
The Complete Set Simulation of Stochastic Sequences
without Repeated and Skipped Elements

Aleksei F. Deon
(Department of Computer Science, Department of Mathematical Sciences

N.E. Bauman Moscow State Technical University, Moscow, Russia
deonalex@mail.ru)

Yulian A. Menyaev

(Winthrop P. Rockefeller Cancer Institute
University of Arkansas for Medical Sciences, Little Rock, AR, USA

yamenyaev@uams.edu)

Abstract: Random sequences are widely used in theoretical and practical areas of interests in
human and technical activities. An important part of these fields is referred to as the procedures
of producing stochastic values. One direction adapts the sequenced generating of
pseudorandom numbers and the other direction uses all stochastic sequences in objects of
completed sets. The first direction is well studied and is traditionally used in cryptography and
technical systems in medical and biological trials. The second direction is generally used in
systems for preliminary universal testing where all or characteristically important sequences
belong to a given diapason of actions are required. In this current work we explore the second
direction, where the underlying approaches in modern generators of random numbers are
considered. The simulation of complete sets of random numbers shows that either skipping or
repeating of generated values is possible. We’ve formed the requirements that if followed, the
problems of skipping and repeating are overcome. Next, we’ve proposed novel algorithms to
form completed ranked sets of random sequences. Also, we’ve proposed novel algorithms on
the basis of factorial expansion of random numbers which provide fast generation of such
sequences. A discussion of the advantages and disadvantages of the indicated statements
completes this paper.

Key Words: Computer Simulation, Random Number Generator, Stochastic Sequence
Algorithm, Probability and Statistics.
Categories: G.2.1, G.3, F.2

1 Introduction

The world around us is full of many cases of certain and unpredictable events. A lot
of things are caused by occurrence. At such moments, we face stochastic phenomena
and have to use our background knowledge or follow the recommendations of others
who have experienced the same conditions. Because we are not sure if we are
correctly choosing, the nature of uncertainty dictates us to search for adequate
activities in current circumstances. In turn, this means that choosing itself reduces the
uncertainty in a varying degree.

In 1948, Claude Shannon proposed that to choose the sequence of binary
questions, only the answers of ‘yes’ and ‘no’ may be used [Shannon 1948]. The

Journal of Universal Computer Science, vol. 22, no. 8 (2016), 1023-1047
submitted: 9/3/16, accepted: 29/7/16, appeared: 1/8/16 © J.UCS

structure of such approach may be presented as graphs of non-binary and binary trees,
[Fig. 1].

Figure 1: Non-binary (A) and binary (B) tree graphs of questions and answers

To discuss the terms of correct answers ‘yes’ and their probabilities, Shannon
proposed the term ‘entropy’ ܪ(ܺ) as a measure of uncertainty for choosing the final
possible answer at the moment of uncertainty reduction for root of tree may occur
[Shannon and Weaver 1963]:

(ܺ)ܪ = ∑ ௜௜∈ூ݌ଶ݃݋௜݈݌ (1)

Many opinions about the quality of such estimation were expressed, but now such
fields as informatics, cybernetics, theory of transmitting and receiving, and others are
using Shannon’s entropy proposal [Banati and Bajaj 2013, Cover and Thomas 2006,
Karaboga and Ozturk 2011]. Further, in practical realization of random number
generators (RNG), the relevant algorithms have been developed, for which
discussions about advantages and disadvantages may be found in [Feng et al. 2010,
Maurer 1992, Wegenkittl 2001].

In the beginning of the computer era, Alan Turing did estimations of the time
period required for uncertainty reduction [Turing 1950]. For this purpose he proposed
the fundamentals to solve the task of how fast the computer may reduce or eliminate
the uncertainty in the limited time period of its work. Turing’s ‘simple’ machine used
three actions: shift to the left; shift to the right; and reading the information bit having
0 or 1 values. Later, similar principles have been enlarged by Kolmogorov,
subsequently named ‘complexity theory’ [Kolmogorov 1968, Li and Vitanyi 2008,
Velmurugan and Santhanam 2010]. All those statements were applied at a basic level
in cryptography; however the algorithms that were used and their practical results
have been discussible up to now [Dagtas et al. 2004, Evans et al. 2001, Jain 2010, Tan
et al. 2011]. Also, in the theory of random sequences, the different examples of
ergodic processes are in use, which are known as Markov chains [Forsati et al. 2013,
Hellekalek and Wegenkittl 2003, Miner et al. 2012].

In the above-mentioned techniques, the uniform distribution of random values is
usually used. Based on principles of RNG, two basic approaches are known: 1) true
random number generators (TRNG), which produce random numbers in real time
from physical processes, and 2) pseudorandom number generators (PRNG), which use

Dilemma

1st answer

2nd answer

Non-Shannon’s
triadic question

3rd answer

A

Dilemma

Dilemma

Shannon’s dyadic
question

1st answer

2nd answer

3rd answer

Shannon’s dyadic
question

B

1024 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

algorithms to produce sequences of numbers whose properties are almost the same as
natural random sequences. TRNG techniques use natural effects, such as noise of
natural phenomena, properties of semi-conducting materials, etc. One direction in this
field was hardware random number generators (HRNG), which found application in
generating of cryptographic keys to encrypt data sent over computer networks. The
mathematical statistics used to characterize the receiving uniform distribution of
values in TRNG for what Kolmogorov-Smirnov test is typically applied. Special outer
devices or circuits connect to the computers to provide this, as shown in [Nandy et al.
2012, O’Donnell et al. 2005, Suh et al. 2004, Yang 2010].

The evolution of algorithmic PRNG has occurred since the congruent generator
was proposed [Mani and Derick 2010, Park and Miller 1988, Storm and Price 1997].
However, a short while after it was found that pseudorandom values are repeatable
after some constant period of time. This fact energized Matsumoto and Nishimura to
develop an algorithm that was capable of increasing the period of repeating up to the
value of 2ଵଽଽଷ଻ − 1 [Matsumoto and Nishimura 1998, Nishimura 2000]. The search
for new methods did not stop after that, and today many promising techniques are
known. For example, the quadratic generator, Blum-Blum-Shub generator, and others
[Blum et al. 1986].

