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Abstract: Random sequences are widely used in theoretical and practical areas of interests in 
human and technical activities. An important part of these fields is referred to as the procedures 
of producing stochastic values. One direction adapts the sequenced generating of 
pseudorandom numbers and the other direction uses all stochastic sequences in objects of 
completed sets. The first direction is well studied and is traditionally used in cryptography and 
technical systems in medical and biological trials. The second direction is generally used in 
systems for preliminary universal testing where all or characteristically important sequences 
belong to a given diapason of actions are required. In this current work we explore the second 
direction, where the underlying approaches in modern generators of random numbers are 
considered. The simulation of complete sets of random numbers shows that either skipping or 
repeating of generated values is possible. We’ve formed the requirements that if followed, the 
problems of skipping and repeating are overcome. Next, we’ve proposed novel algorithms to 
form completed ranked sets of random sequences. Also, we’ve proposed novel algorithms on 
the basis of factorial expansion of random numbers which provide fast generation of such 
sequences. A discussion of the advantages and disadvantages of the indicated statements 
completes this paper. 
 
Key Words: Computer Simulation, Random Number Generator, Stochastic Sequence 
Algorithm, Probability and Statistics.  
Categories: G.2.1, G.3, F.2 

1 Introduction 

The world around us is full of many cases of certain and unpredictable events. A lot 
of things are caused by occurrence. At such moments, we face stochastic phenomena 
and have to use our background knowledge or follow the recommendations of others 
who have experienced the same conditions. Because we are not sure if we are 
correctly choosing, the nature of uncertainty dictates us to search for adequate 
activities in current circumstances. In turn, this means that choosing itself reduces the 
uncertainty in a varying degree.   

In 1948, Claude Shannon proposed that to choose the sequence of binary 
questions, only the answers of ‘yes’ and ‘no’ may be used [Shannon 1948]. The 
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structure of such approach may be presented as graphs of non-binary and binary trees, 
[Fig. 1]. 

 
 
 
 
 
 
 
 
 
 

Figure 1: Non-binary (A) and binary (B) tree graphs of questions and answers 

To discuss the terms of correct answers ‘yes’ and their probabilities, Shannon 
proposed the term ‘entropy’ ܪ(ܺ) as a measure of uncertainty for choosing the final 
possible answer at the moment of uncertainty reduction for root of tree may occur 
[Shannon and Weaver 1963]: 

(ܺ)ܪ  = ∑ ௜௜∈ூ݌ଶ݃݋௜݈݌     (1) 

Many opinions about the quality of such estimation were expressed, but now such 
fields as informatics, cybernetics, theory of transmitting and receiving, and others are 
using Shannon’s entropy proposal [Banati and Bajaj 2013, Cover and Thomas 2006, 
Karaboga and Ozturk 2011]. Further, in practical realization of random number 
generators (RNG), the relevant algorithms have been developed, for which 
discussions about advantages and disadvantages may be found in [Feng et al. 2010, 
Maurer 1992, Wegenkittl 2001]. 

In the beginning of the computer era, Alan Turing did estimations of the time 
period required for uncertainty reduction [Turing 1950]. For this purpose he proposed 
the fundamentals to solve the task of how fast the computer may reduce or eliminate 
the uncertainty in the limited time period of its work. Turing’s ‘simple’ machine used 
three actions: shift to the left; shift to the right; and reading the information bit having 
0 or 1 values. Later, similar principles have been enlarged by Kolmogorov, 
subsequently named ‘complexity theory’ [Kolmogorov 1968, Li and Vitanyi 2008, 
Velmurugan and Santhanam 2010]. All those statements were applied at a basic level 
in cryptography; however the algorithms that were used and their practical results 
have been discussible up to now [Dagtas et al. 2004, Evans et al. 2001, Jain 2010, Tan 
et al. 2011]. Also, in the theory of random sequences, the different examples of 
ergodic processes are in use, which are known as Markov chains [Forsati et al. 2013, 
Hellekalek and Wegenkittl 2003, Miner et al. 2012]. 

In the above-mentioned techniques, the uniform distribution of random values is 
usually used. Based on principles of RNG, two basic approaches are known: 1) true 
random number generators (TRNG), which produce random numbers in real time 
from physical processes, and 2) pseudorandom number generators (PRNG), which use 
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algorithms to produce sequences of numbers whose properties are almost the same as 
natural random sequences. TRNG techniques use natural effects, such as noise of 
natural phenomena, properties of semi-conducting materials, etc. One direction in this 
field was hardware random number generators (HRNG), which found application in 
generating of cryptographic keys to encrypt data sent over computer networks. The 
mathematical statistics used to characterize the receiving uniform distribution of 
values in TRNG for what Kolmogorov-Smirnov test is typically applied. Special outer 
devices or circuits connect to the computers to provide this, as shown in [Nandy et al. 
2012, O’Donnell et al. 2005, Suh et al. 2004, Yang 2010]. 

The evolution of algorithmic PRNG has occurred since the congruent generator 
was proposed [Mani and Derick 2010, Park and Miller 1988, Storm and Price 1997]. 
However, a short while after it was found that pseudorandom values are repeatable 
after some constant period of time. This fact energized Matsumoto and Nishimura to 
develop an algorithm that was capable of increasing the period of repeating up to the 
value of 2ଵଽଽଷ଻ − 1 [Matsumoto and Nishimura 1998, Nishimura 2000]. The search 
for new methods did not stop after that, and today many promising techniques are 
known. For example, the quadratic generator, Blum-Blum-Shub generator, and others 
[Blum et al. 1986]. 

