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Abstract: Deploying Wireless Body Area Networks (WBANs) on/in human bodies has 
become an increasingly active area of research due to WBANs’ capability to monitor human 
physiological signals, which is useful in a wide range of applications. However, there is a lack 
of e-learning applications taking advantage of the context-medical data coming from WBANs. 
This study is aimed at exploring the educational usefulness of integrating data captured by 
wearable biomedical sensors in a simulation learning environment. To this end, a system has 
been designed with the aim of introducing 8-12 year old children, newly diagnosed with type 1 
diabetes mellitus, to the endocrine regulation of glucose metabolism processes. The system is 
evaluated in order to determine whether it is technically viable, and its suitability is validated 
for educational purposes. Technical viability is evaluated through a simulation, whereas 
educational usefulness is examined by a group of 13 health professionals in terms of fidelity, 
validity, interactivity and learning content. The results from this experience highlight the 
potential of the integration of biomedical sensor data in a simulation learning environment to 
foster the motivation of the target population and reflection about the health consequences of 
the patients’ actual behaviors. The evaluators see potentials on this proposal and even 
recommended the incorporation of more biomedical sensors, and new functionalities to share 
the physiological state of the patients with healthcare stakeholders. 
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1 Introduction  

Type1 diabetes mellitus (DM) is an important endocrine disorder and one of the most 
common chronic conditions in children. It is characterized by insulin deficiency as a 
result of the autoimmune destruction of pancreatic beta islet cells. Poor patient 
adherence to medical treatment (instructions to control the glucose levels by an 
endocrine) increases the risk of mortality and medical complications. Studies suggest 
that education is an effective way to enhance medication adherence, which, in turn, 
will benefit health outcomes and might improve the children's quality of life [IDF 
2012].  

A promising method for educating patients involves demonstrating the effect of 
various self-care actions on the disease control parameter through computerized 
simulations. Simulation learning environments (SLE) might be effective in teaching 
children with DM about the basic glucose metabolism processes for two main 
reasons. First, SLE might recreate medical situations to be practiced and managed 
with no risk to children’ health. Second, children can be repeatedly exposed to 
unanticipated medical events to gain powerful insights into the consequences of their 
actions and the need to “get it right” [Makransky et al. 2016, Wehbe-Janek et al. 
2015].  

The effectiveness of SLEs could be enhanced by using contextualized 
information about patients. In this sense, the sustainable development of broadband 
and wireless Internet technologies, such as wearable and implantable biosensors, 
might have a positive impact on eHealth [Rahman et al. 2014]. In the diabetes arena, 
biomedical sensors are able to continuously monitor the vital signs that characterize 
the patient's actual physiological state. On the other hand, sensor data is being 
explored to support learning solutions that are ‘effective, efficient, enjoyable, 
personal, and engaging’ [Specht 2014].  

This study is aimed at verifying the educational usefulness of integrating data 
captured by wearable biomedical sensors in a simulation learning environment. To 
this end, a WBAN (Wireless Body Area Network) [Chen et al. 2011] containing 
biomedical sensors to enable the sampling of vital signs of interest (e.g. glucose 
levels, blood pressure) is proposed. The data captured by the sensors is delivered to a 
simulation learning tool, called SLENDEr (Simulation Learning ENvironment for 
children with DiabEtes), which is deployed into the patient's smartphone. SLENDEr 
uses the collected data to provide context-based activities related to the endocrine 
regulation of the glucose metabolism processes of the patient.  

The study involves two main steps. First, the system is evaluated in order to 
determine whether it is technically viable. To this end, simulations of the generation 
of sensor data at the rates used by commercial devices are used to determine the 
overhead of the wireless network and to adjust the amount of data that can be 
effectively processed by the learning tool. Second, since the simulation tool was a 
simplification of a real-world phenomenon and included context biomedical data, the 
resulting learning tool might affect its educational usefulness [Stainton et al. 2010]. 
Therefore, the educational usefulness of the learning environment proposed is 
explored in terms of fidelity, validity, interactivity and learning content [Feinstein and 
Cannon 2014, Zaharias and Poylymenakou 2009].  

540 Ibanez M.-B., Escolar S., Iskander R., Viera K., Delgado-Kloos C. ...



Due to the difficulties to get authorization to work with a vulnerable population in 
a medical study, this study do not include either children´s evaluation of the tool or 
real measures from the sensors. 

In the following, we provide a brief overview of the use of wearable computing in 
education and how wearable devices can be integrated into WBANs to become part of 
context-aware biomedical learning applications (see Sections 2 and 3, respectively). 
Drawing on this background, we introduce the architecture and the learning 
simulation tool proposed in Section 4. After outlining our research approach in 
section 5, we present the technical viability results in Section 6 and educational 
usefulness results in Section 7. Finally, Section 8 summarize the conclusions of our 
research and outlines the future work. 