A linear congruential generator (LCG) is the next important issue which should be
considered in some detail here [Fister et al. 2013, Hellekalek 1998, Yujian and Liye
2010]. It produces the next element of random sequence by using the following
recurrence relation:

௡ାଵݔ = (2) .݉	݀݋݉	(௡ݔ)݂

If some kind of function ܽݔ௡ + ܿ is used for an algorithm of realization ݂(ݔ௡), the

generator is congruential:
௡ାଵݔ = ௡ݔܽ) + (3) .݉	݀݋݉	(ܿ

Moreover, modern consequent generators are not limited by ordinary linearity;

they use additions of different types of shifting, inversion, bit disjunction with modulo
2 (XOR), and other operations. The properties of LCGs found different applications in
many areas such as information systems, cryptography and mathematics [Arora et al.
2015, Diffie and Hellman 1976, 1979, Wallace 1996, Leeb and Wegenkittl 1997,
Dodis et al. 2013, Karloff and Raghavan 1993, Kasdin 1995, Dorrendorf et al. 2009],
as well as in biological and medical research [Cai et al. 2016, Song et al. 2006, Juratly
et al. 2015, 2016, Menyaev et al. 2006, 2013, 2016, Menyaev and Zharov 2006,
Miklós et al. 2009, Sarimollaoglu et al. 2011, 2014, Zharov et al. 2001]. Such
generators explore the statement about uniform distribution of random values, but
without talking about completeness of distribution [Deon and Menyaev 2016]. The
problem is that this type of generator can’t produce all random values within a
required period of time under the condition of one-shot generation of absolutely all
random values that have given lengths. Unfortunately, this task isn’t completely
solved yet.

1025Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

Let’s make a simple experiment, in which a generator Random is taken from the
Microsoft Visual Studio 2013 compiler. The searching of a maximal random value in
the programming language C# [Manning et al. 2008, McConnell 2002, Schildt 2010]
may be fulfilled with the following program code by consequently using the length of
random value n.

static void Main(string[] args)
{ int m = 1;
 for (int n = 0; n <= 10; n++, m *= 10)
 { int max = 0;
 Random r = new Random(0);
 for (int j = 0; j < m; j++)
 { int v = r.Next();
 if (max < v) max = v;
 }
 Console.WriteLine(
 "n = {0,2} m = {1,12} max = {2,12}",
 n, m, max);
 }
 Console.ReadKey();
}

The result of executing this code provides the following listing:

n = 0 m = 1 max = 1559595546
n = 1 m = 10 max = 2099272109
n = 2 m = 100 max = 2147425016
n = 3 m = 1000 max = 2147425016
n = 4 m = 10000 max = 2147425016
n = 5 m = 100000 max = 2147452437
n = 6 m = 1000000 max = 2147483082
n = 7 m = 10000000 max = 2147483591
n = 8 m = 100000000 max = 2147483618
n = 9 m = 1000000000 max = 2147483646
n = 10 m = 10000000000 max = 2147483646

The above example shows that if the length of a random value is 10 in decimal

scale, the maximum generated value is limited by the number 2147483646. This value
is equivalent to the constant of 31 bits, which is in hexadecimal form looks as
0х7FFFFFFF and in decimal one as 2147483647. Thus, according to the listing above
the random values belong to the interval [0, 2147483647].

The next task is to explore the uniformity of the generation of values, but before
we do this, we have to find the minimal number for Random generator, which
determines the beginning of interval of random values. The next example of the
program code allows us find it:

1026 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

int n = 0x7FFFFFFE; // maximum value
Console.WriteLine(" n = {0}", n);
int min = n; // beginning of maximum finding
Random r = new Random(0);
for (int j = 0; j <= n; j++)
{ int v = r.Next();
 if (v < min) min = v;
}
Console.WriteLine("min = {0}", min);

The result of executing this code shows the following:

n = 2147483646
min = 0

So, this is a true confirmation that the interval of random values generated is

determined to be [0, 2147483646]. In each sequence of this set, uniformly distributed
random values should be placed in the aforementioned interval. Let’s check it by
using some kind of values as: 10, 100, 1000, 10000, 100000, 1000000. The following
program code solves this task.

int n = 0x7FFFFFFE;
Console.WriteLine(" n = {0}", n);
int[] q = new int[] { 1, 10, 100, 1000, 10000,
 100000, 1000000};
int[] c = new int[q.Length];
Random r = new Random(0);
for (int j = 0; j <= n; j++)
{ int v = r.Next();
 for (int k = 0; k < q.Length; k++)
 if (v == q[k]) c[k] += 1;
}
for (int k = 0; k < q.Length; k++)
 Console.WriteLine(
 "q[{0}] = {1,10} c[{0}] = {2}",
 k, q[k], c[k]);

After executing this code, the following listing appears.

n = 2147483646
q[0] = 1 c[0] = 0
q[1] = 10 c[1] = 1
q[2] = 100 c[2] = 0
q[3] = 1000 c[3] = 1
q[4] = 10000 c[4] = 1

1027Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

q[5] = 100000 c[5] = 0
q[6] = 1000000 c[6] = 2

So, results such as c[0]=0, c[2]=0, c[5]=0 refer to the fact that Random generator

does not produce all the random values in a given interval [0, 2147483646].
As was mentioned above, TRNG are really complex and expensive physical tools.

At the same time, based on observed references regarding PRNG, it could be seen that
existing methods can’t reach all the sequences which are distributed uniformly. The
best case was found for the generator MT19937 [Matsumoto and Nishimura 1998],
which has the biggest period of repetition. However, the problem of receiving real
stochastic sequences is still not solved in this case.

Let’s make a subtotal summary here. The task to create the universal RNG is yet
unsolved and therefore it’s still very important. However, the set of random sequences
can be restricted, which may allow for organization of the random values generator.
In the next section, we will demonstrate novel principles for how this kind of
generator, which includes completed set of values, uniform distribution, and no
skipping generating, could be made.