A linear congruential generator (LCG) is the next important issue which should be 
considered in some detail here [Fister et al. 2013, Hellekalek 1998, Yujian and Liye 
2010]. It produces the next element of random sequence by using the following 
recurrence relation: 

௡ାଵݔ  =  (2)    .݉	݀݋݉	(௡ݔ)݂
 
If some kind of function ܽݔ௡ + ܿ is used for an algorithm of realization ݂(ݔ௡), the 

generator is congruential: 
௡ାଵݔ  = ௡ݔܽ) +  (3)   .݉	݀݋݉	(ܿ
 
Moreover, modern consequent generators are not limited by ordinary linearity; 

they use additions of different types of shifting, inversion, bit disjunction with modulo 
2 (XOR), and other operations. The properties of LCGs found different applications in 
many areas such as information systems, cryptography and mathematics [Arora et al. 
2015, Diffie and Hellman 1976, 1979, Wallace 1996, Leeb and Wegenkittl 1997, 
Dodis et al. 2013, Karloff and Raghavan 1993, Kasdin 1995, Dorrendorf et al. 2009], 
as well as in biological and medical research [Cai et al. 2016, Song et al. 2006, Juratly 
et al. 2015, 2016, Menyaev et al. 2006, 2013, 2016, Menyaev and Zharov 2006, 
Miklós et al. 2009, Sarimollaoglu et al. 2011, 2014, Zharov et al. 2001]. Such 
generators explore the statement about uniform distribution of random values, but 
without talking about completeness of distribution [Deon and Menyaev 2016]. The 
problem is that this type of generator can’t produce all random values within a 
required period of time under the condition of one-shot generation of absolutely all 
random values that have given lengths. Unfortunately, this task isn’t completely 
solved yet. 
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Let’s make a simple experiment, in which a generator Random is taken from the 
Microsoft Visual Studio 2013 compiler. The searching of a maximal random value in 
the programming language C# [Manning et al. 2008, McConnell 2002, Schildt 2010] 
may be fulfilled with the following program code by consequently using the length of 
random value n. 

 
static void Main(string[] args) 
{  int m = 1; 
   for (int n = 0; n <= 10; n++, m *= 10) 
   {  int max = 0; 
      Random r = new Random(0); 
      for (int j = 0; j < m; j++) 
      {  int v = r.Next(); 
         if (max < v) max = v; 
      } 
      Console.WriteLine( 
         "n = {0,2}  m = {1,12}  max = {2,12}", 
         n, m, max); 
    } 
    Console.ReadKey(); 
} 
 

The result of executing this code provides the following listing: 
 

n =   0    m =                      1   max =    1559595546 
n =   1    m =                    10   max =    2099272109 
n =   2    m =                  100   max =    2147425016 
n =   3    m =                1000   max =    2147425016 
n =   4    m =              10000   max =    2147425016 
n =   5    m =            100000   max =    2147452437 
n =   6    m =          1000000   max =    2147483082 
n =   7    m =        10000000   max =    2147483591 
n =   8    m =      100000000   max =    2147483618 
n =   9    m =    1000000000   max =    2147483646 
n = 10    m =  10000000000   max =    2147483646 

 
The above example shows that if the length of a random value is 10 in decimal 

scale, the maximum generated value is limited by the number 2147483646. This value 
is equivalent to the constant of 31 bits, which is in hexadecimal form looks as 
0х7FFFFFFF and in decimal one as 2147483647. Thus, according to the listing above 
the random values belong to the interval [0, 2147483647]. 

The next task is to explore the uniformity of the generation of values, but before 
we do this, we have to find the minimal number for Random generator, which 
determines the beginning of interval of random values. The next example of the 
program code allows us find it: 
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int n = 0x7FFFFFFE;                         // maximum value 
Console.WriteLine(" n = {0}", n); 
int min = n;                 // beginning of maximum finding 
Random r = new Random(0); 
for (int j = 0; j <= n; j++) 
{  int v = r.Next(); 
   if (v < min) min = v; 
} 
Console.WriteLine("min = {0}", min); 

 
The result of executing this code shows the following: 
 

n = 2147483646 
min = 0 

 
So, this is a true confirmation that the interval of random values generated is 

determined to be [0, 2147483646]. In each sequence of this set, uniformly distributed 
random values should be placed in the aforementioned interval. Let’s check it by 
using some kind of values as: 10, 100, 1000, 10000, 100000, 1000000. The following 
program code solves this task. 

 
int n = 0x7FFFFFFE; 
Console.WriteLine(" n = {0}", n); 
int[] q = new int[] { 1, 10, 100, 1000, 10000, 
                                 100000, 1000000}; 
int[] c = new int[q.Length]; 
Random r = new Random(0); 
for (int j = 0; j <= n; j++) 
{  int v = r.Next(); 
   for (int k = 0; k < q.Length; k++) 
      if (v == q[k]) c[k] += 1; 
} 
for (int k = 0; k < q.Length; k++) 
   Console.WriteLine( 
       "q[{0}] = {1,10}  c[{0}] = {2}", 
       k, q[k], c[k]); 

 
After executing this code, the following listing appears. 
 

n = 2147483646 
q[0] =               1   c[0] = 0 
q[1] =             10   c[1] = 1 
q[2] =           100   c[2] = 0 
q[3] =         1000   c[3] = 1 
q[4] =       10000   c[4] = 1 
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q[5] =     100000   c[5] = 0 
q[6] =   1000000   c[6] = 2 

 
So, results such as c[0]=0, c[2]=0, c[5]=0 refer to the fact that Random generator 

does not produce all the random values in a given interval [0, 2147483646]. 
As was mentioned above, TRNG are really complex and expensive physical tools. 

At the same time, based on observed references regarding PRNG, it could be seen that 
existing methods can’t reach all the sequences which are distributed uniformly. The 
best case was found for the generator MT19937 [Matsumoto and Nishimura 1998], 
which has the biggest period of repetition. However, the problem of receiving real 
stochastic sequences is still not solved in this case. 

Let’s make a subtotal summary here. The task to create the universal RNG is yet 
unsolved and therefore it’s still very important. However, the set of random sequences 
can be restricted, which may allow for organization of the random values generator. 
In the next section, we will demonstrate novel principles for how this kind of 
generator, which includes completed set of values, uniform distribution, and no 
skipping generating, could be made. 

2 Fundamentals 

When natural phenomena are under study, the first question that is necessary to clarify 
is what is their behavior under certain circumstances? In such phenomena, different 
objects may be involved and their properties may be similar, or different, such as 
leaves from the tree blown by the wind, for example. If a collection of such objects 
may be calculated mathematically, we may say that the calculating set, if impossible, 
is a continual set [Kolmogorov and Fomin 1999]. This criterion allows us to pay 
attention to the uncertainty of choosing any object in a certain set. So, in calculating 
sets, choosing objects may be accompanied by numbers. This means that the 
uncertainty of choosing consists in the fact that the object maybe accompanied by any 
number. At the same time, for continual sets, the problem of an uncertainty of 
choosing consists in the inability to mark the objects by certain numbers. For 
example, well-known mathematical constants such as π or e aren’t defined as 
completely final values, but they definitely exist and their values are rather close to 
each other. 

