into local optimal
and result in premature convergence [Beak et al, 2013]. ABC algorithm adopts the
collective intelligent behavior among bees through self-organization and labor division
mechanisms. In other words, the whole bee colony are composed of employed
bees, onlooker bees and scout bees. The global optimal position is found by
cooperating among them. The adopted search strategy is in favor of enlarging the
search scope at the initial stage for finding potential better solutions. However, it
can easily be trapped into stagnation and slower the convergence speed in the later
phase [Banharnsakun et al, 2011]. Moreover, some other optimization algorithms based
on swarm intelligence have been widely studied. For example, Dorigo proposed ant
colony optimization (ACO) algorithm [Dorigo, 1992] inspired by foraging behavior of
ant colony and a Krill Herd (KH) algorithm based on the collective behavior of kills
were proposed by Gandomi [Gandomi and Alavi, 2012].

Recently, Erik Cuevas proposed a new swarm intelligence algorithm, named social
spider optimization (SSO) algorithm, inspired by the unique mating behavior of social
spider [Cuevas et al, 2016]. In SSO, the optimal solution is determined by the way of
cooperating and mating among spiders and the gender difference is incorporated into
labor division, thus adapt well itself to the change of external and internal environment.
However, in some multi-modal optimization problems, the diversity of the population
may decrease with the increasing iterations which weaken the ability of jumping
out of local optimal. Based on the above consideration, in this paper, by combining
the advantages of DE and SSO, we proposed an improved SSO algorithm anmed
wDESSO for global optimization, which can balance exploration and exploitation
during optimizing.

2.2 Social-Spider Optimization Algorithm

Usually, in Social-Spider Optimization Algorithm, the population is highly female-
biased and the number of female spiders reach 70% of the total colony
members [Aviles, 1997]. One important characteristic of the SSO is that gender
differences have been incorporated into the algorithm, which is beneficial for enlarging
the population diversity and enhancing the searching capacities. The interaction
between them is encoded by vibration through the communal web, which is a medium
of communication. The vibration is determined by two factors: one is the distance
between two spiders, and the other is the weight assigned for each spider. The social
spiders receive the information transmitted by vibration and are guided to move the
global optimal.

For female spiders, the movement is controlled by the vibration of other individuals
around her in the communal web. While for the male spiders, they are divided into
dominant and non-dominant groups. The dominant male spiders have better fitness
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Figure 1: Schematic drawing of SSO algorithm.

values than other male spiders. Dominant males can change their positions considering
the influence of the closest females while non-dominant spiders are attracted to
the weighted mean of the male population which is beneficial to avoid immature
convergence. After that, the mating behavior occurring between dominant males and
female members is used to produce offsprings, which plays an important role in SSO
algorithm. The advantage of SSO is that the whole population can find potential optimal
solutions effectively by the information exchange among them. The framework of SSO
algorithm is shown in Figure 1.

3 Proposed algorithm

For SSO algorithm, the movement of the spiders depends on the influence of the
individual local best position and the global best position in the population. This could
result in spiders being trapped into some local best position and a slower convergence
speed. In order to address these issues, we introduce an adaptive weighting factor
for enhancing the optimization performance and a mutation operator for avoiding
premature phenomena in the framework of SSO algorithm.
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3.1 Weighting factor

It is obvious that the positions of the spiders in the current iteration will have a great
influence on the next positions of the spiders, whether female spiders or male spiders.
In our study, a weighting factor W is first introduced into the SSO algorithm which is
used to describe the impact of the current position of the spider. The improved search
strategies are illustrated as follows:

F k+1
i = W · F k

i ± α · V ibci · (sc − F k
i )± β · V ibbi · (sb − F k

i ) (1)

Mk+1
i = W ·Mk

i + α · V ibfi · (sf −Mk
i ) + rand (2)

V ibci = w · e−d2
i,c (3)

V ibfi = w · e−d2
i,f (4)

where α and β are random number between [0, 1], k denotes the number of iteration, sc
and sb represent local and global optimal position at the current generation respectively,
whereas V ibci and V ibbi represent the transmitted information from sc and sb by
vibrating on the common web respectively. The exploration and exploitation of SSO
can be balanced effectively by adjusting the size of the parameter W . The greater value
of W means more favorable for exploration. A qualitative analysis is made about the
parameter W :

1. W = 0: In this case, the spiders in the colony will move to the new positions which
is determined by local best position sc and global best sb so far, while for the spider
who locate itself on the global best position, its position will be remain unchanged.