2 Wearable Computing in e-Education  

Today, sensors can be integrated into various accessories such as clothes, eyeglasses, 
wrist watches, headphones and smartphones. Some sensors, mostly medical-grade 
ones, are used on a stand-alone basis. As technology matures, we will increasingly 
witness the integration of sensors into wearable devices. The term wearable 
technology refers to electronic technologies or computers that are incorporated into 
items of clothing and accessories that can be worn comfortably on the body. Wearable 
devices include sensors and some form of communications that provide real-time 
information access. Their purpose is to offer readily accessible, portable and mostly 
hands-free access to electronic information and media [Tehrani and Michael 2014]. 
Educational researchers envisage that a broad use of wearable technology might have 
a high impact in education in future years [Specht 2014, Labus et al. 2015, Johnson et 
al. 2014]. Current applications include the use of biometric sensors for monitoring 
students’ emotions, the use of Google Glass as a learning supporting device, and the 
use of wearable devices as training tools. Several e-Health platforms integrating 
biometric sensors for vital signals monitoring purposes are commercially available 
[Escolar et al., 2016]. 

Information on the learners' emotional state collected by means of biosensors 
measuring skin conductivity, heart rate, breathing and muscle activity has been used 
by pedagogical agents to guide the learning process according the students' emotions 
[Bosma and André 2004]. In the study, the researchers reported problems with the 
noise of the sensor signals and difficulties in correlating the emotional patterns 
detected with the biometric signals. 

Google Glass has been explored as a teaching tool by several medical research 
groups, mainly to record students during standardized patient encounters and training 
sessions [Tully et al.  2015, Vallurupalli et al. 2013]. However, one of the stumbling 
blocks to the wider use of Google Glass has been concern over data security and 
patient privacy. The devices are not compliant with the Health Insurance Portability 
and Accountability Act of 1996 (HIPAA) because the data collected with Google 
Glass is accessible to Google and is not encrypted. 

Additionally, wearable computing has been used as an effective learning 
environment for motor skill learning to assist learners in playing a musical instrument, 
handwriting, sports training, and learning sign language [Van der Linden et al. 2011]   
[Amma et al. 2014, James et al. 2011, Iwasako et al. 2014]. These training and 

541Ibanez M.-B., Escolar S., Iskander R., Viera K., Delgado-Kloos C. ...



learning environments are based on the learning-by-doing approach and involve 
correcting the learner’s movements until her optimal movements are achieved. In 
motor skill learning, the users’ discomfort has been reported as the greatest barrier to 
adopting wearable devices. 

Therefore, there is promising potential for the use of wearable technology in 
education. A recent research work [Bower and Sturman 2015] identified 14 
affordances of wearable technologies, which include pedagogical uses such as 
simulation, feedback and in situ contextual information, aspects related to educational 
quality such as engagement, efficiency, and presence, and two potential logistical 
advantages, namely hands-free access and freeing up space. However, additional and 
clever educational applications will need to be developed using this technology to 
validate its affordances [Sultan 2015]. The new educational applications based on 
wearable technology must provide meaningful educational activities and must address 
the drawbacks stated earlier, namely, certifying that the amount and the quality of 
data provided by the sensors is useful in understanding the phenomena governing the 
educational process and avoiding the logistical and technical problems that may 
impede the adoption of the technology [Tehrani and Michael 2014]. 

3 Body Area Networks  

The advances in lightweight, small-sized, ultra-low-power and intelligent monitoring 
wearable sensors are facilitating the development of Body Area Networks (BAN) 
[Chen et al. 2011], a class of Wireless Sensor Networks (WSN) [Akyildiz et al. 2002] 
devoted to the remote and continuous monitoring of people's health by means of 
several networked biomedical sensors, and eventually, actuators located strategically 
on the human body (e.g. ankle, waist, thigh) to enable the periodic sampling of one 
(or several) vital signs of interest, for instance, blood pressure, oxygen saturation or 
glucose level.  

According to [Chen et al. 2011], the architecture of a BAN obeys a multi-layered 
design:  

• Tier-1 or intra-BAN communication,  
• Tier-2 or inter-BAN communication, and  
• Tier-3 or beyond-BAN communication.  
   The design of Tier-1 includes the election of the monitoring devices (sensors 

and actuators) and the network technologies employed between them and/or with a 
nearby personal server device (receiver), typically in a star topology. Since these 
devices are usually battery-operated, a major challenge here is enlarging their 
lifespan, reducing the data rate and implementing more energy-efficient MAC 
(Medium Access Control) protocols. Another important issue is related to 
interconnecting both invasive and non-invasive sensors wirelessly, and the signalling 
techniques employed at the physical layer. Tier-2 covers the communication between 
the personal device and one or more access points to local networks (e.g. hospital, 
home, office). The communication technologies employed at this layer (e.g. 
Bluetooth, Zigbee, 3G) are more mature than the ones employed at Tier-1; the 
challenges at this layer include patient mobility, coverage, and network deployment. 
Finally, Tier-3 enables communication towards worldwide areas, provides the 
hardware components for permanently storing the data (data servers, also called base 
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stations) and services for the interested stakeholders, such as event notification, real-
time diagnosis, prevention based on pattern analysis, and entertainment for the final 
users. 

This three-tier architecture has been successfully deployed in several applications 
for diabetes monitoring [Gómez et al. 2002, Capozzi and Lanzola 2011]. In [Wang et 
al. 2013], a system is proposed to monitor the condition of a diabetic patient by using 
a BAN integrated by sensors with the capabilities of sensing, processing, and 
communication. E. Gomez et al. presented DIABTel, a telemedicine system for 
telemonitoring diabetic patients through telecare services that combines different 
ways of acquiring data [Gómez et al. 2002]. The data is evaluated in terms of a 
number of messages (sensor readings, therapy adjustment and patient requests), 
usability (user-friendliness, efficiency and guidance), and clinical state (number of 
hypoglycemias per week and median value of HbA1c). The results reveal a better 
control of the illness due to the number of therapy adjustments that doctors are able to 
perform, compared with conventional treatment. In [Capozzi and Lanzola 2011], the 
authors propose a multiagent software architecture that integrates both device and 
healthcare services to support home monitoring in diabetic patients in two different 
scenarios: remote monitoring of diabetes complications (long-term monitoring) and of 
an artificial pancreas device (short-term monitoring). 