2 Fundamentals

When natural phenomena are under study, the first question that is necessary to clarify
is what is their behavior under certain circumstances? In such phenomena, different
objects may be involved and their properties may be similar, or different, such as
leaves from the tree blown by the wind, for example. If a collection of such objects
may be calculated mathematically, we may say that the calculating set, if impossible,
is a continual set [Kolmogorov and Fomin 1999]. This criterion allows us to pay
attention to the uncertainty of choosing any object in a certain set. So, in calculating
sets, choosing objects may be accompanied by numbers. This means that the
uncertainty of choosing consists in the fact that the object maybe accompanied by any
number. At the same time, for continual sets, the problem of an uncertainty of
choosing consists in the inability to mark the objects by certain numbers. For
example, well-known mathematical constants such as π or e aren’t defined as
completely final values, but they definitely exist and their values are rather close to
each other.

Previously the definition of an uncertainty was mentioned, and now it’s time to
clarify what kind of an uncertainty will be considered here next. For this purpose, the
method of numeration or technique of identification of object choosing has to be
clarified. Therefore, we consider the uncertainty of choosing of an object, which
belongs to a completed set, where each object has its own unique number. Thus, in the
current model, the phenomenon is underlying the set of similar primary objects, but
they are different in unique counting numbers.

Now let’s pay attention to the time-dependent circumstances of the
aforementioned phenomena. In nature the objects maybe observed in sequence, which
means they are observed one by one during a period of time. At once, the objects may
appear simultaneously in the same period of time. So, the simplest mathematical case

1028 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

refers to the appearance of one object in a certain moment of time. Let’s take this
statement as a basis for the simulation of the random sequences here. It is important
that in this model, the observation of ‘no object’ is impossible because a ’void’ object
isn’t presented in a set.

The circumstance of the time period means that it’s crucially necessary to take into
consideration the length of observation between two events. Thus, in the first and
simplest case, at a moment of time the one object could be observed. In the second
case, at two moments of time ሾݐଵ, 	ଵݐ ଶሿ, whereݐ < :ଶ, two objects appear one by oneݐ
either one object appears twice at moments t1 and t2, or the 1st object at t1 and the 2nd
one at t2. Mathematically, this corresponds to sampling with or without repetition. For
a more detailed explanation, let’s specify the objects here as ܾ௜ and ௝ܾ with any chosen
numbers i and j. In the second case, an uncertainty of sampling should be considered
as functional, which may choose any kind of sequences inside the following set ൛< ܾ௜, ܾ௜ >, < ܾ௜, ௝ܾ >, < ௝ܾ, ܾ௜ >, < ௝ܾ, ௝ܾ >ൟ. Here an uncertainty is determined by
sampling of one sequence among four of them, but which sequence that is chosen is
under identifying by natural phenomena.

In the following, let’s talk about non-repeatable objects in the one sequence, which
is a set of sequences 	൛< ܾ௜, ௝ܾ >, < ௝ܾ, ܾ௜ >ൟ. Next, let’s assume that in sequences we
may observe n objects. This means that the minimal set of distinguished sequences,
which consist of non-repeatable objects, is the set of probable sequences having all
transpositions among n objects. The summarization of these statements appears as the
following:

ܤ = ሼܾଵ, ܾଶ, … , ܾ௡ሽ (4)
ܦ = ൜< ܾ௜ଵ, ܾ௜ଶ, … , ܾ௜௡ >: ݅1, ݅2, ݅݊ ∈ ሾ1, ݊തതതതതሿ,݅1 ≠ ݅2 ≠ ⋯ ≠ ݅݊ ൠ (5)

where B is the set of observed objects and D is the set of observed sequences. Each
sequence in set D includes all non-repeatable objects from set B.

Mathematically, D is the set of all transpositions of objects from set B. Element ݀ ∈ ܦ is the one sequence that includes n non-repeatable objects ܾ ∈ ܤ . In this
definition, we have a complete set of all sequences having n length that could be
characterized as in each sequence all the objects are mentioned once. In other words,
this is the simple completeness in observed objects, and simple completeness in
sequences.

The next step allows us to see that an uncertainty of sampling in natural
phenomena might be considered in two aspects: 1) uncertainty of observing an object
in an exact location inside sequences; 2) uncertainty of observing a sequence, but each
sequence expresses itself if the total sampling inside D is done. So, we are talking
about the uncertainty of the functional of sampling due to the fact that potency |ܦ|, or
in other words an amount of elements ܿܽ(ܦ)݀ݎ in virtue of completeness of D, are
equal:

|ܦ| = (ܦ)݀ݎܽܿ = ݊!. (6)
This equation comes directly from combinatorial analysis [Johnsonbaugh 2008]

1029Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

and general algebra [Waerden 1991] where the estimation of the quantity of indexes
transpositions for n elements is considered.

The same result may be taken from the probability theory [Gnedenko 1998] by
considering the methods of sampling without repeating. In the 1st place in a sequence,
any object ܾ௜ଵ ∈ from total n may be presented; in the 2nd place, any object ܾ௜ଶ ܤ ݊ which belongs to the set having (ሼܾ௜ଵሽ\ܤ)∋ − 1 elements may be presented, and so
on. Thus, by multiplying amount of all variations we will have the factorial value ݊!.
Using this statement, it’s possible to confirm that one of the characteristics of
uncertainty, for the functional of sampling regarding to all sequences is a factorial
completeness of the total amount of sequences.

It should be mentioned that when we started talking about functional sampling, we
didn’t use conception of function ݂(ݎ), which stands as a single number r to the
sequence ݀௥ ∈ ,Here r characterizes the sequence of actions, which, when applied .ܦ
allows us to get one sequence from D. In turn, |ܦ| characterizes an uncertainty prior
to the beginning of sampling, and also in accordance to r, will finish the sampling by
pointing the concrete sequence ݀௥. The set of univocal functions ݂(ݎ) constitutes the
functional F on the set of D, where r is the number of method to obtain the required
sequence: ܨ = ሼ ௥݂ → ݀௥ ∈ .ሽܦ

Since the amount of sequences ܿܽ(ܦ)݀ݎ is matching with the potency |ܦ|, this
means the potency of functional F is matching |ܦ| as well:

|ܨ| = |ܦ| = ݊!. (7)

So far it provides the statement that one variant of r identification could be ݎ ∈ ሾ1, ݊!തതതതതതሿ . The question that logically follows is what number of ݎ ∈ ሾ1, ݊!തതതതതതሿ

corresponds to the sequence ݀௥ ∈ .The answer will be given here later ?ܦ
Now it’s time to summarize all above-mentioned denotations together in a uniform

model, which will allow us in the next section to reach the algorithms and their
implementation in computer programs.

