
Abstract Data Types without the Types

Philip Wadler

(Edinburgh University, Scotland

wadler@inf.ed.ac.uk)

Dedicated to David Turner on the occasion of his 70’th birthday

Abstract: The data abstraction mechanism of Miranda may be adapted to a dynam-
ically typed programming language by applying ideas from gradual typing.

Key Words: abstract data type, information hiding, gradual typing, Miranda, Haskell

Category: D.1.1, D.3.1, D.3.3, F.3.2

1 Introduction

Oh, what a joy to read a paper by David Turner! The prose flows, the ideas leap.

Stay tuned, I will quote him at length shortly.

Turner’s Miranda offers a style of data abstraction different from that found

in other languages, such as ML, HOPE, and Haskell. Miranda uses type signa-

tures where the others use information hiding to enforce seals; I will refer to the

two approaches respectively as signing and sealing.

Here is how [Turner(1985)] describes the difference:

Although the idea of an abstract data type is now standard, the

reader will see from the example that the way in which they are presented

in Miranda (compared with say ML or HOPE) involves some innovations.

The first, and minor deviation is that we have separated the declaration

of the signature of an abstract data type from the statement of how it

is implemented, treating these as distinct syntactic acts.

More significant is that the abstract data type mechanism used in

Miranda does not require the division of the program into two regions

(the inside and outside of a capsule, say) such that in one region the

programmer has access to conversion functions (called ‘abs theorem’

and ‘rep theorem’, say) permitting him to move at will between the

abstract type and its representation, while in the other region these are

hidden from him. The mechanism used in Miranda is transparent, in that

all the identifiers involved are visible throughout the script. The security

of the abstract data type here depends, not on the hiding of declared

identifiers, but on the fact that explicit acts of conversion between the

abstract type and its representation are nowhere permitted.

Journal of Universal Computer Science, vol. 23, no. 1 (2017), 5-20
submitted: 1/8/16, accepted: 1/12/16, appeared: 28/1/17 © J.UCS

. . .

The advantages (in terms of security and convenience) of having

the conversion functions installed by the compiler rather than the user,

should be clear. It might be argued however, that this is pushing just

too much onto the compiler and will lead to difficulties (perhaps that

users will not understand the implications of what they are doing). The

method of defining abstract data types must be regarded as one of the

more experimental features of Miranda, and only after a period of ex-

perience with the language will we be in a position to say where the

balance of advantage lies.

The above and all subsequent quotes are from [Turner(1985)]. Citing ML and

HOPE while failing to cite Haskell was no slight to the latter, since it was not

conceived until two years later. Also note that Standard ML would later offer

users a choice of abstracting by either signing or sealing.

Turner goes on to observe:

Note that the mechanism for data type abstraction which is presented

here is inextricably bound up with strong (i.e., compile time) typing.

There would seem to be no equivalent mechanism available in a language

which delays its type checking until run time. By contrast, the traditional

account of data type abstraction as an act of encapsulation would appear

to be equally applicable to both strongly and weakly typed languages.

Here by ‘weakly typed languages’, Turner is referring to what are now called

‘dynamically typed’ or ‘uni-typed languages’, which I will refer to as untyped ;

such languages include Racket, Python, JavaScript, and Miranda’s predecessor

KRC [Turner(1981)]. Any support for data abstraction offered by such language,

both then and today, is based on the traditional encapsulation account, usually

in conjunction with object-orientation.

The purpose of this paper is to argue that, in one respect, Turner missed

the mark: it is in fact possible to apply his mechanism for data type abstrac-

tion to an untyped language. The variant of Turner’s mechanism for untyped

languages that I will describe blends the two techniques, using signing to infer

sealing, and is inspired by previous work on gradual typing [Guha et al.(2007),

Matthews and Ahmed(2008), Ahmed et al.(2011), Siek and Wadler(2017)].

Two caveats. First, the method I describe works only for abstract data types

that do not accept type parameters; extending it to abstract data types with

parameters is left to future work. Second, because type constraints are enforced

dynamically rather than checked statically, there is additional cost at runtime.