On the other hand, biomedical informatics is a rich domain for context-aware 
applications that get meaningful information about patients' physical conditions (e.g. 
blood glucose levels) from biomedical sensors [Bricon-Souf and Newman 2007]. 
These applications use the context to adapt their behavior and respond according to 
the context [Al-Bashayreh et al. 2013]. Examples of context-aware biomedical 
applications include systems that monitor patients with cardiovascular diseases, 
monitor the vital signs of the elderly, or monitor epilepsy patients. When developing 
context-aware biomedical applications, architecture techniques based on 
responsibility, frequency, context source and the acquisition process must be 
employed.  

Pull and push techniques are used to determine the responsibility for acquiring 
sensor data. The responsibility can be taken by software components (pull) or by 
physical sensors (push). The frequency of events to acquire the data determines 
whether the context is generated instantly or periodically. Regarding the context 
source factor, the data might be acquired directly from the sensor hardware, through 
middleware architecture or from context servers. Finally, in [Perera et al. 2014], the 
researchers identify three means of acquiring context: sensed, derived and manually. 
The first acquiring technique occurs when the data is sensed through sensors, the 
second when information is generated by performing computational operations on the 
sensor data and the third when users provide context information manually. 

4 Experimental Framework  

Following the previous literature, we propose a basic architecture for a context-aware 
biomedical application that obeys a three-tier-based design and includes a Simulation 
Learning ENvironment for children with DiabEtes (SLENDEr), as shown in Fig. 1. 
Tier-1 is composed by wearable sensors; each one samples a vital sign at a suitable 
periodicity. After sampling, the sensors transmit raw data to a patient's wireless 
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personal device carried by the patient, e.g. a tablet or a smartphone, which represents 
Tier-2. The role of the personal device is twofold: On the one hand, it acts as the 
network gateway by receiving the samples originating from the wearable sensors and 
by forwarding them (via a WiFi connection) to a data server, which represents Tier-3. 
On the other hand, it embeds SLENDEr, a learning simulation environment that uses 
the context data collected by the sensors to change the parameters of the simulation. 
Tier-3 acts as a base station, a server located at the hospital that holds a database 
where the data corresponding to the patient is stored, processed and disseminated 
(when necessary) to the stakeholders that should be aware of the patient’s medical 
situation to carry out adequate care and medical actuations.  

For the purpose of this study, only glucose sensors used to measure the glycemia 
level will be considered, and only Tiers 1 and 2 will be considered in the simulated 
architecture. 

 

Figure 1: Architecture of the system 

4.1 Integrating Biomedical Sensors into a Simulation Learning Environment 

SLENDEr is a simulation learning environment that allows two types of interactions, 
namely, active and passive interactions. The former are actions that users perform to 
explore the learning content. The latter are the changes in the simulation parameters 
introduced by medical sensors worn by the patient. Therefore, the data collected by 
the sensors characterize the physical condition of the user, which, in turn, is relevant 
to the interaction between her and the simulation learning environment. 

SLENDEr's learning materials have been framed around five core topics: eating, 
converting carbohydrates, proteins and lipids into glucose, and, removing waste. Each 
topic has a reading activity, an experimental activity and one or two multiple-choice 
questions (see Fig. 2). The SLENDEr simulation tool includes knowledge-based 
support and active and passive interactive capabilities to help learners discover the 
processes followed by the organism to get energy from protein, carbohydrates and fat 
in the absence of insulin. It supports: 

 The structure of the discovery process, organized into several topics that 
require the completion of reading, experimental and assessment activities. 

 Reading activities designed to provide the background information necessary 
to successfully accomplish the experimental activities for each topic, (Fig. 2, 
upper left corner). 

 Experimental activities designed for the discovery of each learning concept, 
(Fig. 2, upper right corner). 

Tier 1: 
Body Area
Network

Tier 2: 
Gateway & Device

SLENDEr

pull

data

Tier 3: 
Base Station
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 Context-based information to feed the experimental environment, (Fig. 2, 
lower left corner). 

 Assessment activities to encourage students' reflection, (Fig. 2, lower right 
corner). 
 

 

Figure 2: Learning activities associated with the topic: ‘Convert carbohydrates into 
glucose’. Left to right, top to bottom: reading activity; experimental activity; 

demanded information; assessment activity. 

When a learner decides to run the application with real biomedical data, 
SLENDEr pulls the latest glucose measure from the biomedical sensor and modifies 
the glucose level in the simulation according to the glucose value sent by the sensor. 
Then, the learner is ready to perform the contextual learning activities that are 
structured by the platform. The content necessary to understand the main processes 
involved in the simulation activities is provided by reading activities. Concrete 
experiences are possible due to the contextual data and the experimental activities. 
Finally, reflection is fostered by assessment activities that provide students with the 
necessary feedback. 