2. W �= 0: The update of the positions of the spiders will be affected by the current
one. Thus, for exploring the potential promising area, we may attempt to assign a
dynamic weighting factor W to balance exploration and exploitation well.

For some fuzzy, dynamic and complex of optimization problems, it is beneficial to
assign a larger value to the parameter W at the initial stage to explore the promising
area in the search space while a small value is given at the later for more sophisticated
exploitation. Based on the above considerations, in this paper, a weighting factor
changing with iteration is presented as follows:

W = Wmax − iter

Maxiter
(Wmax −Wmin) (5)

Here, the Wmax and Wmin are maximum and minimum values of the weighting
factor W , respectively.
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3.2 Mutation strategy

Usually, the introduction of the mutation strategy is helpful for finding more promising
solutions in local area of the current solution and enhancing the performance of
algorithm. Here, one adaptive mutation scheme with a mutation probability (μ) is
proposed to accelerate the convergence of SSO algorithm, which is described as
follows:

xi,G =

{
xgbest,G + γ(xp,G − xq,G), rand ≤ μ

xi,G

(6)

After completing the search implemented by mating operation between female
spiders and male spiders, the mutation operator is then applied for further fine exploiting
around the obtained solution with probability μ. The search process is repeated until the
predefined stopping criterion is met. The complete pseudo-code for wDESSO algorithm
can be found in Algorithm 1.

Algorithm 1 the pseudo-code for wDESSO
Input: The population P, The population size SN , maximum number of generations Maxiter,

the maximum and minimum of the weighting factor {Wmax,Wmin}, mutation probability
pm, threshold value PF ;

Output: The final optimal solution X .
Step1: Population initialization.

1: P ← Intial(P, SN)//get the initial population P with the size of SN
Step2: Female operation and male operation.

2: for iter = 1 to Maxiter do
3: for every female spider do
4: if rand<PF then
5: F k+1

i = W · F k
i + α · V ibci · (sc − F k

i ) + β · V ibbi · (sb − F k
i )

6: else
7: F k+1

i = W · F k
i − α · V ibci · (sc − F k

i )− β · V ibbi · (sb − F k
i )

8: end if
9: end for

10: for every male spider do
11: if Dominant male then
12: Mk+1

i = W ·Mk
i + α · V ibfi · (sf −Mk

i ) + rand
13: else
14: the non-dominant male is remained in the weighted mean of the male population

Male
15: end if
16: end for
17: end for

Step3: Mating operation:
18: every dominant male mate with group of female spiders selected by roulette method

Step4: Mutation operation:
19: After female operation, male operation and mating operation, every spider in the colony is

mutated by mutation operator according to the following strategy:

20: xi,G =

{
xgbest,G + γ(xp,G − xq,G), rand ≤ μ

xi,G

Next, The steps of wDESSO are elaborated as follow. In female operation stage,
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for each female spider, a random number is produced firstly and compared with
a predefined threshold PF to decide which update strategies are adopted. The
corresponding pseudo codes are shown in line 3-9 of Algorithm 1. Different from
female spiders, male spiders are mainly used to reproduce with females. The male
spiders are separated into two different groups based on the size of fitness values.
One is dominant group which is attracted by the closest female one on the common
web while the other group (non-dominant) usually locate the center of the whole male
spiders. Therefore, in the male operation stage, dominant male spiders are moved to
the closest female individual sf and influenced by its vibration V ibfi while for non-
dominant males approach to the center of the whole male spiders shown in line 10-16.
In social spiders, mating is an interesting way for realizing information sharing and
interaction between female and male spiders. Specifically, for a dominant male, a set
of female spiders are selected using a given range r and the roulette method is also
used to select new offspring Snew. If Snew is better than the worst spider Sworst in
the population, the Sworst is replaced by the new offspring Snew. After completing the
three above stages, a local perturbation(mutation) for every individual is conducted for
trying to find new better position, the strategy is defined as in Equation (6).

4 Simulation experiments

4.1 Benchmark Functions and Parameter Settings

In order to evaluate the performance of wDESSO completely, a set of numerical
benchmark functions are adopted. The benchmark functions are listed in Table 1, where
fmin is the global optimum value. A more detailed description about every function is
given in [Cuevas et al, 2016]. For each test function, the minimum f∗(x) = 0, which
x∗ is the global optimum solution. In this paper, as suggested in [Zhang et al, 2005],
a widely adopted parameter values Wmax = 0.9 and Wmin = 0.4 are also used for
wDESSO.