I admit it: I am a fan of Miranda’s signing, and find Haskell’s sealing to

be far clumsier. Why did Haskell adopt sealing rather than signing? Largely

6 Wadler P.: Abstract Data Types without the Types

wff ::= Var [char] | wff $Implies wff | Not wff

abstype theorem

with axiom1, axiom3 :: wff->wff->theorem

axiom2 :: wff->wff->wff->theorem

modus_ponens :: theorem->theorem->theorem

contents :: theorem->wff

theorem == wff

axiom1 a b = a $Implies (b $Implies a)

axiom2 a b c = (a $Implies (b $Implies c)) $Implies

((a $Implies b) $Implies (a $Implies c))

axiom3 a b = Not (a $Implies b) $Implies (Not b $Implies Not a)

modus_ponens a (a $Implies b) = b

contents x = x

Figure 1: Theorem as an ADT in Miranda

because myself and the rest of the Haskell committee were unclear on how sign-

ing would interact with type classes, the most innovative feature in Haskell

[Wadler and Blott(1989), Hudak et al.(2007)]. Later, my student Jeremy Yallop

showed programs using signing can be translated into ones using sealing, and

vice versa [Wadler and Yallop(2008), Yallop(2010)]. This means my initial con-

servatism was unnecessary. If I had it to do over again, I would push for Haskell

to adopt a mechanism for abstraction like that found in Miranda.

The paper is organised as follows. Section 2 reviews Turner’s mechanism for

Miranda, and contrasts it with the mechanism found in Haskell and other lan-

guages. Section 3 gives an informal description of how to adapt Turner’s mecha-

nism to untyped languages. Section 4 fleshes this out by giving a formal descrip-

tion for a tiny core calculus. Section 5 concludes.

2 Two mechanisms for type abstraction

[Turner(1985)] presents two examples of abstract data types, which I reprise

here.

The first is an ingenious implementation of a theorem prover, inspired by

[Gordon et al.(1979)]. The theorem example in Miranda is given in Figure 1,

and in Haskell in Figure 2. It is best introduced by quoting Turner.

Suppose we are interested in writing programs to derive theorems in a

formal system of inference. Such a system would typically be organised

7Wadler P.: Abstract Data Types without the Types

module Theorem(Wff(..), Theorem, axiom1, axiom2, axiom3,

modus_ponens, contents) where

import Prelude

data Wff = Var String | Wff ‘Implies‘ Wff | Not Wff

deriving (Eq, Show)

newtype Theorem = Thm Wff

axiom1 :: Wff -> Wff -> Theorem

axiom1 a b = Thm (a ‘Implies‘ (b ‘Implies‘ a))

axiom2 :: Wff -> Wff -> Wff -> Theorem

axiom2 a b c = Thm ((a ‘Implies‘ (b ‘Implies‘ c)) ‘Implies‘

((a ‘Implies‘ b) ‘Implies‘ (a ‘Implies‘ c)))

axiom3 :: Wff -> Wff -> Theorem

axiom3 a b = Thm (Not (a ‘Implies‘ b) ‘Implies‘

(Not b ‘Implies‘ Not a))

modus_ponens :: Theorem -> Theorem -> Theorem

modus_ponens (Thm a) (Thm (a’ ‘Implies‘ b)) | a == a’ = Thm b

contents :: Theorem -> Wff

contents (Thm x) = x

Figure 2: Theorem as an ADT in Haskell

as follows. There is a class of wffs (well formed formulae), which are

correctly formed propositions of the theory. These can be defined by

giving a grammar, say. Theorems are a distinguished subset of wffs,

which are generated inductively from axioms by using rules of inference.

For example in the standard formulation of propositional logic, there

is an axiom which says that for any wffs A B, it is a theorem that: A

implies (B implies A). There are two more axioms, and a single rule of

inference (modus ponens) which enables us to derive new theorems from

existing ones.

We would like to use the type system to guarantee that a well typed

program cannot, even accidentally, make an invalid inference.

The trick is to introduce theorem as an abstract data type. Each theorem is

8 Wadler P.: Abstract Data Types without the Types

represented as a wff. However, the only ways to introduced a theorem is via

three axioms, each of which combines two or three wffs to yield a theorem,

or via the inference rule modus ponens, which combines two theorems to yield

a theorem. Finally, contents allows us to extract the underlying wff from a

theorem.

Turner describes abstraction vividly:

Theorem is an abstract data type based on wff. A theorem looks

like a wff, but has been lifted to a higher world (think of it as being

dyed blue). The entrances to this higher world are closely guarded (as

in general are the exits, although that is not relevant in this example.)

The only way to create a blue object is either by using an axiom, or by

applying a rule of inference to objects that are already blue.