The simulation learning environment designed has potential learning benefits for 
children who are newly diagnosed with diabetes that combine the benefits associated 
with SLEs with those associated with contextualized learning. First, its activities, 
which are aligned with patients' medical situations, will provide learners with 
opportunities to take an active part in their instruction and might lead to increased 
motivation, engagement, and eventually, learned success [Keller 1979]. Second, 
SLENDEr helps the learner to acquire conceptual knowledge. In particular, it offers 
unique opportunities for dynamic, complex, and unanticipated medical situations to 
be practiced and managed with no risk to children’s health [Makransky et al. 2016]. 
This potentially fosters deeper cognitive processing during learning, which, in turn, 
leads to better learning outcomes [Dean et al. 2010]. Third, the simplification of the 
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glucose metabolism processes will minimize the cognitive load for learners [Pillay et 
al. 2015]. Fourth, SLENDEr's interactive visualizations will potentially be easier to 
remember than textual information [Dean et al. 2010, Wu et al. 2014]. Finally, the 
context information, along with the simulations, will be potentially useful to foster the 
reflection of the patient about her need to adhere to her treatment [Wei 2014]. 

5 Method 

This study consisted of two relatively autonomous parts that worked together to 
determine the technical viability and educational usefulness of SLENDEr. SLENDEr 
is meant to assist 8–12 year old children who are newly diagnosed with diabetes in 
understanding the endocrine regulation of the glucose metabolism processes followed 
by their bodies. 

The first part of the study was a computer simulation of the behavior of three 
commercial wearable glucose sensors. The behaviors were compared, focusing on the 
sensors’ capability of being integrated into a simulation learning environment. The 
second part of the study explored the educational usefulness of the learning 
environment in terms of two important constructs of the evaluation of simulation 
learning environments: fidelity and validity [Feinstein and Cannon 2014].  

Since fidelity and validation involve the consensus of simulation designers and 
subject-matter experts, 13 health professionals participated in the study: eight doctors 
and five registered nurses from the “Centro de Salud Ciudad de los Periodistas” in 
Madrid. Health professionals were paediatricians and pediatric diabetes specialist 
nurses who work with children and young people affected by type 1 diabetes mellitus. 
The age of the professionals varied from 26 to 66 years old, with an average age of 
51.2 years old (SD = 12,3).  

The evaluators received the following scenario description: 
Learner Profile:  Sophie is 10 years old, and she has just been diagnosed with 

diabetes. She frequently uses her mobile phone to play, but she had never used any e-
learning application.   

Learner goal: Sophie must understand the endocrine regulation of the glucose 
metabolism processes followed by her body in the absence of insulin when she has 
just eaten. 

Task to perform: The evaluators were asked to complete the following tasks using 
the SLENDEr application: (1) discover information; (2) navigate through the 
application; (3) perform a simulation with the system's data; and (4) perform a 
simulation using data from the wearable sensor. Finally, each evaluator answered the 
following open-ended questions: 

Question 1: In your opinion, to what extent does the simulation model resemble 
reality?  

Question 2: In your opinion, to what extent do the eventual disparities between 
the model and reality affect the learning process? 

Question 3: In your opinion, to what extent do you think that the tool effectively 
measures learners' accomplishment of the learning objectives? 

Question 4: In your opinion, to what extent are the data from biomedical sensors 
helpful to provide meaningful learning for patients? 
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Question 5: What do you think about the learning resources (e.g. text, 
simulations) used in the tool? 

The first question was aimed at evaluating the fidelity of the system, which is the 
degree of similarity between the training and the operational situation in terms of the 
physical and functional characteristics of the system being simulated. Simulators do 
not need to be an exact representation of the real world in order to provide effective 
learning; what is more important is to show the general principles of the real object or 
processes along with the user's perception of the simulation’s verisimilitude [Labus et 
al. 2015].   

The second and third questions were intended to evaluate the validity of the 
simulation application following the definition of the American Psychological 
Association: “the degree to which evidence and theory supports the interpretations of 
[participants’ performance] entailed by the proposed use of [the simulation]” 
[Stainton et al. 2010, Feinstein and Cannon 2014, AERA 2014]. Whereas many 
validity types have been described, validity research in medical education requires 
scrutiny of the simulation’s content to determine whether the simulation accurately 
represents the desired phenomena, to judge the simulation tool’s ability to measure 
the performance level of the participants, and finally, to determine the simulation’s 
predictive ability: Does the simulation lead to the expected learning outcomes? 
[AERA 2014, Graafland et al. 2014].  

The evaluators were helped by developers whenever they had problems 
understanding the SLENDEr interface. Problems occurred at the beginning of the 
intervention when three of the evaluators required help to open the application on 
their smartphones and to initiate the navigation through the application. In order to 
ensure independent and unbiased evaluations from each evaluator, they were not 
allowed to communicate with anybody during the intervention. 

Using a qualitative method of content analysis [Hsieh and Shannon 2005], the 
written answers were inspected, highlighting all text that appeared to describe the 
initial coding categories: fidelity, validity, interactivity, learning resources and 
assessment. An analysis of the 45 written responses produced a total of 134 discrete 
observations across the data set. All of the highlighted text was coded using the 
predetermined categories whenever possible. After coding, the data from each 
category were examined to determine whether subcategories were needed. 