Previously the definition of an uncertainty was mentioned, and now it’s time to 
clarify what kind of an uncertainty will be considered here next. For this purpose, the 
method of numeration or technique of identification of object choosing has to be 
clarified. Therefore, we consider the uncertainty of choosing of an object, which 
belongs to a completed set, where each object has its own unique number. Thus, in the 
current model, the phenomenon is underlying the set of similar primary objects, but 
they are different in unique counting numbers. 

Now let’s pay attention to the time-dependent circumstances of the 
aforementioned phenomena. In nature the objects maybe observed in sequence, which 
means they are observed one by one during a period of time. At once, the objects may 
appear simultaneously in the same period of time. So, the simplest mathematical case 
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refers to the appearance of one object in a certain moment of time. Let’s take this 
statement as a basis for the simulation of the random sequences here. It is important 
that in this model, the observation of ‘no object’ is impossible because a ’void’ object 
isn’t presented in a set. 

The circumstance of the time period means that it’s crucially necessary to take into 
consideration the length of observation between two events. Thus, in the first and 
simplest case, at a moment of time the one object could be observed. In the second 
case, at two moments of time ሾݐଵ, 	ଵݐ ଶሿ, whereݐ <  :ଶ, two objects appear one by oneݐ
either one object appears twice at moments t1 and t2, or the 1st object at t1 and the 2nd 
one at t2. Mathematically, this corresponds to sampling with or without repetition. For 
a more detailed explanation, let’s specify the objects here as ܾ௜ and ௝ܾ with any chosen 
numbers i and j. In the second case, an uncertainty of sampling should be considered 
as functional, which may choose any kind of sequences inside the following set ൛< ܾ௜, ܾ௜ >, < ܾ௜, ௝ܾ >, < ௝ܾ, ܾ௜ >, < ௝ܾ, ௝ܾ >ൟ. Here an uncertainty is determined by 
sampling of one sequence among four of them, but which sequence that is chosen is 
under identifying by natural phenomena. 

In the following, let’s talk about non-repeatable objects in the one sequence, which 
is a set of sequences 	൛< ܾ௜, ௝ܾ >, < ௝ܾ, ܾ௜ >ൟ. Next, let’s assume that in sequences we 
may observe n objects. This means that the minimal set of distinguished sequences, 
which consist of non-repeatable objects, is the set of probable sequences having all 
transpositions among n objects. The summarization of these statements appears as the 
following: 

ܤ  = ሼܾଵ, ܾଶ, … , ܾ௡ሽ    (4) 
ܦ  = ൜< ܾ௜ଵ, ܾ௜ଶ, … , ܾ௜௡ >: ݅1, ݅2, ݅݊ ∈ ሾ1, ݊തതതതതሿ,݅1 ≠ ݅2 ≠ ⋯ ≠ ݅݊ ൠ   (5) 

where B is the set of observed objects and D is the set of observed sequences. Each 
sequence in set D includes all non-repeatable objects from set B. 

Mathematically, D is the set of all transpositions of objects from set B. Element ݀ ∈ ܦ  is the one sequence that includes n non-repeatable objects ܾ ∈ ܤ . In this 
definition, we have a complete set of all sequences having n length that could be 
characterized as in each sequence all the objects are mentioned once. In other words, 
this is the simple completeness in observed objects, and simple completeness in 
sequences. 

The next step allows us to see that an uncertainty of sampling in natural 
phenomena might be considered in two aspects: 1) uncertainty of observing an object 
in an exact location inside sequences; 2) uncertainty of observing a sequence, but each 
sequence expresses itself if the total sampling inside D is done. So, we are talking 
about the uncertainty of the functional of sampling due to the fact that potency |ܦ|, or 
in other words an amount of elements ܿܽ(ܦ)݀ݎ in virtue of completeness of D, are 
equal: 

|ܦ|  = (ܦ)݀ݎܽܿ = ݊!.    (6) 
This equation comes directly from combinatorial analysis [Johnsonbaugh 2008] 
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and general algebra [Waerden 1991] where the estimation of the quantity of indexes 
transpositions for n elements is considered.  

The same result may be taken from the probability theory [Gnedenko 1998] by 
considering the methods of sampling without repeating. In the 1st place in a sequence, 
any object ܾ௜ଵ ∈ from total n may be presented; in the 2nd place, any object ܾ௜ଶ ܤ ݊ which belongs to the set having (ሼܾ௜ଵሽ\ܤ)∋ − 1 elements may be presented, and so 
on. Thus, by multiplying amount of all variations we will have the factorial value ݊!. 
Using this statement, it’s possible to confirm that one of the characteristics of 
uncertainty, for the functional of sampling regarding to all sequences is a factorial 
completeness of the total amount of sequences. 

It should be mentioned that when we started talking about functional sampling, we 
didn’t use conception of function ݂(ݎ), which stands as a single number r to the 
sequence ݀௥ ∈  ,Here r characterizes the sequence of actions, which, when applied .ܦ
allows us to get one sequence from D. In turn, |ܦ| characterizes an uncertainty prior 
to the beginning of sampling, and also in accordance to r, will finish the sampling by 
pointing the concrete sequence ݀௥. The set of univocal functions ݂(ݎ) constitutes the 
functional F on the set of D, where r is the number of method to obtain the required 
sequence: ܨ = ሼ ௥݂ → ݀௥ ∈  .ሽܦ

Since the amount of sequences ܿܽ(ܦ)݀ݎ is matching with the potency |ܦ|, this 
means the potency of functional F is matching |ܦ| as well: 

|ܨ|  = |ܦ| = ݊!.    (7) 
 
So far it provides the statement that one variant of r identification could be ݎ ∈ ሾ1, ݊!തതതതതതሿ . The question that logically follows is what number of ݎ ∈ ሾ1, ݊!തതതതതതሿ 

corresponds to the sequence  ݀௥ ∈   .The answer will be given here later ?ܦ
Now it’s time to summarize all above-mentioned denotations together in a uniform 

model, which will allow us in the next section to reach the algorithms and their 
implementation in computer programs. 