In both Miranda and Haskell, the functions making up the abstract data

type have identical type signatures. However, in Miranda the signatures are

required, and enforce the distinction between wff and theorem, while in Haskell

the signatures may be inferred, and the key distinction is enforced by using the

constructor Thm, which when used in a term converts a Wff to a Theorem, and

in a pattern converts a Theorem to a Wff. The secret to abstraction in Haskell

is that the concrete type Wff is exported from the module along with its three

constructors (indicated by writing ‘Wff(..)’ in the declaration in the first line)

while the abstract type Theorem is exported without its constructor (indicated by

writing ‘Theorem’ with no following ‘(..)’, a rather subtle distinction to convey

such a crucial difference). The Miranda code is arguably easier to read, precisely

because it keeps separate information that is interleaved in Haskell; in particular,

the Haskell code is spotted with appearances of the constructor Thm. Incidental

differences between the two are that Miranda implicitly defines equality over

wff while Haskell requires an explicit declaration for Wff (via deriving Eq),

and Miranda implicitly invokes equality via pattern matching (two appearances

of a on the left hand side of the equation defining modus ponens) while Haskell

requires explicit invocation (appearances of a and a’ together with a == a’).

The second example is the ‘hello world’ of abstract data types, the stack.

Again, the stack example in Miranda is given in Figure 3, and in Haskell in

Figure 4. Turner’s original example used polymorphic stacks, but here we restrict

to stacks of numbers. Stacks are given the obvious implementation in terms of

lists. Again, Miranda is arguably a little clearer than Haskell.

Turner outlined how to implement his mechanism (quoted verbatim).

How to typecheck a script containing an abstype declaration (sketch):-

First we use the binding of the abstract type to its representation type to

compute the concrete signature from the abstract signature. The bind-

ing of the abstract type to the representation type is then suppressed

9Wadler P.: Abstract Data Types without the Types

abstype stack

with empty :: stack

isempty :: stack->bool

push :: num->stack->stack

pop :: stack->stack

top :: stack->num

stack == [num]

empty = []

isempty x = (x=[])

push a x = a:x

pop(a:x) = x

top(a:x) = a

Figure 3: Stack as an ADT in Miranda

module Stack(Stack, empty, isempty, push, pop, top) where

import Prelude

newtype Stack = MkStk [Int]

empty :: Stack

empty = MkStk []

isempty :: Stack -> Bool

isempty (MkStk x) = null x

push :: Int -> Stack -> Stack

push a (MkStk x) = MkStk (a:x)

pop :: Stack -> Stack

pop (MkStk (a:x)) = MkStk x

top :: Stack -> Int

top (MkStk (a:x)) = a

Figure 4: Stack as an ADT in Haskell

10 Wadler P.: Abstract Data Types without the Types

— from now on ‘theorem’ and ‘wff’ (or ‘stack’ and ‘list’, or whatever)

are treated as two distinct and unrelated types throughout the script.

Each identifier in the signature now has two types, a concrete type and

an abstract type. When typechecking the implementation equations each

such identifier is regarded as having been declared with its concrete type;

when typechecking the rest of the script (i.e., outside the implementation

equations) it is regarded as having been declared with its abstract type.

All other identifiers in the script (i.e., those not listed in the signature)

are treated as having the same type everywhere. (end of sketch)

In Miranda, the compiler can not only convert between theorem and wff at

no cost, but also between structures involving the two, say [theorem] and [wff].

In Haskell, careful design of the compiler ensures that the former conversion also

has no cost, but until recently the latter required mapping a function over the list,

which does have a cost. To eliminate that cost, [Breitner et al.(2014)] introduce

the Coercible class to Haskell, but this introduces a significant complication

that is absent in Miranda.

Turner’s mechanism depends crucially upon static typechecking to enforce

data type abstraction. So it may come as a surprise that similar ideas may apply

in an untyped language, as described in the next section.

3 Turner’s mechanism in an untyped language, informally

I will first give an informal description of how to adapt Turner’s mechanism to

an untyped language, followed by a formal description for a tiny core language.

I will describe the mechanism in an untyped variant of Miranda, similar

to KRC but also adapting algebraic data types from Miranda. For example, the

definition of wff from Figure 1 is still permitted, and introduces the constructors

Var, Implies, and Not as before. The type declaration now specifies constraints

which are to be enforced dynamically rather than statically. Thus, whenever Var

is applied to an argument, it is checked at runtime that the argument is a list of

characters. (This dynamic check is, of course, more expensive than performing

the check at compile time, since it takes time proportional to the length of

the list.) Similarly, when Implies is applied it checks that both its arguments

belong to type wff, and when Not is applied it checks that its argument belongs

to type wff, where a value belongs to type wff when it is built using one of the

constructors Var, Implies, or Not.