Let’s name the model M of set D consisting in completed sequences having non-
repeatable objects from B as triplet of sets, where the realization of reduction of
uncertainty for the functional F is possible:
ܯ = ,ܤ) ,ܦ (8) .(ܨ

The set of objects B is being given a priori in accordance of chosen strategy of
phenomenon study. The set of sequences D presents itself as a set of the minimal
amount of the simplest completed sequences. So, each sequence in D includes all
elements from B having different listings of objects. A set of functional F includes all
functions, which may determine an uncertainty in sampling each time for the only one
sequence.

Now let’s return to the question of how to realize the functional F for a sampling
of concrete sequence ݀௥. Based on a mathematical definition of the set, it could be
determined by using two methods: 1) explicitly list all the elements of the set; 2) point
to the actions which may present any element of the set. If procedures aren’t

1030 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

completed, this means it’s impossible to present all elements of a set, which in this
case the functional of actions is incomplete.

These features of set forming allow for pointing to the first technique in realization
of functional in model M, i.e. direct listing of ݀ ∈ until the sequence, which is ܦ
satisfied when r criteria is found: ݀ = 	݀௥.

The uniqueness of this technique is obvious and that’s why to form D, only the
one sequence may be found which is satisfied to transposition r of objects from B.
Transposition r is the sole finding, following directly from combinatorial analysis
[Johnsonbaugh 2008].

The second technique in realization of functional F is based on analyses of the
uncertainty for model ܯ = ,ܤ) ,ܦ (ܨ . The point is that the quantity of sequence-
elements in set D is ܿܽ(ܦ)݀ݎ = |ܦ| = ݊!. So, here r is some kind of a whole number
in arithmetical range of whole numbers ሾ1, ݊!തതതതതതሿ = ሾ1,2,3, … , ݊!ሿ . All elements of ݎ ∈ ሾ1, ݊!തതതതതതሿ are strictly ordered. Thus, it’s necessary to achieve the order for numbers
of sequences from D. For this purpose, let’s take in consideration the positional
representation of whole number X, which consists of n digits of ݔ௜ in some
numeration system with a basis of s:

 ܺ = ௡ିଵݏ௡ିଵݔ + ௡ିଶݏ௡ିଶݔ + ⋯+ ଵݏଵݔ + ଴. (9)ݏ଴ݔ

Now let’s use combinatorial definition of sequence in set D, what is a

transposition of non-repeatable numbers of indexes. Let’s assume that objects ܾ ∈ ܤ
are numbered, or in other words, marked by whole numbers taken from arithmetical
range ሾ1, ݊തതതതതሿ. Then, the first sequence one which corresponds to the minimal positional
number, where numbers themselves are taken from positional presentation of indexes.

Sequence X r
1, 2, 3 123 1
1, 3, 2 132 2
2, 1, 3 213 3
2, 3, 1 231 4
3, 1, 2 312 5
3, 2, 1 321 6

Table 1: Example of ordering

For demonstrative understanding of the theoretical basis presented above, let’s
consider a simple example where ݊ = 3. Let’s mark objects in B by numbers 1, 2, 3,
which gives us ଵܺ = 123. Then the second sequence after applying the transposition
gives ܺଶ = 132. Now it’s possible to observe some kind of ordering: 123 < 132, or ଵܺ < ܺଶ. So, based on this logic, the next sequences are looking like those presented
in [Tab. 1].

The total amount of sequences is ݊! = 3! = 6 for which the numbers of r of
functions ଵ݂, … , ଺݂ from functional F are corresponded directly. So, if an uncertainty
of nature has chosen the function ସ݂ , for example, then we may observe the 4th

1031Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

sequence 2, 3, 1 from the table above.
The structure of such approach may be presented as graph in [Fig. 2].
The link between r and appropriate sequence is determined in the following. Let’s

write down now the factorial explicitly:
 ݊! = ݊ ∙ (݊ − 1) ∙ (݊ − 2) ∙ … ∙ 2 ∙ 1. (10)

This equation contains the same amount of factors as the amount of objects having

n length long. Let’s pay attention to the fact that in first place of the left part, any
number taken from n may be placed. To determine the biggest number of the left part
we need to exclude the right part of factorial by using its properties:

 ݊! = ݊(݊ − 1)!. (11)

Due to ݎ௠௔௫ = ݊! it’s obvious that all other numbers will be found by using this

technique of factorial decreasing, and also by the application of excluding those
indexes which were determined in previous iterations.

Figure 2: Tree graph for the example of ordering

In the next section of this article, the concrete realization of methods and
techniques considered here are shown, where the programming language C# is used
from Microsoft Visual Studio 2013. Additionally, in section Theorem the
mathematical proof of the theorem which summarizes observed statements is given.

3 Constructions and Results

The forming of the sequences having maximal length in interval ሾ1, ݊തതതതതሿ incorporates
the theoretical formula with respect to ݊௭ numbers, which are included in sequence on
z position:

 ݊௭ ∈ (ሾ1, ݊തതതതതሿ\ሼ݊ଵ, ݊ଶ, … , ݊௭ିଵሽ). (12)

Sequence

1 2 3

2 3 or 3 2 1 3 or 3 1 1 2 or 2 1

123 213 312132 231 321

1032 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

Let’s add a property of increasing ranking: the next chosen number is bigger than
the previous one with an allowance for the formula mentioned above. This ensures
that all elements will be presented in sequence. The initial minimal sequence is the
only one and consists strictly in ordering numbers 1,2,3, … , (݊ − 1), ݊. To get number ݊௭, the function is required, and let’s call it NextFreeValue(). It can show for the
exact position of z the next increasing value which isn’t coincided in numbers with
previous positions such as 1,2, … , ݖ − 1 in generated sequence. For example, let the
sequence consists of 4 elements 2, 3, 1, 4, and let’s assume that position ݖ = 3 where
number 1 is located (݊௭ୀଷ = 1), is interesting for us. After the applying of function
NextFreeValue() the next number 4 will be offered because of numbers 2 and 3 are
located on previous positions, and using them is prohibited for the position of ݖ = 3.
In another example let’s consider the sequence 2, 3, 4, 1, and let’s try to find the next
increasing value for the same position ݖ = 3. It’s impossible due to the next number is
5, which can’t be presented in sequence having 4 elements. In this situation
NextFreeValue() returns 0, which is interpreted as abort to provide the action.