4.2 Performance Comparison with SSO, ABC and PSO

In order to show the effectiveness of wDESSO, we compare it with three representative
algorithms SSO, ABC and PSO. To make a fair comparison, the parameters used
here are the same as the recommendation in the literature [Cuevas et al, 2016].
The performance of these algorithms are evaluated on 30 dimensional minimization
problems for 30 independent runs. In order to make fair analysis, we directly reference
the results of SSO, ABC and PSO given by Cuevas [Cuevas et al, 2016] . The detail
parameter settings for every algorithm are described in Table 2. Table 3 shows the
Average Best-so-far (AB) value and the Standard Deviation (SD) of best-so-far value
of the results obtained by wDESSO algorithm, where the best results are marked in
boldface.
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Table 1: Benchmark functions used in experiments with fmin = 0

Name Function Search range
Sphere f1 =

∑D
i=1 x

2
i −100 ≤ xi ≤ 100

Schwefel 2.22 f2 =
∑D

i=1 |xi|+
∑D

i=1 |xi| −10 ≤ xi ≤ 10

Schwefel 1.2 f3 =
∑D

i=1(
∑i

j=1 xj)
2 −100 ≤ xi ≤ 100

Step f4 =
∑D

i=1(�xi + 0.5�)2 −100 ≤ xi ≤ 100

Quartic f5 =
∑D

i=1 i · x4
i + random(0, 1) −1.28 ≤ xi ≤ 1.28

Ackley f6 = −20exp(−0.2
√

1
D

∑D
i=1 x

2
i )

−exp( 1
D

∑D
i=1 cos2πxi) + 20 + e

−32 ≤ xi ≤ 32

Griewank f7 = 1
4000

∑D
i=1 i · x2

i −
∏D

i=1 cos(
xi√
i
+ 1) −600 ≤ xi ≤ 600

Levy

f8 = 0.1× {sin2(3πx1)+∑D−1
i=1 (xi − 1)2 · [1 + sin2(3πxi + 1)]

+(xD − 1)2)[1 + sin2(3πxD)]}
+
∑D

i=1 u(xi, 5, 100, 4)

−50 ≤ xi ≤ 50

Rastrigin f9 =
∑D−1

i=1 [x2
i + 10cos(2πxi) + 10] −5.12 ≤ xi ≤ 5.12

Rosenbrock f10 =
∑D−1

i=1 [100 · (xi+1 − x2
i )

2 + (xi − 1)2] −30 ≤ xi ≤ 30

Dixon&Price f11 = (xi − 1)2 +
∑D

i=1[i · (2x2
i − xi−1)

2] −10 ≤ xi ≤ 10

Sum of Squaresf12 = (
∑D

i=1(i · x2
i ) −10 ≤ xi ≤ 10

Zakharov
f13 =

∑D
i=1 x

2
i + (

∑D
i=1 0.5 · i · x2

i )
2

+(
∑D

i=1 0.5 · i · x2
i )

4
−5 ≤ xi ≤ 10

Powell f14 =
∑D/4

i=1 (x4i−3 + x4i−2)
2 + 5(x4i−1 + x4i)

2

+(x4i−2 + x4i−1)
4 + 10(x4i−3 + x4i)

4
−5 ≤ xi ≤ 10

Schaffer f15 = 0.5 +
sin2(

√∑D
i=1 x2

i )−0.5

(1+0.001·(∑D
i=1 x2

i ))
2 −100 ≤ xi ≤ 100

Table 2: Parameter settings

PSO
c1=2, c2=2;

the weight factor decreases linearly from 0.9 to 0.2
ABC limit=100
SSO PF=0.7

wDESSO ωmax = 0.9 and ωmin = 0.4

According to the results listed in Table 3, wDESSO algorithm has more powerful
ability for finding global optimization and significantly better than the results obtained
by SSO, ABC and PSO algorithms on most of test problems. The mutation strategy
shown in Equation (6) is adopted to update the spider’s position by the best-so-far
spider and the distance between two randomly selected spiders. Therefore, wDESSO
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algorithm can find global optimum solution quickly and greatly improve convergence
due to the introduction of the mutation strategy. Since wDESSO is influenced by the
best-so-far individual, thus leading to the superior performance of wDESSO algorithm
especial for the unimodal functions.