In this variant of Miranda, the abstract type theorem may be defined almost

exactly as before. Our new programme is identical to Figure 1, save that the line

theorem == wff

11Wadler P.: Abstract Data Types without the Types

is omitted. Untyped languages are sometimes called uni-typed because we may

consider all values as having the same type. The type binding of theorem is not

required because the representation type of theorem, just like of everything else,

is this one type (which includes values of type wff along with all other possible

values).

The signatures provided for the functions that implement the theorem ab-

stract type are dynamically checked at runtime. We have already seen how to

dynamically check that an argument or result is of type wff. The type theorem,

being declared as abstract, is treated differently. A new dynamic constructor

corresponding to the type theorem is introduced; let’s call it Thm, since it plays

the same role as the constructor of that name in the Haskell program in Figure 2.

The type signature provided for each function guides sealing and unsealing with

this constructor. Whenever type theorem appears in a positive position in the

signature (as the final result, or to the left of an even number of arrows) the

corresponding value is sealed using Thm. Wherever type theorem appears in a

negative position in the signature (to the left of an odd number of arrows) it

checks the corresponding argument was sealed using Thm and unseals the argu-

ment; an attempt to unseal with Thm a value that was not sealed using Thm raises

an error at run time.

Hence, a call to one of the three axioms dynamically checks that each argu-

ment belongs to wff, applies the function body, and dynamically seals the result

with constructor Thm. A call to modus ponens dynamically checks that both ar-

guments are sealed with Thm, unseals the arguments, applies the function body,

and then seals the result with Thm. A call to contents dynamically checks that its

argument is sealed with Thm, unseals the argument, applies the function body,

and dynamically checks that the result belongs to wff. (Again, all this dynamic

checking, sealing, and unsealing is more expensive than performing the checks

at compile time.)

Similarly, the abstract type stack may be defined almost exactly as in Fig-

ure 3, save that the line

stack == [num]

is omitted. A new constructor corresponding to stack is introduced; let’s call it

Stk. A call to empty seals its result with the constructor Stk. A call to push or

pop checks that the relevant argument is sealed with Stk, applies the function

body, and seals the result with Stk. A call to isempty or top checks that the

argument is sealed with Stk, applies the function body, and checks that the

result is bool or num, respectively.

Additional checking may correspond to polymorphism in type signatures.

Checking for polymorphism is dual to checking for abstract data types. Each

polymorphic type variable in a signature corresponds to a fresh constructor, al-

located each time the signature is checked. Whenever a polymorphic type vari-

12 Wadler P.: Abstract Data Types without the Types

able appears in a negative position in the signature the corresponding argument

is sealed with the corresponding constructor, and whenever a polymorphic type

variable appears in a positive position in the signature it means the correspond-

ing value must have been sealed using the corresponding constructor and is now

unsealed. Note the duality: abstraction seals at even positions and unseals at

odd positions, whereas polymorphism seals at odd positions and unseals at even

positions.

As an example, say that a signature is supplied for the constant function in

our untyped language.

const :: * → ** → *

const x y = x

The type signature for const corresponds to the universally quantified type

∀X. ∀Y.X → Y → X. Each dynamic call to const allocates two new constructors,

lets call them α and β. The first argument is sealed with α and the second

argument is sealed with β, the function body is applied, and then result is

unsealed with α.

A fundamental semantic property of polymorphic types is relational para-

metricity, introduced by [Reynolds(1983)] and popularised by [Wadler(1989)]

under the slogan “Theorems for free”; see also [Wadler(2007)]. For instance,

any function of type ∀X. ∀Y.X → Y → X must be either the constant func-

tion that returns its first argument and ignores its second, or the undefined

function that ignores both arguments and always loops. Our system has the

remarkable property that it guarantees relational parametricity holds for any

term given a polymorphic type, even though the type is enforced by dynamic

checking rather than static checking. Our technique for ensuring this property

builds upon related work by [Guha et al.(2007)], [Matthews and Ahmed(2008)],

[Ahmed et al.(2011)], and [Siek and Wadler(2017)].