To bring the system proposed in Fig. 1 into reality, we need to evaluate the 
connectivity between tiers and to evaluate the educational level of Tier-2 (SLENDEr). 
For this reason, the next two sections provide the evaluation of our approach from the 
technical (Section 6) and educational point of view (Section 7) that are apparently not 
related. However, we want to stress here the need of evaluation of our system from 
the two viewpoints, one to assess its feasibility by evaluating currently available 
sensors and network technologies, and the other one to assess its educational level. 

6 Technical Viability Results 

This section focuses on the performance exploration of the part of the system 
architecture that is integrated by a BAN composed of a single wearable glucose 
sensor. The sensor’s data will be transmitted to the simulation learning environment. 
The evaluation is done through simulations aimed at determining the viability of a 
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real implementation of this subsystem, where the rates for data generation employed 
by real sensors are simulated. To this end, three Continuous Glucose Monitoring 
(CGM) sensors, certified for use with children, are evaluated: ipro, abbot, and G4/G5 
Dexcom series. Table 1 shows a brief comparison of the main characteristics of the 
commercial sensors considered. The simulations are used to compare the following 
three metrics: 1) The traffic overhead in terms of the number of packets transmitted 
per unit of time; 2) the throughput of the wireless connection; and 3) the maximum 
number of packets that can be effectively processed by the simulation learning 
environment. 

6.1 Traffic Overhead  

With the purpose of avoiding glucose reading losses between fingersticks (it is 
estimated that nearly 78% are lost), Medtronic proposes its ipro kit, composed of a 
sensor implanted under the skin and an ipro recorder that receives and stores the 
readings from the sensor. A reading can be sent from the sensor to the receiver every 
five minutes, which represents a maximum of 288 daily readings. The abbot system 
comprises a continuous glucose monitoring (CGM) sensor and a reader device able to 
scan the sensor when located at distances from 1–4 cm. The sensor measures the 
glucose level every 15 minutes, which represents a maximum of 96 daily readings. 
Finally, the last sensor considered is the G4/G5 Dexcom series, which is able to 
transmit each reading via Bluetooth to a smartphone. We are interested in comparing 
the overhead when a BAN is integrated by only one of the three sensors (ipro, abbot, 
or Dexcom). Each BAN operates as follows: The sensor reads the glucose level of the 
patient at the interval given by its reading rate (see the fourth column in Table 1), 
transmits each reading to its receiver device and stores the reading in its memory. 
Figure 3 shows the number of readings taken by the three sensors according to its 
reading rate over time. Assuming that each reading taken is immediately transmitted 
to its receiver device (note that this is the typical behavior of WSN applications, 
which follows the pattern sense–store–transmit–sleep), the results also represent the 
traffic overhead in terms of the number of data packets that are delivered to the 
network or to the receiver device. Subsequently, the higher the reading rate, the 
bigger the traffic overhead. Note that ipro sensor does not currently support wireless 
communication and, therefore, it would not be adequate to be integrated with a 
smartphone. 

 
Sensors Implantation 

mode 
Autonomy 
(days) 

Monitoring 
rate 

Networking 

ipro Under skin 6 5 minutes No 
abbot Interstitial liquid 14 15 minutes 13.56 MHz 

Radio 
frequency 

G4/G5 
series 

Under skin 7 5 minutes Bluetooth 

Table 1: Comparison between three wearable CGM sensors: ipro, abbot, Dexcom 
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Figure 3: Maximum overhead due to the operation of ipro, abbot and dexcom sensors 

6.2 Throughput  

To be able to effectively measure the network throughput when data of variable sizes 
are sent, three wireless network technologies are considered: Bluetooth [Bluetooth 
2004], WiFi 802.11n and ZigBee [ZigBee2005] with bandwidths of 3Mbps, 300Mbps 
and 250Kbps, respectively. Note that only the Dexcom sensor enables direct wireless 
communication with a smartphone via Bluetooth. The purpose of this experiment is to 
compare the throughput that is obtained by these three technologies regardless of the 
communication technology used by the sensor. We have computed the network 
throughput for Bluetooth, WiFi 802.11n and Zigbee for different data sizes ranging 
between 1 and 1024 bytes. Since WiFi has the larger bandwidth, and consequently 
obtains the best times, typically, this is not the preferred choice for communication 
inside a BAN and between a BAN and the gateway device, because of its high energy 
consumption. We have also computed the maximum number of data packets per 
second that can be transmitted using a Zigbee or Bluetooth connection when the data 
packet size ranges between 1 and 8192 bytes. For small packet sizes below 128 bytes 
(as usual for a BAN), Bluetooth can transmit more than 1500 packets, which would 
require a frequency of readings higher than the one that is actually used by the three 
sensors considered. Note that the maximum number of packets transferred on a WiFi 
connection would still be much larger than the one that is obtained with Bluetooth. 
We conclude that both Bluetooth and ZigBee are two technologies that fit well with 
the requirements of a BAN, since they support the transmission rate of the 
commercial sensors considered. WiFi, however, should be disregarded due to its high 
energy consumption. In fact, according to their specifications, both Bluetooth and 
ZigBee are designed for battery-operated devices transmitting at short distances small 
data sizes, while WiFi is normally intended for larger data sizes transfer at high 
speeds.  