Let’s name the model M of set D consisting in completed sequences having non-
repeatable objects from B as triplet of sets, where the realization of reduction of 
uncertainty for the functional F is possible: 
ܯ  = ,ܤ) ,ܦ  (8)    .(ܨ
 

The set of objects B is being given a priori in accordance of chosen strategy of 
phenomenon study. The set of sequences D presents itself as a set of the minimal 
amount of the simplest completed sequences. So, each sequence in D includes all 
elements from B having different listings of objects. A set of functional F includes all 
functions, which may determine an uncertainty in sampling each time for the only one 
sequence. 

Now let’s return to the question of how to realize the functional F for a sampling 
of concrete sequence ݀௥. Based on a mathematical definition of the set, it could be 
determined by using two methods: 1) explicitly list all the elements of the set; 2) point 
to the actions which may present any element of the set. If procedures aren’t 

1030 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...



completed, this means it’s impossible to present all elements of a set, which in this 
case the functional of actions is incomplete. 

These features of set forming allow for pointing to the first technique in realization 
of functional in model M, i.e. direct listing of ݀ ∈  until the sequence, which is ܦ
satisfied when r criteria is found: ݀ = 	݀௥. 

The uniqueness of this technique is obvious and that’s why to form D, only the 
one sequence may be found which is satisfied to transposition r of objects from B. 
Transposition r is the sole finding, following directly from combinatorial analysis 
[Johnsonbaugh 2008]. 

The second technique in realization of functional F is based on analyses of the 
uncertainty for model ܯ = ,ܤ) ,ܦ (ܨ . The point is that the quantity of sequence-
elements in set D is ܿܽ(ܦ)݀ݎ = |ܦ| = ݊!. So, here r is some kind of a whole number 
in arithmetical range of whole numbers ሾ1, ݊!തതതതതതሿ = ሾ1,2,3, … , ݊!ሿ . All elements of ݎ ∈ ሾ1, ݊!തതതതതതሿ are strictly ordered. Thus, it’s necessary to achieve the order for numbers 
of sequences from D. For this purpose, let’s take in consideration the positional 
representation of whole number X, which consists of n digits of ݔ௜  in some 
numeration system with a basis of s: 

 ܺ = ௡ିଵݏ௡ିଵݔ + ௡ିଶݏ௡ିଶݔ + ⋯+ ଵݏଵݔ +  ଴.  (9)ݏ଴ݔ
 
Now let’s use combinatorial definition of sequence in set D, what is a 

transposition of non-repeatable numbers of indexes. Let’s assume that objects ܾ ∈  ܤ
are numbered, or in other words, marked by whole numbers taken from arithmetical 
range ሾ1, ݊തതതതതሿ. Then, the first sequence one which corresponds to the minimal positional 
number, where numbers themselves are taken from positional presentation of indexes. 
 

Sequence X r 
1, 2, 3 123 1 
1, 3, 2 132 2 
2, 1, 3 213 3 
2, 3, 1 231 4 
3, 1, 2 312 5 
3, 2, 1 321 6 

Table 1: Example of ordering 

For demonstrative understanding of the theoretical basis presented above, let’s 
consider a simple example where ݊ = 3. Let’s mark objects in B by numbers 1, 2, 3, 
which gives us ଵܺ = 123.  Then the second sequence after applying the transposition 
gives ܺଶ = 132. Now it’s possible to observe some kind of ordering: 123 < 132, or ଵܺ < ܺଶ. So, based on this logic, the next sequences are looking like those presented 
in [Tab. 1]. 

The total amount of sequences is ݊! = 3! = 6  for which the numbers of r of 
functions ଵ݂, … , ଺݂ from functional F are corresponded directly. So, if an uncertainty 
of nature has chosen the function ସ݂ , for example, then we may observe the 4th 
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sequence  2, 3, 1 from the table above. 
The structure of such approach may be presented as graph in [Fig. 2]. 
The link between r and appropriate sequence is determined in the following. Let’s 

write down now the factorial explicitly: 
 ݊! = ݊ ∙ (݊ − 1) ∙ (݊ − 2) ∙ … ∙ 2 ∙ 1.                    (10) 
 
This equation contains the same amount of factors as the amount of objects having 

n length long. Let’s pay attention to the fact that in first place of the left part, any 
number taken from n may be placed. To determine the biggest number of the left part 
we need to exclude the right part of factorial by using its properties: 

 ݊! = ݊(݊ − 1)!.        (11) 
 
Due to  ݎ௠௔௫ = ݊!  it’s obvious that all other numbers will be found by using this 

technique of factorial decreasing, and also by the application of excluding those 
indexes which were determined in previous iterations. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Tree graph for the example of ordering 

In the next section of this article, the concrete realization of methods and 
techniques considered here are shown, where the programming language C# is used 
from Microsoft Visual Studio 2013. Additionally, in section Theorem the 
mathematical proof of the theorem which summarizes observed statements is given. 

3 Constructions and Results 

The forming of the sequences having maximal length in interval ሾ1, ݊തതതതതሿ incorporates 
the theoretical formula with respect to ݊௭ numbers, which are included in sequence on 
z position: 

 ݊௭ ∈ (ሾ1, ݊തതതതതሿ\ሼ݊ଵ, ݊ଶ, … , ݊௭ିଵሽ).               (12) 

Sequence

1 2 3

2 3 or 3 2 1 3 or 3 1 1 2 or 2 1

123 213 312132 231 321
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Let’s add a property of increasing ranking: the next chosen number is bigger than 
the previous one with an allowance for the formula mentioned above. This ensures 
that all elements will be presented in sequence. The initial minimal sequence is the 
only one and consists strictly in ordering numbers 1,2,3, … , (݊ − 1), ݊. To get number ݊௭, the function is required, and let’s call it NextFreeValue( ). It can show for the 
exact position of z the next increasing value which isn’t coincided in numbers with 
previous positions such as 1,2, … , ݖ − 1 in generated sequence. For example, let the 
sequence consists of 4 elements 2, 3, 1, 4, and let’s assume that position ݖ = 3 where 
number 1 is located (݊௭ୀଷ = 1), is interesting for us. After the applying of function 
NextFreeValue( ) the next number 4 will be offered because of numbers 2 and 3 are 
located on previous positions, and using them is prohibited for the position of ݖ = 3. 
In another example let’s consider the sequence 2, 3, 4, 1, and let’s try to find the next 
increasing value for the same position ݖ = 3. It’s impossible due to the next number is 
5, which can’t be presented in sequence having 4 elements. In this situation 
NextFreeValue( ) returns 0, which is interpreted as abort to provide the action. 