Relational parametricity is a strong property and imposes strong constraints

on the programming language. Miranda does not quite satisfy it because it de-

fines equality at every type, whereas Haskell does satisfy it because it constrains

equality using type classes [Wadler(1989)]. So our claims of relational parametric-

ity hold only if equality (and other ad-hoc polymorphic functions) are suitably

constrained, such as by use of type classes.

4 Turner’s mechanism in an untyped language, formally

Let’s now turn to a formal development that captures the essence of the informal

exposition given above, based on a tiny core language.

To model algebraic data types, such as wff, I introduce types of the form

Σiκi(�Ai)

13Wadler P.: Abstract Data Types without the Types

where κi ranges over value constructors (such as Var, Implies, and Not) and �Ai

ranges over sequences of types. Fixpoints model recursive types. For example,

the wff type is modelled by

wff = μX. Var([char]) + Implies(X,X) + Not(X)

or, to precisely correspond to the notation above,

wff = μX.Σiκi(�Ai)

where i ranges from 1 to 3 with κ1 = Var, A1 = [[char]], κ2 = Implies,

A2 = [X,X], κ3 = Not, A3 = [X].

Abstract data types are modelled by existential quantification while poly-

morphic data types are modelled by universal quantification. For example, the

stack type in Figure 3 is modelled by

∃X. (X × (X → bool)× (num → X → X)× (X → X)× (X → num)

and the type of const is modelled by

∀X. ∀Y.X → Y → X.

Whereas X, Y range over type variables bound by quantifiers, we let α, β range

over seals, which freshly allocated as part of dynamic checking of quantifiers.

Type {−α} corresponds to sealing and type {+α} corresponds to unsealing; our

choice of signs aligns with that in [Siek and Wadler(2017)].

We include any as a general type that matches any value. The formalism

does not include separate constructs for products (or tuples), but these are easily

modelled using suitable constructors. We only model the base type num, but it

is easy to include others.

The syntax and reduction rules of the core are summarised in Figure 5.

Let A,B range over types. A type is either the general type any, a base type

such as num, a function type A → B, a sum of constructors Σiκi(�Ai), a type

variable X, a recursive type μX.A, a universal type ∀X.A, an existential type

∃X.A, a seal −{α}, or an unseal +{α}.

Let L,M,N range over terms. Terms are as usual, including numerical con-

stants n, variables x, function abstraction λx.N , function application LM , the

form κ(�V) for construction, and a case expression

case L of {κi(�x) → Ni}i

for deconstruction. Most importantly, we add the form

M @A

14 Wadler P.: Abstract Data Types without the Types

Syntax

A,B ::= any | num | A → B | Σiκi(�A) | X | μX.A

| ∃X.A | ∀X.A | {+α} | {−α}

L,M,N ::= n | x | λx.N | LM | C(�M) | case L of {κi(�x) → Ni}i | M @A

V,W ::= n | x | λx.N | κ(�V) | V @A → B | V @ {−α}

E ::= � | E N | V E | C(�V , E , �M) | E @A

Reduction

(λx.N) V −→ N [x := V]

case κk(�V) of {κi(�xi) → Ni}i −→ Nk[�xk := �V]

M @ any −→ M

n @ num −→ n

(V @A → B)W −→ V (W @−A) @B

κj(�V) @Σiκi(�Ai) −→ κj(�V @ �A)

V @ μX.A −→ V @A[X := μX.A]

V @ ∃X.A −→ Δ, V @A[Y := {−α}], fresh α

V @ ∀X.A −→ Δ, V @A[Y := {+α}], fresh α

(V @ {−α}) @ {+α} −→ V

M −→ N

E [M] −→ E [N]

Seal negation

−any = any −num = num

−(A → B) = (−A) → (−B) −(Σiκi(�Ai)) = Σiκi(− �Ai)

−X = X −(μX.A) = μX. (−A)

−(∃X.A) = ∃X. (−A) −(∀X.A) = ∀X. (−A)

−{+α} = {−α} −{−α} = {+α}

Figure 5: Untyped lambda calculus with contracts

15Wadler P.: Abstract Data Types without the Types

to indicate that term M is dynamically checked to conform to type A. Following

terminology of the Racket community, we refer to the form M @A as a contract.

Although Miranda and Haskell are both call-by-need, I give a call-by-value

formulation of the core as it is more straightforward. It is easy to adapt a call-

by-value calculus to be call-by-need [Ariola et al.(1995), Maraist et al.(1998)].

Let V,W range over values. As usual values include numerical constants n,

function abstraction λx.N , and constructors over values κ(�V). We also take as

values function contracts V @A → B, and seal contracts V @ {−α}.