6.3 Maximum Number of Packets  

Finally, we evaluate the number of data packets for each type (ipro, abbot, and 
dexcom) that have to be transmitted to exhaust the memory space at the receiver 
device that holds the simulation learning environment. To this end, different memory 
sizes ranging between 16 and 512 KB, and different data packet sizes ranging 
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between 1 and 2048 bytes are considered. Figures 4 and 5 show the number of days of 
uninterrupted operation of the three sensors to exhaust the memory space of the 
receiver, assuming that none of the packets are removed from the memory during that 
time. The number of days for packets sized 8 bytes and 128 bytes are shown in 
Figures 4 and 5 respectively. As observed, when the data packet size increases, the 
number of days required to fill the memory space decreases. Note that in some cases, 
for memory sizes below 32KB, the number of days is lower than the autonomy of the 
sensor, which would mean having to erase the memory in order to continue storing 
data; otherwise, the data will be lost or overwritten. Such a limitation on the memory 
space could impact the simulation learning environment and should be avoided; thus, 
a tradeoff is necessary between the autonomy of the sensors, the memory space and 
the data packet size to be transmitted. Subsequently, the optimal size of the message 
is the one that maximizes the number of uninterrupted days of operation of the sensor, 
let’s say, λ, subject to the autonomy (in days) of the sensor being larger than λ. 
Otherwise, the memory of the device will be overwritten. 
 

 

Figure 4: Number of days of uninterrupted operation of ipro, abbot, and dexcom to 
exhaust the memory size using messages of 8B 

 

Figure 5: Number of days of uninterrupted operation of ipro, abbot, and dexcom to 
exhaust the memory size using messages of 128B 
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7 Educational Usefulness Results 

In order to understand the diabetes pathology, it is necessary to have some knowledge 
of the physiological mechanisms that regulate the body’s blood glucose. However, 
these mechanisms involve a series of chemical reactions occurring in the cells of 
complex organs such as the pancreas or the liver. For the purpose of this study, it was 
not necessary to have a full simulation of the processes involved in endocrine 
regulation of glucose, but the simulation needed to be correct and comprehensible for 
8–12 year old children. The simplification that was made involved three aspects, 
namely the endocrine regulation processes, the graphical representation of the 
processes and background information. The results of the evaluation of the design 
decisions taken have been classified in terms of fidelity, validity and implementation 
of the experiential learning process, and they are presented below.  

7.1 Fidelity  

There were 12 comments in this category that reflect the participants' perception 
about the degree to which the SLENDEr simulator emulates the regulation 
mechanisms activated when blood glucose levels are high and the patient does not 
have enough insulin. Eight participants agreed that there were differences between the 
real glucose metabolism processes and how they were represented in the simulator. 
However, four participants remarked that there is a functional correspondence 
between the simulation and the applied context. All of the participants who answered 
this question stated that no relevant consideration was left out of the simulation; 
however, one of them pointed out that there are other regulation processes that were 
not considered. The following response summarizes the participants’ general 
comments: 

Diabetes is a very complex process and I think the model is far closer to reality, 
but the simulation adapts quite well to the basic level of pathophysiology of diabetes. 
 

Therefore, according to the participants in the study, the SLENDEr simulator 
does not provide an accurate model of the regulation processes of glucose, but it is 
perceived as accurately reflecting the underlying basic concepts. 

7.2 Validity  

There were 15 comments comprising the participants' opinions about the potential 
benefits and drawbacks of the low-fidelity SLENDEr simulator for helping children 
who are newly diagnosed with diabetes to understand their illness. The participants 
also suggested some mechanisms to improve the validity of the simulator.  

The low fidelity of the simulator was perceived as an advantage for the learning 
effectiveness of the SLENDEr simulator by eight of the participants. They claimed 
that the simplicity of the tool would allow patients to focus on the main aspects of the 
regulation process of diabetes: 
 

[The simulator] strictly reflects what patients should learn about how the body 
works when ingesting food and there is not enough insulin. 
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The tool helps to reinforce concepts taught in the endocrinology service. 
 

Three participants indicated that the abstraction chosen to represent the human 
organs might cause confusion to young children and suggested changing the graphical 
representation to one more familiar to children, closer to the representation of the 
human body in textbooks. 

There were three comments about the convenience of not using the tool with 
newly diagnosed children, but with those who already have some initial training (two 
comments). Another comment suggested an improvement in the fidelity of the 
simulated processes in order to suggest parameters that would stabilize the patients’ 
glucose levels. 

Therefore, the evaluators perceived that despite the low fidelity of the processes 
simulated, the tool is potentially effective for helping patients to learn how their body 
reacts to a lack of insulin. However, it seems necessary to include some 
improvements in order to choose a better graphical representation of the human body. 
Further improvements in the representation would result in a more effective 
educational tool. 

Regarding the ability of the tool to measure the participants’ performance, the 
highest number of reported observations (10 out 20) was focused on the content of the 
multiple-choice questions. The participants described the questions as “concise and 
clear”, “directly related to the simulation” and recognized the feedback provided as 
potentially educationally effective: “I believe that the questions' feedback summarizes 
relevant information that patients must learn”. Eight comments highlighted the 
suitability of asking questions at the end of simulations as a mechanism of reflection 
and recognition of accomplishments. Two suggestions regarding the personalization 
of the tool were made:  
 

I wonder if there is any possibility of adapting the questions to the child's age. 
 

I suggest allowing patients a change of proficiency level according to her 
answers. 

 
Therefore, the assessment included was perceived as useful in this learning tool. 

No comments were provided about the ability of the simulation tool to measure 
participants’ performance. 