Below is the program code for function NextFreeValue( ) on C# dialect. The 
strings used for testing are commented out. In the list of value parameters the int[] q 
is a pointer to the array having the number of elements in random sequence. 
Parameter int n contains the amount of elements in array q. Parameter int z assigns the 
index of position for which is required in the selection of the next random value 
which in turn isn’t repeating among the previous elements until index z is reached. 

 
static public int NextFreeValue(int[] q, int n, int z) 
{  int v = q[z] + 1;                          // possible value 
   if (v > n) return 0;            // increasing impossible 
   int w = 0;            // starting of checking in array q 
   for (; v <= n; v++)          // area of possible values 
   { 
//    Console.WriteLine("v = {0}", v); 
      int j = w;        // starting of checking continuing 
      for (; j < z; j++)        // elements until z position 
      { 
//       Console.WriteLine("q[{0}] = {1}", i, q[i]); 
         if (q[j] == v) break;   // value wasn’t accepted 
      } 
      if (j >= z) break;  // value v wasn’t faced before 
      w = j + 1;         // continue from here henceforth 
   } 
   if (v > n) v = 0; 
   return v;                                   // next vacant value 
} 

 
So, the function NextFreeValue( ) allows for either finding the next vacant value 

for position z which is one more than previous value, or generate the abort. 
Next, acceptable values in the simulated sequence are placed either to the left from 
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position z or directly in position z in array q. Now we want to find the minimal 
number for position ݖ + 1 which is located to the right of position z, but it can’t be 
equal to those numbers which are to the left of position z. Below is the program code 
for function FreeValue( ), which solves this task. Cycled using of FreeValue( ) allows 
us to form the rest of the sequence. The list of value parameters is the same as for 
NextFreeValue( ). 

 
static public int FreeValue(int[] q, int n, int z) 
{ for (int k = 1; k <= n; k++) 
   { 
      int j = 0; 
      for (; j <= z; j++) 
         if (q[j] == k) break; 
      if (j > z) return k; 
   } 
   return 0; 
} 
 

Joining the functions NextFreeValue( ) and FreeValue( ) into one function as 
ProcessUp( ) allows us to get a single random and increasing sequence having n 
length in the interval ሾ1, ݊തതതതതሿ. It should be noted here that the next increasing sequence 
might require varying of preceding values. For example, let’s take the sequence 1, 2, 
3, 5, 4. The changing of the last value 4 to the following next value 5 is impossible 
due to the fact that the value 5 is already presented to the left. At the same time, the 
increasing of value 5 is impossible either due to it’s a maximum allowable value. 
Thus, the next increasing and random sequence will be 1, 2, 4, 3, 5. So, the process of 
iteration in applying of function ProcessUP( ) will form the sequence 1, 2, 4, 5, 3, and 
then 1, 3, 2, 4, 5, and so on. This will contribute the ranking in forming of sequences. 
Below is the program code for function ProcessUp( ). The list of value parameters 
includes array pointer int[] q having elements of random sequence. Parameter int n 
assigns the amount of elements in q. 

 
static public int ProcessUp(int[] q, int n) 
{  int z = n - 2;                  // next to last from position z 
   while (true) 
   {  int nv = NextFreeValue(q, n, z); 
//    Console.WriteLine("z = {0}   nv = {1}", z, nv); 
      if (nv != 0)   // moving of z to the left isn’t required 
      {  q[z] = nv;                               // next vacant value 
         while (++z < n)                 // position z till the end 
            q[z] = FreeValue(q, n, z - 1); 
         return z; 
      } 
      if (z = 0) break;                                  // no sequence 
      z--;                                         // position z to the left 
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   }; 
   return 0;                                        // no next sequence 
} 

 
If function ProcessUp( ) is executed with given sequence 1, 2, 3, 5, 4, this results 

in the following information which demonstrates how this function has determined 
the next increasing sequence. 

 
1   2   3   5   4 
z = 3   nv = 0 
z = 2   nv = 4 
1   2   4   3   5 
 

To get a completed set of random sequences having, for example, a length of 4, 
it’s necessary to execute function ProcessUp( ) which starts with the sequence 1, 2, 3, 
4 and finishes with the sequence 4, 3, 2, 1. This completed set includes 4! = 24 of all 
random sequences upon interval ሾ1,4തതതതሿ. 

As an example, below the program code is showing how to realize the mentioned 
task for sequences where each of them has, for example, 7 elements. The total 
quantity of such sequences is ݊! = 7! = 5040. 
 
int[] q = new int[] { 1, 2, 3, 4, 5, 6, 7 }; 
int n = q.Length;                           // length of a sequence 
int r = 0;                                   // number of the sequence 
while (true) 
{  Console.Write("r = {0,4}", ++r); 
   Console.Write("      q ="); 
   foreach (int w in q) 
      Console.Write("{0,4}", w); 
   Console.WriteLine();                              // a new string 
   if (ProcessUp(q, n) == 0) break;              // the process 
} 

 
The result of the execution of this code is the following completed ranking set 

(abridged). 
 

r =       1      q =   1   2   3   4   5   6   7 
r =       2      q =   1   2   3   4   5   7   6 
r =       3      q =   1   2   3   4   6   5   7 
- - - - - 
r =   100      q =   1   2   7   3   5   6   4 
r =   101      q =   1   2   7   3   6   4   5 
r =   102      q =   1   2   7   3   6   5   4 
- - - - - 
r = 1000      q =   2   4   3   6   5   7   1 
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r = 1001      q =   2   4   3   6   7   1   5 
r = 1002      q =   2   4   3   6   7   5   1 
- - - - - 
r = 2200      q =   4   1   3   6   5   7   2 
r = 2201      q =   4   1   3   6   7   2   5 
r = 2202      q =   4   1   3   6   7   5   2 
- - - - - 
r = 3300      q =   5   4   3   2   7   6   1 
r = 3301      q =   5   4   3   6   1   2   7 
r = 3302      q =   5   4   3   6   1   7   2 
- - - - - 
r = 5038      q =   7   6   5   4   2   3   1 
r = 5039      q =   7   6   5   4   3   1   2 
r = 5040      q =   7   6   5   4   3   2   1 