Let E range over evaluation contexts, which are standard. The operational

semantics presented is small-step, based on reductions of the form M −→ N .

Reductions are closed under evaluation contexts.

The reduction rules are as follows. Reduction of function applications and

case expressions is standard.

A term with contract any reduces to itself.

A numerical constant with contract num reduces to itself.

A function V with contract A → B when applied to a value W reduces

to a term that applies contract −A to the argument, applies the function, and

then applies contract B to the result. The domain contract is negated while the

range contract is not, corresponding to the fact that functions are contravari-

ant in their domain and covariant in their range. Similar rules are found in

many works on contracts and gradual typing, going back to the seminal paper

of [Findler and Felleisen(2002)]. The negation of a type changes seals to unseals

and vice versa. It leaves all other forms of type unchanged.

A recursive type in a contract is unfolded in the usual way. An existential

causes the bound type variable of the quantifier to be instantiated to−α, where α

is a fresh seal. Dually, a universal causes the bound type variable of the quantifier

to be instantiated to +α, where α is a fresh seal. Finally, unsealing a sealed value

reduces to the original value.

All other reductions become stuck, and in practice would signal an error. For

instance, this would happen if attempting to apply a value that is not a function,

or if contract num acts of a value that is not a numerical constant.

Two examples are shown in Figure 6.

The first demonstrates existential quantification, and is based on a simplifi-

cation of the stack example from Figures 3 and 4. Take empty, push, and top to

be as defined in those figures, and let empty′, push′ and top′ be the same func-

tions wrapped in an appropriate type signature (that is, corresponding to the

functions empty, push, and top as they appear anywhere in the script outside

of the definition of the abstract data type). It shows how sealing and unsealing

of the abstract stack type proceeds in computing the term top′ (push′ 2empty′).

Observe that top behaves identically to the function head that extracts the first

element of a list. But if top′ is replaced by head the argument stack will not be

16 Wadler P.: Abstract Data Types without the Types

Existential quantification

let (top′, push′, empty′) =

(top, push, empty) @ ∃X. ((X → num)× (num → X → X)×X)

in top′ (push′ 2 empty′)

−→(top @ {−α} → num) ((push @ num → {−α} → {−α}) 2 (empty @ {−α}))

−→(top @ {−α} → num) ((push @ num → {−α} → {−α}) 2 ([] @ {−α}))

−→(top @ {−α} → num) (push (2 @ num) @ {−α} → {−α}) ([] @ {−α}))

−→(top @ {−α} → num) (push 2 @ {−α} → {−α}) ([] @ {−α}))

−→(top @ {−α} → num) (push 2 (([] @ {−α}) @ {+α}) @ {−α})

−→(top @ {−α} → num) (push 2 [] @ {−α})

−→(top @ {−α} → num) ([2] @ {−α})

−→top (([2] @ {−α}) @ {+α}) @ num

−→top [2] @ num

−→2 @ num

−→2

Universal quantification

((λx. λy. x) @ ∀X. ∀Y.X → Y → X) 2 3

−→((λx. λy. x) @ ∀Y. {+α} → Y → {+α}) 2 3

−→((λx. λy. x) @ {+α} → {+β} → {+α}) 2 3

−→((λx. λy. x) (2 @ {−α}) @ {+β} → {+α}) 3

−→(λx. λy. x) (2 @ {−α}) (3 @−β) @ {+α}

−→(2 @ {−α}) @ {+α}

−→2

Figure 6: Example reductions

unsealed, and the computation will get stuck, as we should expect.

The second demonstrates universal quantification, and is based on the con-

stant function as described in the previous section. It shows how sealing and un-

sealing proceeds in computing λx. λy. x contracted at type ∀X. ∀Y.X → Y → X

and applied to 2 and 3. Recall that relational parametricity guarantees that any

function of type ∀X. ∀Y.X → Y → X must either be the constant function that

returns its first argument and ignores its second, or the undefined function that

17Wadler P.: Abstract Data Types without the Types

ignores both arguments and always loops. Observe that if λx. λy. x is replaced

by λx. λy. y then the final result will be (3@{−β})@{+α}. Since the sealing and

unsealing variables do not match the computation will get stuck, as we should

expect.