Below is the program code for function NextFreeValue() on C# dialect. The
strings used for testing are commented out. In the list of value parameters the int[] q
is a pointer to the array having the number of elements in random sequence.
Parameter int n contains the amount of elements in array q. Parameter int z assigns the
index of position for which is required in the selection of the next random value
which in turn isn’t repeating among the previous elements until index z is reached.

static public int NextFreeValue(int[] q, int n, int z)
{ int v = q[z] + 1; // possible value
 if (v > n) return 0; // increasing impossible
 int w = 0; // starting of checking in array q
 for (; v <= n; v++) // area of possible values
 {
// Console.WriteLine("v = {0}", v);
 int j = w; // starting of checking continuing
 for (; j < z; j++) // elements until z position
 {
// Console.WriteLine("q[{0}] = {1}", i, q[i]);
 if (q[j] == v) break; // value wasn’t accepted
 }
 if (j >= z) break; // value v wasn’t faced before
 w = j + 1; // continue from here henceforth
 }
 if (v > n) v = 0;
 return v; // next vacant value
}

So, the function NextFreeValue() allows for either finding the next vacant value

for position z which is one more than previous value, or generate the abort.
Next, acceptable values in the simulated sequence are placed either to the left from

1033Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

position z or directly in position z in array q. Now we want to find the minimal
number for position ݖ + 1 which is located to the right of position z, but it can’t be
equal to those numbers which are to the left of position z. Below is the program code
for function FreeValue(), which solves this task. Cycled using of FreeValue() allows
us to form the rest of the sequence. The list of value parameters is the same as for
NextFreeValue().

static public int FreeValue(int[] q, int n, int z)
{ for (int k = 1; k <= n; k++)
 {
 int j = 0;
 for (; j <= z; j++)
 if (q[j] == k) break;
 if (j > z) return k;
 }
 return 0;
}

Joining the functions NextFreeValue() and FreeValue() into one function as
ProcessUp() allows us to get a single random and increasing sequence having n
length in the interval ሾ1, ݊തതതതതሿ. It should be noted here that the next increasing sequence
might require varying of preceding values. For example, let’s take the sequence 1, 2,
3, 5, 4. The changing of the last value 4 to the following next value 5 is impossible
due to the fact that the value 5 is already presented to the left. At the same time, the
increasing of value 5 is impossible either due to it’s a maximum allowable value.
Thus, the next increasing and random sequence will be 1, 2, 4, 3, 5. So, the process of
iteration in applying of function ProcessUP() will form the sequence 1, 2, 4, 5, 3, and
then 1, 3, 2, 4, 5, and so on. This will contribute the ranking in forming of sequences.
Below is the program code for function ProcessUp(). The list of value parameters
includes array pointer int[] q having elements of random sequence. Parameter int n
assigns the amount of elements in q.

static public int ProcessUp(int[] q, int n)
{ int z = n - 2; // next to last from position z
 while (true)
 { int nv = NextFreeValue(q, n, z);
// Console.WriteLine("z = {0} nv = {1}", z, nv);
 if (nv != 0) // moving of z to the left isn’t required
 { q[z] = nv; // next vacant value
 while (++z < n) // position z till the end
 q[z] = FreeValue(q, n, z - 1);
 return z;
 }
 if (z = 0) break; // no sequence
 z--; // position z to the left

1034 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

 };
 return 0; // no next sequence
}

If function ProcessUp() is executed with given sequence 1, 2, 3, 5, 4, this results

in the following information which demonstrates how this function has determined
the next increasing sequence.

1 2 3 5 4
z = 3 nv = 0
z = 2 nv = 4
1 2 4 3 5

To get a completed set of random sequences having, for example, a length of 4,
it’s necessary to execute function ProcessUp() which starts with the sequence 1, 2, 3,
4 and finishes with the sequence 4, 3, 2, 1. This completed set includes 4! = 24 of all
random sequences upon interval ሾ1,4തതതതሿ.

As an example, below the program code is showing how to realize the mentioned
task for sequences where each of them has, for example, 7 elements. The total
quantity of such sequences is ݊! = 7! = 5040.

int[] q = new int[] { 1, 2, 3, 4, 5, 6, 7 };
int n = q.Length; // length of a sequence
int r = 0; // number of the sequence
while (true)
{ Console.Write("r = {0,4}", ++r);
 Console.Write(" q =");
 foreach (int w in q)
 Console.Write("{0,4}", w);
 Console.WriteLine(); // a new string
 if (ProcessUp(q, n) == 0) break; // the process
}

The result of the execution of this code is the following completed ranking set

(abridged).

r = 1 q = 1 2 3 4 5 6 7
r = 2 q = 1 2 3 4 5 7 6
r = 3 q = 1 2 3 4 6 5 7
- - - - -
r = 100 q = 1 2 7 3 5 6 4
r = 101 q = 1 2 7 3 6 4 5
r = 102 q = 1 2 7 3 6 5 4
- - - - -
r = 1000 q = 2 4 3 6 5 7 1

1035Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

r = 1001 q = 2 4 3 6 7 1 5
r = 1002 q = 2 4 3 6 7 5 1
- - - - -
r = 2200 q = 4 1 3 6 5 7 2
r = 2201 q = 4 1 3 6 7 2 5
r = 2202 q = 4 1 3 6 7 5 2
- - - - -
r = 3300 q = 5 4 3 2 7 6 1
r = 3301 q = 5 4 3 6 1 2 7
r = 3302 q = 5 4 3 6 1 7 2
- - - - -
r = 5038 q = 7 6 5 4 2 3 1
r = 5039 q = 7 6 5 4 3 1 2
r = 5040 q = 7 6 5 4 3 2 1