Regarding the learning outcomes, it is expected that a diabetic learning tool will 
foster patients’ adherence to treatment and will raise awareness about the need to 
control diabetes. Eight out of fourteen observations described the potential benefits of 
using the SLENDEr tool as a mechanism to reflect the risks involved when patients 
do not follow their treatment. A representative comment was provided by a physician:  
 

I think that the use of the tool will allow children to understand the risks 
associated with non-adherence to treatment or a dietary transgression. 
 

The rest of the observations remarked about the necessity to incorporate more 
simulations either to deal with more common risk situations or to allow practising 
daily control points. The risk situations mentioned included hypoglycemia, and the 

552 Ibanez M.-B., Escolar S., Iskander R., Viera K., Delgado-Kloos C. ...



control points identified as necessary to include were before meals and snacks, before 
and after exercise and before going to bed. Finally, the comments reported that 
SLENDEr is potentially useful for reflecting the risks of the disease, and there was a 
moderately high interest in including more learning material to simulate other risk 
situations associated with type 1 DM. 

7.3 Interactivity  

In this category, the evaluators reported 31 opinions about the potential educational 
effectiveness of the active and passive interactions. With regard to the potential 
benefits of the active interactions, there were eight comments highlighting the 
simulator’s potential to increase patients' knowledge about their illness. There were 
four opinions about the potential of the simulator as an engagement tool. Three of the 
evaluators said that the simulator has potential as an engagement tool, whereas 
another stated that children would be more motivated to engage with an educational 
game than with a simulator.  

The incorporation in real time of blood glucose levels to the simulation learning 
tool was perceived by evaluators as useful for learning purposes in three main ways. 
First, it was signalled as a potential motivating factor to look after them (four 
observations). Second, it was perceived as a useful reflecting mechanism about the 
consequences of poor disease control (three observations). Third, the educational 
relevance of having instant feedback about the effect of activities such as eating and 
exercise on blood glucose levels was highlighted (two observations). 

There were three observations suggesting the incorporation of new context data 
into the system. They proposed the processing of data from biomedical sensors and 
from web-based services to provide physiological state indicators such as age, weight 
and size. One of the doctors suggested: 
 

... for a more complete information about the actual situation of the patient, it 
would be necessary to include information about age, weight, size, heart rate, 
temperature, the amount of exercise that the patient intended to do, the amount of 
ingested calories the patient expected to consume. 
 

There were another seven observations suggesting the convenience of using 
context information for four different purposes: 1) to reflect about actual, previous 
and recurrent patient physiological states (two observations); 2) to provide 
personalized assistance to patients considering their actual physical condition (one 
observation); 3) to anticipate what is likely to happen next (two observations); and 4) 
to involve the patients' families and physicians in the patient education and training 
(two observations). Three of the most representative comments follow: 
 

I think it would be useful for the patient, her family and her doctor to have some 
of their simulations recorded. Such a capability would allow patients to resume 
simulations with previous physiological states and help us to analyze more deeply 
recurring situations for this particular patient. 
 

With information about the actual glucose level, the actual physical activity level 
and the calorie intake, the patient might observe the immediate effects of her 
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treatment adherence and hopefully she will understand the benefits of controlling her 
glucose levels. 
 

I wonder if it is possible to include capabilities to suggest what to do when there 
is a blood sugar imbalance and to notify the family and the doctor when a dangerous 
situation is detected. 
 

Therefore, the active interactions included were perceived as potentially effective 
in terms of knowledge acquisition and motivation, both to learn about the diabetes 
and the risks of the illness. 

On the other hand, the evaluators highlighted the capabilities of passive 
interactions to customize simulations in such a way that they reflect patients' risks in a 
timely manner. They envisaged that these capabilities would be helpful for the 
personalization of the consequences of poor adherence to treatment. The evaluators 
also suggested the incorporation of more real-time data from patients and the 
extension of the learning tool to incorporate patients' families and physicians. 

7.4 Learning Resources  

SLENDEr has two types of learning resources, namely text and simulation activities. 
The text is aimed at providing the basic knowledge to understand simulations, 
whereas the simulation activities have been designed to explore distinguishable 
metabolic processes in a maximum of five steps.  

From a total of 42 observations about the learning resources, 11 were related to 
vocabulary, nine were opinions about the volume of the information provided, 9 
reflected the participants' judgments about the accuracy of the information and 13 
described the participants' perceptions about the educational quality of the 
simulations. 

The highest number of observations about the vocabulary (9 out of 11) reported 
that some words employed were too technical to be used in this learning context. 
However, two comments remarked that the information attached to different elements 
of the simulation was useful and easy to understand.  

The volume of information was considered too high in seven out of nine 
comments about this subject; the evaluators who reported this drawback suggested 
two solutions to solve this problem. One solution proposed was to give less 
information (three observations), and the other was to include images with the text 
(four observations).  

Regarding the quality of the information, there were nine observations 
recognizing that the information was complete and correct. There were no negative 
comments about this topic. 

The concepts behind the simulations were perceived as being presented in a 
simple and direct way (seven observations). However, there were four observations 
stating that the simulations were not suitable for 8–12 year old children; all these 
observations also referred to the vocabulary used. The following observations are 
examples of both types of opinions. 
 

The simulations are easily comprehensible. 
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Including terms such as “ketones” in the simulation will confuse more than help 
children. 
 