5 Conclusion

The novel data abstraction mechanism of Miranda arguably leads to code that is

easier to read than that written using the more common data abstraction mech-

anism of Haskell and other languages. Turner’s mechanism depends crucially on

type signatures, so it is surprising that it can be applied in an untyped language

using dynamic rather than static checking. I presented a design based on ideas

from gradual typing, and formalised it with a tiny core calculus. The design does

not include abstract data types with parameters, which remains an area for fu-

ture work. Just as Turner argued that ‘a period of experience’ would be required

to judge his new mechanism for abstraction, I look forward to experiments to

evaluate the ideas described here.

I leave you with a final quote from Turner, and a last surprise regarding data

abstraction.

It is interesting to note that if you take the complete Miranda script

containing an abstract date type declaration like that of [Figure 1] and

remove from it just the ‘abstype . . . with <signature>’ part, leaving

everything else intact, including the implementation equations, the re-

sulting script is still well-typed and describes exactly the same compu-

tations as before, but now has a coarser type structure — ‘theorem’ has

collapsed back into ‘wff’.

This observation seems to throw light on the real purpose of intro-

ducing type abstractions into our program. It is to provide the compiler

with more information about what we are doing, so that it can impose

a finer type structure on the program. (So we see that here, data type

abstraction should not be thought of as a matter of hiding information

— quite the reverse.)

Acknowledgements

I thank Simon Peyton Jones, Jeremy Siek, Jack Williams, Jeremy Yallop, and the

referees for their comments. This research was supported by EPSRC Programme

Grant EP/K034413/1.

18 Wadler P.: Abstract Data Types without the Types

References

[Ahmed et al.(2011)Ahmed, Findler, Siek and Wadler] Ahmed, A., Findler, R. B.,
Siek, J. G., Wadler, P.: “Blame for all”; Principles of Programming Languages
(POPL); 201–214; 2011.

[Ariola et al.(1995)Ariola, Maraist, Odersky, Felleisen and Wadler] Ariola, Z. M.,
Maraist, J., Odersky, M., Felleisen, M., Wadler, P.: “A call-by-need lambda
calculus”; Principles of Programming Languages (POPL); 233–246; 1995.

[Breitner et al.(2014)Breitner, Eisenberg, Jones and Weirich] Breitner, J., Eisenberg,
R. A., Jones, S. P., Weirich, S.: “Safe zero-cost coercions for haskell”; International
Conference on Functional Programming (ICFP); 189–202; 2014.

[Findler and Felleisen(2002)] Findler, R. B., Felleisen, M.: “Contracts for higher-order
functions”; International Conference on Functional Programming (ICFP); 48–59;
2002.

[Gordon et al.(1979)Gordon, Milner and Wadsworth] Gordon, M., Milner, R.,
Wadsworth, C.: Edinburgh LCF: a mechanized logic of computation; volume 78
of Lecture Notes in Computer Science; 1979.

[Guha et al.(2007)Guha, Matthews, Findler and Krishnamurthi] Guha, A.,
Matthews, J., Findler, R. B., Krishnamurthi, S.: “Relationally-parametric
polymorphic contracts”; Dynamic Languages Symposium (DLS); 29–40; 2007.

[Hudak et al.(2007)Hudak, Hughes, Peyton Jones and Wadler] Hudak, P., Hughes, J.,
Peyton Jones, S., Wadler, P.: “A history of haskell: being lazy with class”; History
of Programming Languages (HOPL); 12–1–12–55; ACM, 2007.

[Maraist et al.(1998)Maraist, Odersky and Wadler] Maraist, J., Odersky, M., Wadler,
P.: “The call-by-need lambda calculus”; Journal of Functional Programming; 8
(1998), 3, 275–317.

[Matthews and Ahmed(2008)] Matthews, J., Ahmed, A.: “Parametric polymorphism
through run-time sealing”; European Symposium on Programming (ESOP); 16–31;
2008.

[Reynolds(1983)] Reynolds, J. C.: “Types, abstraction and parametric polymor-
phism”; IFIP Congress; 513–523; North-Holland, 1983.

[Siek and Wadler(2017)] Siek, J., Wadler, P.: “Conversions and casts: compare and
contrast”; (2017); unpublished draft.

[Turner(1981)] Turner, D. A.: “The semantic elegance of applicative languages”; Func-
tional Programming Languages and Computer Architecture (FPCA); 85–92; 1981.

[Turner(1985)] Turner, D. A.: “Miranda: A non-strict functional language with poly-
morphic types”; Functional Programming Languages and Computer Architecture
(FPCA); volume 201 of Lecture Notes in Computer Science; 1–16; Springer, 1985.