The task has been fulfilled, i.e. simulation of the completed and ranked set of

sequences without repetitions having maximal length n in interval ሾ1, ݊തതതതതሿ has been
done. Definitely, this is the exact completed set of all probable sequences. Further in
this paper, this set is required to verify bijective correspondence between randomly
given number r of function ௥݂ in functional F and index of sequence ݀௥ in set D for
model ܯ = ,ܤ) ,ܦ .(ܨ

In the Theorem section, the proof of the theorem regarding bijection in model ܯ = ,ܤ) ,ܦ (ܨ and the necessity clause supposes that if sequence ݀ ∈ ܦ is given
randomly, then it’s possible to establish univocally such number as r for which it’s
true: ݀௥ = ݀. Below, the function DeonNumber() is presented, and it may perform
this task. The list of value parameters for this function includes array pointer int[] q of
given sequence. The function returns back the number r of this sequence in a
completed and ranked set of sequences D, i.e. ݀௥ ∈ .ܦ

The necessity clause in the Theorem section of this paper implies the effective tool
of transforming a uniformly distributed sequence to a certain number, which provides
unique identifiability in a complete factorial set of numbers of all sequences. So, if in
the input of function DeonNumber() an arbitrary uniform sequence is loaded, the
result is that this function returns the unique number associated with this sequence. If
all those numbers of all sequences are derived, it means that unique number of
‘maximal’ sequence is equal to factorial ݊!.

static int DeonNumber(int[] q)
{ int r = 0; // number of function at this moment
 int n = q.Length; // length of sequence
 int nb = n; // initial amount of objects
 int[] b = new int[nb]; // position numbers of objects
 for (int i = 0; i < nb; i++) b[i] = i + 1;
 int zF = 1; // zF-factorial for b
 for (int i = 2; i < n; i++) zF *= i;
 for (int z = 0; z < n - 1; z++) // cycle of positions in q

1036 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

 { int k = 0;
 for (; k < nb; k++)
 if (q[z] == b[k]) break;
 int rg = k * zF; // number before the group
 r += rg; // uncompleted number of sequence
 // displacement: removing the element b[k] from b
 for (int i = k; i < nb - 1; i++) b[i] = b[i+1];
 nb--; // one object less
 zF /= n - z - 1; // zF-factorial for z
 }
 r++; // accounting of last element of sequence
 return r; // number of function
}

To launch the function DeonNumber() the following fragment of program code is

sufficient, where sequence, for example, 5, 4, 3, 6, 1, 7, 2 is given randomly.

int[] q = new int[] {5,4,3,6,1,7,2};
int n = q.Length; // length of sequence
Console.WriteLine("n = {0}", n); // monitor
Console.Write("q = ");
for (int i = 0; i < n; i++)
Console.Write("{0,4}", q[i]);
int r = DeonNumber(q); // number of sequence
Console.WriteLine("\nr = {0}", r); // monitor

After this fragment is executed, the following information is provided.

n = 7
q = 5 4 3 6 1 7 2
r = 3302

This result is equal to the same as what was received a little bit earlier.
So, according to the sufficiency clause in proof of the theorem in the Theorem

section, now the ability to find the appropriate sequence ݀௥ in relation to randomly
given number r has appeared. The process of the theorem proving in the sufficiency
clause implies the effective tool of transforming a unique number associated with a
uniformly distributed sequence, to a real example of sequence in complete factorial
set of numbers of all sequences. So, if in the input of function DeonSequence() has an
array-buffer q for the derived sequence and randomly given number r, the result is
that this function provides factorial decomposition of number r to the elements of
complete sequence q. If total amount of numbers ݊! is loaded, it provides an
absolutely completed set of all the uniformly distributed sequences.

Below the function DeonSequence() is presented. The list of value parameters of
this function includes array pointer int[] q of needed sequence, and its number int r.

1037Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

The result of executing the function DeonSequence() is defined as the filled array q
having elements of sequence ݀௥ from set D.

static void DeonSequence(int[] q, int r)
{ int n = q.Length;
 int nb = n; // amount of objects
 int[] b = new int[nb]; // array of objects
 for (int i = 0; i < n; i++) b[i] = i + 1;
 int nF = 1; // nF-factorial of sequence
 for (int i = 2; i <= nb; i++) nF *= i;
 int iq = 0; // index for element which is forming in q
 for (int z = n - 1; z > 0; z--) // cycle of positions
 { int ng = nF / nb; // amount of elements in group
 int w = r / ng; // amount of previous groups
 if ((w * ng) < r) w++; // group number for r
 int zb = w - 1; // position of choice in b for q
 q[iq++] = b[zb]; // element in sequence
 // displacement: removing the element b[zb] from b
 for (int i = zb; i < z; i++) b[i] = b[i + 1];
 r -= (w - 1) * ng; // r for the next position
 nb--; // one object less
 nF /= z + 1; // next nF-factorial
 }
 q[n - 1] = b[0]; // last element in q
}

To launch the function DeonSequence() the following program code fragment is
sufficient, where, for example, the random sequence having the number ݎ = 3302 in
set of all sequences D with amount of elements ݊ = 7 is performed. In such set D the
following amount of sequences are included (ܦ) = ݊! = 7! = 5040 .

int n = 7; // length of sequence
Console.WriteLine("n = {0}", n); // monitor
int[] q = new int[n]; // elements of sequence
int r = 3302; // function number in functional
Console.WriteLine("r = {0}", r); // monitor
DeonSequence(q, r); // computation of sequence
for (int i = 0; i < n; i++)
 Console.Write("{0,4}", q[i]);

After executing this fragment, the following information is presented.

n = 7
r = 3302

1038 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

 5 4 3 6 1 7 2

This result is equal to the same as was received earlier above.
Finally, let’s consider the short example which may confirm the above statements

independently, i.e. all received numbers have uniform distribution and each of them
can be found an equal amount of times. The following program code confirms this for
7 elements which were taken as an example. So, each element is appearing 7! = 5040
times, and, at the same time, each of them can be found once in unique sequence.
Thus, such sequences are presented just once in a complete set.