In order to be more intuitive to compare the convergency of wDESSO with SSO
and ABC algorithms, Figure 2 and Figure 3 make some convergence curves of the best
results for these algorithms based on some typical benchmark functions for 30 and 100
dimensionality. For each function, the convergence curves represent the best one of the
30 and 50 independent runs for different dimensionality. Specifically, the parameter
setting for the two groups of experiments are as follows: (1) 30 dimensionality:
populationsize = 100, Maximumiteration = 1000; (2) 50 dimensionality:
populationsize = 400, Maximumiteration = 3000;

Table 3: Comparison of wDESSO with SSO, ABC and PSO on 30-Dimensional benchmark
functions over 30 independent runs

Function Measure wDESSO SSO ABC PSO

f1 AB 0.00E+000 1.96E-03 2.90E-03 1.00E+03
SD 0.00E+000 9.96E-04 1.44E-03 3.05E+03

f2 AB 8.92E-198 1.37E-02 1.35E-01 5.17E+01
SD 0.00E+000 3.11E-03 8.01E-02 2.02E+01

f3 AB 1.99E-023 4.27E-02 1.13E+00 8.63E+04
SD 1.09E-022 3.11E-02 1.57E+00 5.56E+04

f4 AB 3.84E-007 2.68E-03 4.06E-03 1.00E+03
SD 5.61E-007 6.05E-04 2.98E-03 3.06E+03

f5 AB 3.20E-005 1.20E+01 1.21E+01 1.50E+01
SD 2.68E-005 5.76E-01 9.00E-01 4.75E+00

f6 AB 8.88E-016 1.36E-02 6.53E-01 1.14E+01
SD 0.00E+000 2.36E-03 3.09E-01 8.86E+00

f7 AB 0.00E+000 3.29E-03 5.22E-02 1.20E+01
SD 0.00E+000 5.49E-04 3.42E-02 3.12E+01

f8 AB 1.34E-006 6.92E-05 1.44E-04 2.47E+00
SD 2.06E-006 4.02E-05 1.69E-04 3.27E+00

f9 AB 0.00E+000 8.59E+00 2.64E+01 1.35E+02
SD 0.00E+000 1.11E+00 1.06E+01 3.73E+01

f10 AB 3.13E-003 1.14E+02 1.38E+02 3.34E+04
SD 1.00E-002 3.90E+01 1.55E+02 4.38E+04

f11 AB 2.40E-001 2.14E+00 3.60E+00 3.12E+04
SD 7.54E-003 1.26E+00 3.54E+00 5.74E+04

f12 AB 0.00E+000 4.44E-04 1.10E-01 6.93E+02
SD 0.00E+000 2.90E-04 1.98E-01 6.48E+02

f13 AB 3.04E-024 6.81E+01 3.12E+02 4.11E+02
SD 1.67E-023 3.00E+01 4.31E+01 1.56E+02

f14 AB 8.83E-321 1.87E+00 2.13E+00 1.26E+03
SD 0.00E+000 1.20E+00 1.22E+00 1.12E+03

f15 AB 4.89E+001 5.39E-05 1.18E-04 4.27E+07
SD 3.68E+000 1.84E-05 8.88E-05 9.70E+07

From the results shown in Figure 2 and Figure 3, the performances of wDESSO
algorithm have better scalability when increasing the dimensionality from 30 to 100.

628 Qiu J., Xie J., Cheng F., Zhang X., Zhang L.: A Hybrid Social ...



0 100 200 300 400 500 600 700 800 900 1000

10-300

10-200

10-100

100

10100

F
itn

es
s 

V
al

ue

Sphere

iteration

ABC
wDESSO
SSO

(a)

0 100 200 300 400 500 600 700 800 900 1000

iteration

10-200

10-150

10-100

10-50

100

1050

F
itn

es
s 

V
al

ue

Schwefel222

ABC
wDESSO
SSO

(b)

0 100 200 300 400 500 600 700 800 900 1000

iteration

10-20

10-15

10-10

10-5

100

105

F
itn

es
s 

V
al

ue

Ackley

ABC
wDESSO
SSO

(c)

0 100 200 300 400 500 600 700 800 900 1000

10-300

10-200

10-100

100

10100

F
itn

es
s 

V
al

ue

Powell

iteration

ABC
wDESSO
SSO

(d)

0 100 200 300 400 500 600 700 800 900 1000

iteration

10-80

10-60

10-40

10-20

100

1020

F
itn

es
s 

V
al

ue

Zakharow

ABC
wDESSO
SSO

(e)

0 100 200 300 400 500 600 700 800 900 1000

iteration

10-5

100

105

1010

F
itn

es
s 

V
al

ue

Quartic

ABC
wDESSO
SSO

(f)