[Wadler(1989)] Wadler, P.: “Theorems for free”; Functional Programming Languages
and Computer Architecture (FPCA); 1989.

[Wadler(2007)] Wadler, P.: “The girard-reynolds isomorphism (second edition)”; The-
oretical Computer Science; 375 (2007), 1–3, 201–226.

[Wadler and Blott(1989)] Wadler, P., Blott, S.: “How to make ad-hoc polymorphism
less ad hoc”; Principles of Programming Languages (POPL); 60–76; 1989.

[Wadler and Yallop(2008)] Wadler, P., Yallop, J.: “Signed and sealed”; (2008); unpub-
lished draft.

[Yallop(2010)] Yallop, J.: Abstractions for web programming; Ph.D. thesis; University
of Edinburgh (2010).

References

[Ahmed et al.(2011)] Ahmed, A., Findler, R. B., Siek, J. G., Wadler, P.: “Blame for
all”; Principles of Programming Languages (POPL); 201–214; 2011.

19Wadler P.: Abstract Data Types without the Types

[Ariola et al.(1995)] Ariola, Z. M., Maraist, J., Odersky, M., Felleisen, M., Wadler, P.:
“A call-by-need lambda calculus”; Principles of Programming Languages (POPL);
233–246; 1995.

[Breitner et al.(2014)] Breitner, J., Eisenberg, R. A., Jones, S. P., Weirich, S.: “Safe
zero-cost coercions for haskell”; International Conference on Functional Program-
ming (ICFP); 189–202; 2014.

[Findler and Felleisen(2002)] Findler, R. B., Felleisen, M.: “Contracts for higher-order
functions”; International Conference on Functional Programming (ICFP); 48–59;
2002.

[Gordon et al.(1979)] Gordon, M., Milner, R., Wadsworth, C.: Edinburgh LCF: a
mechanized logic of computation; volume 78 of Lecture Notes in Computer Sci-
ence; 1979.

[Guha et al.(2007)] Guha, A., Matthews, J., Findler, R. B., Krishnamurthi, S.:
“Relationally-parametric polymorphic contracts”; Dynamic Languages Symposium
(DLS); 29–40; 2007.

[Hudak et al.(2007)] Hudak, P., Hughes, J., Peyton Jones, S., Wadler, P.: “A history
of haskell: being lazy with class”; History of Programming Languages (HOPL);
12–1–12–55; ACM, 2007.

[Maraist et al.(1998)] Maraist, J., Odersky, M., Wadler, P.: “The call-by-need lambda
calculus”; Journal of Functional Programming; 8 (1998), 3, 275–317.

[Matthews and Ahmed(2008)] Matthews, J., Ahmed, A.: “Parametric polymorphism
through run-time sealing”; European Symposium on Programming (ESOP); 16–31;
2008.

[Reynolds(1983)] Reynolds, J. C.: “Types, abstraction and parametric polymor-
phism”; IFIP Congress; 513–523; North-Holland, 1983.

[Siek and Wadler(2017)] Siek, J., Wadler, P.: “Conversions and casts: compare and
contrast”; (2017); unpublished draft.

[Turner(1981)] Turner, D. A.: “The semantic elegance of applicative languages”; Func-
tional Programming Languages and Computer Architecture (FPCA); 85–92; 1981.

[Turner(1985)] Turner, D. A.: “Miranda: A non-strict functional language with poly-
morphic types”; Functional Programming Languages and Computer Architecture
(FPCA); volume 201 of Lecture Notes in Computer Science; 1–16; Springer, 1985.

[Wadler(1989)] Wadler, P.: “Theorems for free”; Functional Programming Languages
and Computer Architecture (FPCA); 1989.

[Wadler(2007)] Wadler, P.: “The girard-reynolds isomorphism (second edition)”; The-
oretical Computer Science; 375 (2007), 1–3, 201–226.

[Wadler and Blott(1989)] Wadler, P., Blott, S.: “How to make ad-hoc polymorphism
less ad hoc”; Principles of Programming Languages (POPL); 60–76; 1989.

[Wadler and Yallop(2008)] Wadler, P., Yallop, J.: “Signed and sealed”; (2008); unpub-
lished draft.

[Yallop(2010)] Yallop, J.: Abstractions for web programming; Ph.D. thesis; University
of Edinburgh (2010).

20 Wadler P.: Abstract Data Types without the Types