 
The task has been fulfilled, i.e. simulation of the completed and ranked set of 

sequences without repetitions having maximal length n in interval ሾ1, ݊തതതതതሿ has been 
done. Definitely, this is the exact completed set of all probable sequences. Further in 
this paper, this set is required to verify bijective correspondence between randomly 
given number r of function ௥݂ in functional F and index of sequence ݀௥ in set D for 
model ܯ = ,ܤ) ,ܦ  .(ܨ

In the Theorem section, the proof of the theorem regarding bijection in model ܯ = ,ܤ) ,ܦ (ܨ  and the necessity clause supposes that if sequence ݀ ∈ ܦ  is given 
randomly, then it’s possible to establish univocally such number as r for which it’s 
true: ݀௥ = ݀. Below, the function DeonNumber( ) is presented, and it may perform 
this task. The list of value parameters for this function includes array pointer int[] q of 
given sequence. The function returns back the number r of this sequence in a 
completed and ranked set of sequences D, i.e. ݀௥ ∈  .ܦ

The necessity clause in the Theorem section of this paper implies the effective tool 
of transforming a uniformly distributed sequence to a certain number, which provides 
unique identifiability in a complete factorial set of numbers of all sequences. So, if in 
the input of function DeonNumber( ) an arbitrary uniform sequence is loaded, the 
result is that this function returns the unique number associated with this sequence. If 
all those numbers of all sequences are derived, it means that unique number of 
‘maximal’ sequence is equal to factorial ݊!.  

 
static int DeonNumber(int[] q) 
{ int r = 0;            // number of function at this moment 
   int n = q.Length;                         // length of sequence 
   int nb = n;                          // initial amount of objects 
   int[] b = new int[nb];    // position numbers of objects 
   for (int i = 0; i < nb; i++) b[i] = i + 1; 
   int zF = 1;                                       // zF-factorial for b 
   for (int i = 2; i < n; i++) zF *= i; 
   for (int z = 0; z < n - 1; z++)  // cycle of positions in q 
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   {  int k = 0; 
      for (; k < nb; k++) 
         if (q[z] == b[k]) break; 
      int rg = k * zF;                // number before the group 
      r += rg;             // uncompleted number of sequence 
        // displacement: removing the element b[k] from b 
      for (int i = k; i < nb - 1; i++) b[i] = b[i+1]; 
      nb--;                                                 // one object less 
      zF /= n - z - 1;                              // zF-factorial for z 
   } 
   r++;              // accounting of last element of sequence 
   return r;                                       // number of function 
} 

 
To launch the function DeonNumber( ) the following fragment of program code is 

sufficient, where sequence, for example, 5, 4, 3, 6, 1, 7, 2 is given randomly. 
 

int[] q = new int[] {5,4,3,6,1,7,2}; 
int n = q.Length;                           // length of sequence 
Console.WriteLine("n = {0}", n);                  // monitor 
Console.Write("q = "); 
for (int i = 0; i < n; i++) 
Console.Write("{0,4}", q[i]); 
int r = DeonNumber(q);             // number of sequence 
Console.WriteLine("\nr = {0}", r);                // monitor 

 
After this fragment is executed, the following information is provided. 
 

n = 7 
q =   5   4   3   6   1   7   2 
r = 3302 

 
This result is equal to the same as what was received a little bit earlier. 
So, according to the sufficiency clause in proof of the theorem in the Theorem 

section, now the ability to find the appropriate sequence ݀௥ in relation to randomly 
given number r has appeared. The process of the theorem proving in the sufficiency 
clause implies the effective tool of transforming a unique number associated with a 
uniformly distributed sequence, to a real example of sequence in complete factorial 
set of numbers of all sequences. So, if in the input of function DeonSequence( ) has an 
array-buffer q for the derived sequence and randomly given number r, the result is 
that this function provides factorial decomposition of number r to the elements of 
complete sequence q. If total amount of numbers ݊!  is loaded, it provides an 
absolutely completed set of all the uniformly distributed sequences. 

Below the function DeonSequence( ) is presented. The list of value parameters of 
this function includes array pointer int[] q of needed sequence, and its number int r. 
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The result of executing the function DeonSequence( ) is defined as the filled array q 
having elements of sequence ݀௥ from set D. 

 
static void DeonSequence(int[] q, int r) 
{ int n = q.Length; 
   int nb = n;                                      // amount of objects 
   int[] b = new int[nb];                        // array of objects 
   for (int i = 0; i < n; i++) b[i] = i + 1; 
   int nF = 1;                           // nF-factorial of sequence 
   for (int i = 2; i <= nb; i++) nF *= i; 
   int iq = 0;    // index for element which is forming in q 
   for (int z = n - 1; z > 0; z--)            // cycle of positions 
   {  int ng = nF / nb;        // amount of elements in group 
      int w = r / ng;                // amount of previous groups 
      if ((w * ng) < r) w++;                // group number for r 
      int zb = w - 1;              // position of choice in b for q 
      q[iq++] = b[zb];                      // element in sequence 
        // displacement: removing the element b[zb] from b 
      for (int i = zb; i < z; i++) b[i] = b[i + 1]; 
      r -= (w - 1) * ng;                   // r for the next position 
      nb--;                                                 // one object less 
      nF /= z + 1;                                   // next nF-factorial 
   } 
   q[n - 1] = b[0];                                 // last element in q 
} 
 

To launch the function DeonSequence( ) the following program code fragment is 
sufficient, where, for example, the random sequence having the number ݎ = 3302  in 
set of all sequences D with amount of elements ݊ = 7 is performed. In such set D the 
following amount of sequences are included (ܦ) = ݊! = 7! = 5040 . 