Therefore, the participants perceived that the quality of the information provided 
was, in general, inadequate for young children and suggested several ways to address 
this drawback. The quality of the simulations was generally perceived as adequate for 
learning purposes; the negative comments were probably due to the terminology used 
in the simulations 

8 Discussion and Conclusions 

The present study was designed to determine whether a learning simulation tool with 
capabilities to use real physiological states provided by biomedical wearable sensors 
can be educationally effective to teach 8–12 year old children the diabetes regulation 
processes occurring in their bodies. To this end, a prototype of the WBAN 
architecture, in which raw biomedical data was integrated into the simulation learning 
tool, was evaluated by a group of healthcare professionals who used the tool and gave 
their opinions in an open-ended questionnaire. 

The communication between the sensors and SLENDEr was evaluated by the 
simulation in terms of the traffic overhead, throughput and maximum number of 
packets to transmit. We evaluate the feasibility of integrating sensors into our system 
by emulating the data rates generated by real glucose sensors used in children, ipro, 
abbot, and dexcom. The results demonstrated that such data rates can be effectively 
processed by SLENDEr. The network technologies WiFi, Bluetooth, and Zigbee were 
compared. These technologies provide transmission rates sufficient for the sensors; 
however, the high energy consumption of WiFi impacts the autonomy of the sensors, 
and therefore, this makes it an inadequate choice. Finally, the amount of packets that 
have to be transferred from the sensors to the receiver device to completely deplete its 
memory was considered. The optimal packet size is the one that maximizes the 
number of uninterrupted days the sensor can operate without overwriting the memory 
of the receiver, which is a function of the sensor autonomy, sampling rate, and 
memory capacity. 

In a broad sense, the purpose of any computer simulation is to gain understanding 
of the original object by studying the behavior of the simulation in a cost-effective 
way. A difficulty to overcome in this study was to simplify the glucose metabolism to 
be understood by 8-12 year old children. The results of the educational evaluation are 
promising that a simplified process model might be an effective method for 
introducing 8-12 year old children to the endocrine regulation of glucose metabolism 
processes. This result has promising implications in the educational arena. The 
reduction and abstraction of a real-world phenomenon might create less cognitive 
load for the learner [Stainton et al. 2010]. The participants' main concern was about 
the text included to support the simulation activities: It was perceived as too technical 
for 8–12 year old children. This drawback must be addressed prior to full scale 
development. 

The participants in this study perceived that the simulation processes might help 
patients to gain a better understanding of their illness in a potentially motivating 
learning environment and also to reflect on the risks associated with type 1 DM. This 
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is an encouraging result in the educational and medical fields. On the one hand, 
educational researchers agree that students who are motivated to learn are more likely 
to engage, persist, and expend effort for task completion than those who are 
unmotivated [Csikszentmihalyi 1991, Keller 1979]. On the other hand, a good 
understanding of the consequences of chronic illness such as diabetes is associated 
with good treatment adherence [Dean et al. 2010]. However, caution must be applied, 
as some authors claim that knowledge alone is not enough to promote behavior 
change in patients with diabetes [Pillay et al. 2015]. Therefore, further research 
should be oriented toward studying how the behavior may be changed by the 
knowledge provided by SLENDEr.  

The use of raw data from wearable sensors as input to SLENDEr was also 
perceived as useful for knowledge acquisition. The evaluators highlighted new 
educational potentialities of the learning environment mainly to motivate the target 
population to use a tool that reflects their medical condition, to foster reflection about 
the health consequences of patients’ actual behaviors, and to provide personalized 
feedback about actions to take given their physiological state. Future research will 
explore whether the learning environment proposed is able to meet these expectations. 

The evaluators suggested extending the functionality of the learning tool in two 
dimensions. They suggested including more biomedical sensors in the platform (e.g. 
blood pressure, temperature) and providing selected information to patients' families, 
physicians and caregivers. These two dimensions encompass elements for Tier-1 and 
Tier-3 of the full architecture envisaged and seem to be aligned with the current 
trends in wearable computing in eHealth [Wu et al. 2014, Wei 2014]  and eLearning 
[Labus et al. 2015], whereby several actors (e.g. patients, doctors, students, 
professors) provide and use data from external sensors.  

A strength of this study is the multidisciplinary nature of the research team and 
the diverse sample of evaluators who participated were paediatricians and pediatric 
diabetes specialist nurses who work with children and young people affected by type 
1 diabetes mellitus. However, this study has some limitations. The evaluators' views 
may or may not accurately represent the views of the broader population of health 
professionals, because all of them were recruited from the same health center. Due to 
resource constraints and the time limitations of health professionals, the evaluation 
has been performed in one case study. 

Our findings agree with a recent study about the educational affordances of 
wearable technologies [Bower and Sturman 2015] including a pedagogical use that 
our results also suggest is relevant, namely simulation, and particularly, the 
simulation of physiological processes using biomedical context data. The learning 
environment was perceived as potentially motivating and useful for providing real-
time feedback. It was also found useful for promoting reflection. These two findings 
have been identified as educational affordances of wearable and sensor technologies 
in previous works [Bower and Sturman 2015, Specht 2014].  

Future work will address the limitations of SLENDEr’s current design, increase 
the graphical content and incorporate more biomedical sensors into the learning tool, 
as well as new functionalities to share relevant information with healthcare 
stakeholders. With a consolidated version of the platform, SLENDEr will be 
evaluated by 8-12 year old children who are newly diagnosed with type 1 DM. 
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