static void Main(string[] args)
{ int[] q = new int[] { 1, 2, 3, 4, 5, 6, 7 };
 int n = q.Length;
 int[] cQ = new int[n];
 for (int i = 0; i < n; i++) cQ[i] = 0;
 while (true)
 { if (ProcessUp(q, n) == 0) break;
 for (int i = 0; i < n; i++)
 cQ[q[i]-1]++; // quantity of repeating
 }
 for (int i = 0; i < n; i++)
 { int z = cQ[i] + 1; // counter for i
 Console.Write("{0}) {1,5} ", i + 1, z);
 }
 Console.ReadKey();
}

The result of the execution of this code is the following listing:

1) 5040 2) 5040 3) 5040 4) 5040
5) 5040 6) 5040 7) 5040

So, the practical implementation is over. As a bottom line, the main result that has

been received is the realizing of truly random sequence that was derived univocally
without skipping of any kind of initial objects in set B.

4 Theorem

In section Fundamentals, it has been mentioned that the theorem and its proof will be
given here. It would be meaningful if mathematical bijection could give a quick
opportunity to define an isomorphism. It makes us organize the exact proof method of
how elements of two sets can determine each other mutually and simply. The next
theorem and its proving here are showing how to do this task.

Theorem. In order that bijective relationship will exist between completed set D of
final sequences and functional F in model ܯ = ,ܤ) ,ܦ (ܨ , it is necessary and

1039Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

sufficient that set of objects B which are included in sequences, will be strictly
ordered.

Proof. Let’s assume that the strict relation between elements of objects exists,
which are included in all sequences of completed set. Let’s put in correspondence
mentioned arithmetical set ܤ∗ , consisted in objects as numbers. The minimal set
which satisfies this statement is any kind of arithmetical interval beginning from some
number α. Without breaking communality, let’s put α = 1. Now it’s obvious that
minimal arithmetical interval is ሾ1, ݊!തതതതതതሿ. Because of strict ordering, for each element ܾ∗ ∈ ∗ܤ there is one and only one corresponding element ܾ ∈ ܤ . So, ܾ∗ and b are
simply isomorphic.

Necessity. The proof of necessity deals with the definite sequence of actions that
has to be pointed to calculate number r for any random sequence ݀௥ ∈ Let’s use .ܦ
upper indexes for explicit pointing the random sequence d=<1d,2d,…,zd,…,n-1d,nd>,
where index ݖ ∈ ሾ1, ݊തതതതതሿ. All ݊! sequences are presented in set D. Let’s divide D into n
non-overlapping subsets ܦଵ + ଶܦ + ⋯+ ௡ܦ in accordance with ranking. Based on
ranking properties of D, all sequences which begin from 1 will be presented in ܦଵ, all
sequences which begin from 2 will be presented in ܦଶ, and so on. Size of each group
is equal due to factorial properties of ݊! = ݊ ∙ (݊ − 1)!:
(ଵܦ)݀ݎܽܿ = ⋯ = (௡ܦ)݀ݎܽܿ = (݊ − 1)! (13)

Let’s present the resulting number r of sequence d as a partial sum:

R=1r+2r+…+nr. (14)

Depending on value of 1d ∈ ௭ܦ , the calculation is:
ଵ	ݎ = ∑ ௭ିଵ௜ୀଵ(௜ܦ)݀ݎܽܿ = ݖ) − 1) ∙ (݊ − 1)! (15)

By using iteration sorting of numbers 2d,…,n-1d in preset sequence d, the values
2r,3r,…,n-1r may be calculated accordingly. The last value is nr=1, and the final
number r is determined by the sum:

ݎ = ∑ ௜	ݎ .௡௜ୀଵ (16)

The proof of necessity is done.
Sufficiency. Let’s assume the number ݎ ∈ ሾ1, ݊!തതതതതതሿ is defined, what allows using the

function ௥݂ ∈ to calculate appropriate sequence ݀௥ ܨ ∈ Let’s point ݀௥ on the same .ܦ
principles as above, which consisted of elements dr=<1dr,

2dr,…,n-1dr,
ndr>. Let’s divide

D into n non-overlapping subsets ܦଵ + ଶܦ + ⋯+ ,௡ in accordance with ranking. Soܦ
the following will be the same as above: all sequences, which begin from 1, will be
presented in ܦଵ, etc.; size of each group ng due to factorial properties is equal:
 ݊݃ = (௡ܦ)݀ݎܽܿ = (݊ − 1)! (17)

This statement allows for having the determination of some number w from
previous group as regard to element 1dr due to it is a result of integer division:

1040 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

ݓ = ቐ ௥௡௚ , if	excess	is > 0௥௡௚ + 1, if	excess	is = 0 (18)

So, the position of w allows choosing appropriate element b from the set of
objects:

1dr= ܾ௪ ∈ (19) .ܤ

For the next iteration regarding 2dr the number r has to be reduced by (ݓ − 1) ∙ ݊݃

value, while element ܾ௪ which was already chosen is necessarily excluded from set B.
Following the next iterations helps in obtaining elements 2dr,…,n-1dr. After all
iterations, there will only be one element in set B, and it will be the last element ndr in
sequence ݀௥.

The proof of sufficiency is done by constructing.
The proof of the theorem is over.
In section Constructions and Results, the function DeonNumber() makes

calculation of number r of sequence ݀௥ in accordance with algorithm of proof of the
theorem for necessity. Also, in that section, the function DeonSequence()
demonstrates generating of sequence ݀௥ for given number r in accordance with
algorithm of proof of the theorem for sufficiency.

The practical realization of the Theorem considered here is in the fact that it allows
receiving absolutely all the uniformly distributed sequences based on their unique
given numbers, where the total amount of them is equal to factorial ݊! . In this case
the task of deriving the random sequences is associated with the task of arbitrary
producing numeric numbers, which in turn may be reached by using different
techniques, for example, based on timer or twister technologies.