Figure 2: The demonstrations of convergence of wDESSO, SSO, and ABC algorithms
on 30 dimensionality

It is noteworthy that due to the complex of some test functions, such as Zakharow, the
performance of the algorithms degrade to some extent.
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Figure 3: The demonstrations of convergence of wDESSO, SSO, and ABC algorithms
on 100 dimensionality

4.3 Comparing wDESSO with Some Improved Swarm Intelligence Algorithms

For making more comprehensive comparison, wDESSO is also compared with some
improved swarm intelligence optimization algorithms,
including GABC [Zhu and Kwong, 2010], E-ABC [Montes and Koeppel, 2010] and
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ABC/best [Gao et al, 2012] using the same benchmark functions including unimodal,
multimodal problems on different dimensionality. The population size is 80 and the
maximum number of generations is 5000 or until the function error dropped below e-
20 (values less than e-20 were reported as 0). Every algorithm is repeated 30 times
independently and the means and standard deviations are reported in Table 4. From
the results, we can see that the performance of wDESSO are superior than other
variants of ABC algorithms under the same experimental conditions. The reason is
that for unimodal problems, the weighting factor can accelerate convergence effectively
while for multimodal problems, the adopted local mutation strategy can increase the
possibilities of escaping from the local optimum.

Table 4: Performance of GABC, E-ABC, ABC/best/1, ABC/best/2, and wDESSO

Algorithm Measure Sphere(Uni-modal) Rosenbrock(Uni-modal) Griewank(Multi-modal)
D=30 D=60 D=2 D=3 D=30 D=60

GABC Mean 4.17E-16 1.43E-15 1.68E-04 2.65E-03 2.96E-17 7.54E-16
SD 7.36E-17 1.37E-16 4.42E-04 2.22E-03 4.99E-17 4.12E-16

E-ABC Mean 1.67E-16 1.41E-15 4.63E-04 1.20E-02 4.90E-14 4.19E-14
SD 2.70E-16 1.52E-15 4.57E-04 7.06E-03 7.31E-03 9.05E-03

ABC/best/2 Mean 1.70E-126 3.72E-58 4.42E-04 9.90E-04 0 0
SD 2.67E-58 2.39E-04 6.92E-04 0 0 3.48E-15

ABC/best/1 Mean 1.1E-150 4.40E-69 4.99E-06 5.52E-06 0 0
SD 1.4E-150 2.56E-69 8.22E-06 3.03E-06 0 0

wDESSO Mean 0.00E+00 0.00E+00 5.70E-07 2.27E-06 0.00E+00 0.00E+00
SD 0.00E+00 0.00E+00 6.68E-07 2.95E-06 0.00E+00 0.00E+00

Measure Ackley(Multi-modal) Schaffer(Multi-modal) Rastrigin(Multi-modal)
D=30 D=60 D=2 D=3 D=30 D=60

GABC Mean 3.21E-14 1.66E-13 0 1.85E-18 1.32E-14 3.52E-13
SD 3.25E-15 2.21E-14 0 1.01E-17 2.44E-14 1.24E-13

E-ABC Mean 1.22E-10 1.55E-07 0 2.79E-07 9.97E-15 7.51E-13
SD 4.86E-11 2.84E-08 0 2.24E-07 3.87E-15 6.15E-13

ABC/best/2 Mean 2.50E-14 7.12E-14 0 3.56E-06 0 0
SD 3.48E-15 4.14E-15 0 1.27E-06 0 0

ABC/best/1 Mean 1.72E-14 6.62E-14 0 0 0 0
SD 2.84E-15 1.74E-15 0 0 0 0

wDESSO Mean 8.87E-16 8.90E-16 0.00E+00 0.00E+00 0.00E+00 0.00E+00
SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Moreover, we also compare the performance of wDESSO with some other typical
variants of DE algorithms including JADE [Zhang et al, 2009], JDE [Brest et al, 2006],
SaDE [Qin et al, 2009] on 30 and 100 dimensionality. The parameter settings
and experimental results of these algorithms are directly gained from the
reference [Zhang et al, 2009] and the results are listed in Table 5 and Table 6. From
these results of experiments, we can conclude that wDESSO is a competitive and
scalable optimization method for solving complex numerical optimization problems.
When increasing the scale of the benchmark functions from 30 to 100 dimensionality,
the performance of wDESSO are not obvious influenced which is shown in Table 6 and
still superior or near the other algorithms adopted in this experiment.
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Table 5: Experimental results of 30-dimensional benchmark functions, averaged over 50
independent runs