 
int n = 7;                                         // length of sequence 
Console.WriteLine("n = {0}", n);                   // monitor 
int[] q = new int[n];                   // elements of sequence 
int r = 3302;                 // function number in functional 
Console.WriteLine("r = {0}", r);                    // monitor 
DeonSequence(q, r);            // computation of sequence 
for (int i = 0; i < n; i++) 
   Console.Write("{0,4}", q[i]); 

 
After executing this fragment, the following information is presented. 
 

n = 7    
r = 3302 
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   5   4   3   6   1   7   2 
 

This result is equal to the same as was received earlier above. 
Finally, let’s consider the short example which may confirm the above statements 

independently, i.e. all received numbers have uniform distribution and each of them 
can be found an equal amount of times. The following program code confirms this for 
7 elements which were taken as an example. So, each element is appearing 7! = 5040 
times, and, at the same time, each of them can be found once in unique sequence. 
Thus, such sequences are presented just once in a complete set. 

 
static void Main(string[] args) 
{  int[] q = new int[] { 1, 2, 3, 4, 5, 6, 7 }; 
    int n = q.Length; 
    int[] cQ = new int[n]; 
    for (int i = 0; i < n; i++) cQ[i] = 0; 
    while (true) 
    {  if (ProcessUp(q, n) == 0) break;  
        for (int i = 0; i < n; i++)  
        cQ[q[i]-1]++;                        // quantity of repeating 
     } 
     for (int i = 0; i < n; i++) 
     {  int z = cQ[i] + 1;                               // counter for i 
         Console.Write("{0}) {1,5}   ", i + 1, z); 
      } 
      Console.ReadKey(); 
} 
 

The result of the execution of this code is the following listing: 
 

1) 5040   2) 5040   3) 5040   4) 5040    
5) 5040   6) 5040   7) 5040 

 
So, the practical implementation is over. As a bottom line, the main result that has 

been received is the realizing of truly random sequence that was derived univocally 
without skipping of any kind of initial objects in set B. 

4 Theorem 

In section Fundamentals, it has been mentioned that the theorem and its proof will be 
given here. It would be meaningful if mathematical bijection could give a quick 
opportunity to define an isomorphism. It makes us organize the exact proof method of 
how elements of two sets can determine each other mutually and simply. The next 
theorem and its proving here are showing how to do this task. 

Theorem. In order that bijective relationship will exist between completed set D of 
final sequences and functional F in model ܯ = ,ܤ) ,ܦ (ܨ , it is necessary and 

1039Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...



sufficient that set of objects B which are included in sequences, will be strictly 
ordered. 

Proof. Let’s assume that the strict relation between elements of objects exists, 
which are included in all sequences of completed set. Let’s put in correspondence 
mentioned arithmetical set ܤ∗ , consisted in objects as numbers. The minimal set 
which satisfies this statement is any kind of arithmetical interval beginning from some 
number α. Without breaking communality, let’s put α = 1. Now it’s obvious that 
minimal arithmetical interval is ሾ1, ݊!തതതതതതሿ. Because of strict ordering, for each element ܾ∗ ∈ ∗ܤ  there is one and only one corresponding element ܾ ∈ ܤ . So, ܾ∗  and b are 
simply isomorphic. 

Necessity. The proof of necessity deals with the definite sequence of actions that 
has to be pointed to calculate number r for any random sequence ݀௥ ∈  Let’s use .ܦ
upper indexes for explicit pointing the random sequence d=<1d,2d,…,zd,…,n-1d,nd>, 
where index ݖ ∈ ሾ1, ݊തതതതതሿ. All ݊! sequences are presented in set D. Let’s divide D into n 
non-overlapping subsets ܦଵ + ଶܦ + ⋯+ ௡ܦ  in accordance with ranking. Based on 
ranking properties of D, all sequences which begin from 1 will be presented in ܦଵ, all 
sequences which begin from 2 will be presented in ܦଶ, and so on. Size of each group 
is equal due to factorial properties of ݊! = ݊ ∙ (݊ − 1)!: 
(ଵܦ)݀ݎܽܿ  = ⋯ = (௡ܦ)݀ݎܽܿ = (݊ − 1)!               (13) 
 

Let’s present the resulting number r of sequence d as a partial sum: 
 

R=1r+2r+…+nr.                (14) 
 
Depending on value of  1d ∈ ௭ܦ , the calculation is: 
ଵ	ݎ  = ∑ ௭ିଵ௜ୀଵ(௜ܦ)݀ݎܽܿ = ݖ) − 1) ∙ (݊ − 1)!              (15) 

By using iteration sorting of numbers 2d,…,n-1d in preset sequence d, the values 
2r,3r,…,n-1r  may be calculated accordingly. The last value is nr=1, and the final 
number r is determined by the sum: 

ݎ  = ∑ ௜	ݎ .௡௜ୀଵ                 (16) 

The proof of necessity is done. 
Sufficiency. Let’s assume the number ݎ ∈ ሾ1, ݊!തതതതതതሿ is defined, what allows using the 

function ௥݂ ∈ to calculate appropriate sequence ݀௥  ܨ ∈  Let’s point ݀௥ on the same  .ܦ
principles as above, which consisted of elements dr=<1dr,

2dr,…,n-1dr,
ndr>. Let’s divide 

D into n non-overlapping subsets ܦଵ + ଶܦ + ⋯+  ,௡ in accordance with ranking. Soܦ
the following will be the same as above: all sequences, which begin from 1, will be 
presented in ܦଵ, etc.; size of each group ng due to factorial properties is equal: 
 ݊݃ = (௡ܦ)݀ݎܽܿ = (݊ − 1)!               (17) 

This statement allows for having the determination of some number w from 
previous group as regard to element 1dr due to it is a result of integer division: 
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ݓ = ቐ ௥௡௚ , if	excess	is > 0௥௡௚ + 1, if	excess	is = 0               (18) 

So, the position of w allows choosing appropriate element b from the set of 
objects: 

 
1dr= ܾ௪ ∈  (19)               .ܤ

 
For the next iteration regarding 2dr the number r has to be reduced by (ݓ − 1) ∙ ݊݃ 

value, while element ܾ௪ which was already chosen is necessarily excluded from set B. 
Following the next iterations helps in obtaining elements 2dr,…,n-1dr. After all 
iterations, there will only be one element in set B, and it will be the last element ndr in 
sequence ݀௥. 