Funtions FEs Measures SaDE JDE JADE wDESSO

Sphere 1.5*105 Mean 4.5E-20 2.5E-28 1.8E-60 0.00E+000
Std 1.9e-14 3.5E-28 8.4E-60 0.00E+000

Schwefel 2.22 2.0*105 Mean 1.9E-14 1.5E-23 1.8E-25 0.00E+000
Std 1.1E-14 1.0E-23 8.8E-25 0.00E+000

Schwefel1.2 5.0*105 Mean 9.0E-37 5.2E-14 5.7E-61 0.00E+000
Std 5.4E-36 1.1E-13 2.7E-60 0.00E+000

Rosenbrock 2.0*106 Mean 1.8E+01 8.0E-02 8.0E-02 1.92E-005
Std 6.7E+00 5.6E-01 5.6E-01 2.87E-005

Step 1.0*104 Mean 9.3E+02 1.0E+03 2.9E+00 1.82E-005
Std 1.8E+02 2.2E+02 1.2E+00 3.00E-005

Quartic 3.0*105 Mean 4.8E-03 3.3E-03 6.4E-04 6.66E-006
Std 1.2E-03 8.5E-04 2.5E-04 4.39E-006

Rastrigin 1.0*105 Mean 1.2E-03 1.5E-04 1.0E-04 0.00E+000
Std 6.5E-04 2.0E-04 6.0E-05 0.00E+000

Ackley 5.0*104 Mean 2.7E-03 3.5E-04 8.2E-10 8.88E-016
Std 5.1E-04 1.0E-04 6.9E-10 0.00E+000

Griewank 5.0*104 Mean 7.8E-04 1.9E-05 9.9E-08 0.00E+000
Std 1.2E-03 5.8E-05 6.0E-07 0.00E+000

Table 6: Experimental results of 100-dimensianal benchmark functions, averaged over 50
independent runs

Funtions FEs Measures SaDE JDE JADE wDESSO

Sphere 8*105 Mean 2.9E-08 5.0E-15 1.2E-48 0.00E+000
Std 3.2E-08 1.7E-15 1.5E-48 0.00E+000

Schwefel 2.22 1.2*106 Mean 1.7E-05 4.1E-15 1.1E-41 0.00E+000
Std 3.8E-06 1.1E-15 5.1E-41 0.00E+000

Schwefel1.2 3.2*106 Mean 2.4E-13 5.4E-02 1.2E-26 0.00E+000
Std 5.2E-13 2.7E-02 2.0E-26 0.00E+000

Rosenbrock 2.4*106 Mean 9.4E+01 7.2E+01 5.6E-01 3.8E-006
Std 4.0E-01 1.1E+01 1.4E+00 1.3E-005

Step 6.0*105 Mean 0.0E+00 0.0E+00 1.6E-01 2.0E-008
Std 0.0E+00 0.0E+00 3.7E-01 3.7E-008

Quartic 2.4*106 Mean 1.0E-02 8.1E-03 1.1E-03 8.8E-007
Std 4.9E-03 9.0E-04 2.1E-04 6.5E-007

Rastrigin 1.2*106 Mean 9.1E-03 2.1E-04 1.9E-01 0.00E+000
Std 1.8E-03 2.0E-04 3.8E-02 0.00E+000

Ackley 1.2*106 Mean 2.1E-07 9.9E-14 8.9E-15 8.9E-016
Std 1.0E-07 2.0E-14 2.1E-15 0.00E+000

Griewank 1.2*106 Mean 8.6E-13 0.0E+00 3.9E-04 0.00E+000
Std 8.2E-13 0.0E+00 2.0E-03 0.00E+000

5 Conclusions and future work

In this paper, a novel improved social spider swarm intelligence optimization algorithm
named wDESSO has been proposed for solving complex global optimization problems.
The main idea is to make the use of the weighting factor to enhance the search ability of
SSO. In wDESSO, the adaptive weighting factor and mutation strategies have been
verified to be beneficial for jumping out of local minimum during the process of
optimization.
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Specifically, the introduction of the adaptive weighting factor improves the
convergency speed and makes the population near to the current optimal solution
quickly. In order to avoid trapping the local optimal, a random mutation strategy is
adopted for escaping from the stagnation. Experimental results on a set of benchmark
functions have demonstrated that the proposed wDESSO significantly outperformed or
near to SSO, ABC, PSO, DE and their respective variants. In future, we would like to
design some customized search strategies for specific real world problems under the
framework of wDESSO to find global optimum solution.
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