The proof of sufficiency is done by constructing. 
The proof of the theorem is over. 
In section Constructions and Results, the function DeonNumber( ) makes 

calculation of number r of sequence ݀௥ in accordance with algorithm of proof of the 
theorem for necessity. Also, in that section, the function DeonSequence( ) 
demonstrates generating of sequence ݀௥  for given number r in accordance with 
algorithm of proof of the theorem for sufficiency. 

The practical realization of the Theorem considered here is in the fact that it allows 
receiving absolutely all the uniformly distributed sequences based on their unique 
given numbers, where the total amount of them is equal to factorial ݊! . In this case 
the task of deriving the random sequences is associated with the task of arbitrary 
producing numeric numbers, which in turn may be reached by using different 
techniques, for example, based on timer or twister technologies. 

5 Discussion 

In the previous sections, Fundamentals and Constructions and Results, the 
prerequisites and practical realizations have been discussed regarding the simulation 
of a completed set of sequences consisted in n elements. How long might n be? For a 
sequenced RNG, it depends on the qualification of programmers and resources of 
exact computer to produce the recurrent number in a definite time. Any congruent 
generator may produce a very long sequence of numbers if the capabilities of the 
computer for memory size and processor speed are as unlimited as possible. Thus, for 
this purpose the finding of a required constant isn’t difficult. The next random value 
isn’t difficult to find either; however, it’s impossible to give any guarantee that after a 
while it wouldn’t be skipped because of nature of sequential algorithm. 

Applying this to binary shifting, the simple numbers and other methods for 
sequenced generating in modern RNG leads to critical dispersions in the receiving of 
values. This is typical for sequenced RNG. However, some practical cases are known 
for which random additive components don’t vary too much, although they remain 
random. In such cases, no other way exists than to use similar, but different sequences 
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that belong to the complete set. Because of such similar sequences in set D there may 
be close numbers univocally in functional of choosing F. This is the benefit: 
sequences may be controlled simply and externally, but they are still random. Just 
appropriate numbers r are required to be chosen, and no generating of complete set D 
is needed. The functions DeonSequence() and DeonNumber() may fulfill this task for 
any number with a result as a required random sequence ݀௥ ∈  .ܦ

In the simulation of completed sets of sequences, the added complication is that 
it’s necessary to use factorial ݊!, which is growing very fast even for short sequences. 
The benefit is that the generation of absolutely all sequences having n length is 
guaranteed once only. Unfortunately, very large values of n do not fit in a computer’s 
memory, and that is a limitation for the factorial method. Fortunately, factorial and 
completed sets of sequences have found large application in different areas of real 
human activities. Two of them are most commonly encountered in the literature: 1) 
testing of technical equipment, and 2) planning of evidence-based examinations in 
medicine. 

The testing of technical equipment is an important requirement to verify that 
complicated technical systems are working correctly. It is quite valuable, for example, 
for turbine-generator sets, engines for sport cars, energetic aggregates for sea-, aero- 
and space-crafts, apparatuses working in dynamic and even in dangerous 
environments, etc. So, simulation of all required test conditions is crucially important. 
Skipping of some sort of regimes is unallowable due to the cost of production and 
exploitation of such systems could be very high and custom unique. Moreover, in the 
case of biomedical technical systems the cost of life is invaluable. It’s evident, that we 
can’t get by without completed sets of random sequences. The sequenced RNG don’t 
fit completely because of pseudorandom sequences may occasionally skip the random 
numbers. But such skipping is absolutely inappropriate in questions of vital 
importance. 

Medical planning of evidence-based examinations is frequently faced with sets of 
volunteer and patient groups that might be chosen randomly. Surely, the same person 
can’t be involved in two different groups simultaneously due to, for example, the first 
group is used to check the efficacy of novel medication and the second group is used 
for placebo validation. Moreover, no volunteers, no patients, no medical staff can be 
aware of what is given to an exact person except the responsible researchers. This is 
typical medical planning for verification purposes. The application of RNG here of a 
general type, which is commonly used in cryptography, is very doubtful. Moreover, 
for some meaningful tests, the choosing of volunteers may require additional 
selections to exclude possible speculations in results. So, the skipping of any kind of 
numbers is inappropriate because of a matter of life and death in decision making 
processes. 

Thus, completeness of all possible sequences is strongly required. No universal 
RNG exist; therefore in different areas, the complete sets of sequences under full 
variations of test examinations are demanded. 
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6 Conclusion 

In this article we’ve considered the questions regarding the main goal of current work, 
which is how to strictly get the variety of random sequences having exact length, 
where the random values are to appear only once. For this purpose, a modern 
approach has been analyzed where the realization provides the production of different 
RNGs. These generators may be considered from both sides: the theory of random 
processes and the practical usage target. This leads us to those generators which are 
capable in realization of completed sets of random sequences. For this aim, we 
consider the uncertainty of occurrence as a dilemma in choosing of one sequence 
from all possible as it stands. The proved theorem about strict ranking of the initial set 
of objects in model ܯ = ,ܤ) ,ܦ  resulted in theoretical confirmation of univocal (ܨ
choosing of functional F. The theorem-proving process led us to creating of program 
functions DeonSequence( ) and DeonNumber( ), which allowed the retrieval of all 
random sequences ݀௥ ∈  while number r was using for this, and no simulation of ܦ
completed set of sequence D was made. 

In section Introduction it was mentioned that technical systems could generate 
random numbers which are close to uniform distribution but unfortunately, not strictly 
uniform. The verification methods of mathematical statistics may confirm this 
statement. The novel algorithm demonstrated above to form completed ranked sets of 
random sequences is different from the approaches that are used in PRNG. In the 
current work here, proposed complete sets of uniform sequences are indeed consisting 
in strictly uniform random numbers. 

When discussing the received results, it was noted that current RNGs, which 
realize the conception of consequent generating, allows for the retrieval of random 
values having some length n, but at the same time they can’t guarantee getting them 
without skipping or with no repeating of random values. By using method has 
proposed in this paper it’s possible to provide the generation of univocal random 
sequences; however the length of such sequences is limited by computer resources in 
calculations of factorial n!. We believe, in the near future, the simulation of random 
sequences having completed sets of objects will be in more and more demand. 
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