5 Discussion

In the previous sections, Fundamentals and Constructions and Results, the
prerequisites and practical realizations have been discussed regarding the simulation
of a completed set of sequences consisted in n elements. How long might n be? For a
sequenced RNG, it depends on the qualification of programmers and resources of
exact computer to produce the recurrent number in a definite time. Any congruent
generator may produce a very long sequence of numbers if the capabilities of the
computer for memory size and processor speed are as unlimited as possible. Thus, for
this purpose the finding of a required constant isn’t difficult. The next random value
isn’t difficult to find either; however, it’s impossible to give any guarantee that after a
while it wouldn’t be skipped because of nature of sequential algorithm.

Applying this to binary shifting, the simple numbers and other methods for
sequenced generating in modern RNG leads to critical dispersions in the receiving of
values. This is typical for sequenced RNG. However, some practical cases are known
for which random additive components don’t vary too much, although they remain
random. In such cases, no other way exists than to use similar, but different sequences

1041Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

that belong to the complete set. Because of such similar sequences in set D there may
be close numbers univocally in functional of choosing F. This is the benefit:
sequences may be controlled simply and externally, but they are still random. Just
appropriate numbers r are required to be chosen, and no generating of complete set D
is needed. The functions DeonSequence() and DeonNumber() may fulfill this task for
any number with a result as a required random sequence ݀௥ ∈ .ܦ

In the simulation of completed sets of sequences, the added complication is that
it’s necessary to use factorial ݊!, which is growing very fast even for short sequences.
The benefit is that the generation of absolutely all sequences having n length is
guaranteed once only. Unfortunately, very large values of n do not fit in a computer’s
memory, and that is a limitation for the factorial method. Fortunately, factorial and
completed sets of sequences have found large application in different areas of real
human activities. Two of them are most commonly encountered in the literature: 1)
testing of technical equipment, and 2) planning of evidence-based examinations in
medicine.

The testing of technical equipment is an important requirement to verify that
complicated technical systems are working correctly. It is quite valuable, for example,
for turbine-generator sets, engines for sport cars, energetic aggregates for sea-, aero-
and space-crafts, apparatuses working in dynamic and even in dangerous
environments, etc. So, simulation of all required test conditions is crucially important.
Skipping of some sort of regimes is unallowable due to the cost of production and
exploitation of such systems could be very high and custom unique. Moreover, in the
case of biomedical technical systems the cost of life is invaluable. It’s evident, that we
can’t get by without completed sets of random sequences. The sequenced RNG don’t
fit completely because of pseudorandom sequences may occasionally skip the random
numbers. But such skipping is absolutely inappropriate in questions of vital
importance.

Medical planning of evidence-based examinations is frequently faced with sets of
volunteer and patient groups that might be chosen randomly. Surely, the same person
can’t be involved in two different groups simultaneously due to, for example, the first
group is used to check the efficacy of novel medication and the second group is used
for placebo validation. Moreover, no volunteers, no patients, no medical staff can be
aware of what is given to an exact person except the responsible researchers. This is
typical medical planning for verification purposes. The application of RNG here of a
general type, which is commonly used in cryptography, is very doubtful. Moreover,
for some meaningful tests, the choosing of volunteers may require additional
selections to exclude possible speculations in results. So, the skipping of any kind of
numbers is inappropriate because of a matter of life and death in decision making
processes.

Thus, completeness of all possible sequences is strongly required. No universal
RNG exist; therefore in different areas, the complete sets of sequences under full
variations of test examinations are demanded.

1042 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

6 Conclusion

In this article we’ve considered the questions regarding the main goal of current work,
which is how to strictly get the variety of random sequences having exact length,
where the random values are to appear only once. For this purpose, a modern
approach has been analyzed where the realization provides the production of different
RNGs. These generators may be considered from both sides: the theory of random
processes and the practical usage target. This leads us to those generators which are
capable in realization of completed sets of random sequences. For this aim, we
consider the uncertainty of occurrence as a dilemma in choosing of one sequence
from all possible as it stands. The proved theorem about strict ranking of the initial set
of objects in model ܯ = ,ܤ) ,ܦ resulted in theoretical confirmation of univocal (ܨ
choosing of functional F. The theorem-proving process led us to creating of program
functions DeonSequence() and DeonNumber(), which allowed the retrieval of all
random sequences ݀௥ ∈ while number r was using for this, and no simulation of ܦ
completed set of sequence D was made.

In section Introduction it was mentioned that technical systems could generate
random numbers which are close to uniform distribution but unfortunately, not strictly
uniform. The verification methods of mathematical statistics may confirm this
statement. The novel algorithm demonstrated above to form completed ranked sets of
random sequences is different from the approaches that are used in PRNG. In the
current work here, proposed complete sets of uniform sequences are indeed consisting
in strictly uniform random numbers.

When discussing the received results, it was noted that current RNGs, which
realize the conception of consequent generating, allows for the retrieval of random
values having some length n, but at the same time they can’t guarantee getting them
without skipping or with no repeating of random values. By using method has
proposed in this paper it’s possible to provide the generation of univocal random
sequences; however the length of such sequences is limited by computer resources in
calculations of factorial n!. We believe, in the near future, the simulation of random
sequences having completed sets of objects will be in more and more demand.

Ethic, Contribution, Funding and Acknowledgments

This article is original and contains unpublished material. The authors equally
contributed in this work, and they have no support or funding to report. The authors
are thankful to Matthew Vandenberg, Jacqueline Nolan, Kai Carey and Walter
Harrington (University of Arkansas for Medical Sciences, Little Rock, USA) for the
proofreading.

References

[Arora et al. 2015] Arora, M., Engles D., and Sharma S. (2015). MDS algorithm for encryption.
J. Comp. Sci., 11(3):479-483. DOI: 10.3844/jcssp.2015.479.483

[Banati and Bajaj 2013] Banati, H. and Bajaj, M. (2013). Performance analysis of firefly

1043Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

algorithm for data clustering. Int. J. Swarm Intell., 1: 19-35. DOI: 10.1504/IJSI.2013.055800

[Blum et al. 1986] Blum, L., Blum, M., and Shub, M. (1986). A Simple Unpredictable Pseudo-
Random Number Generator. SIAM Journal on Computing, 15(2):364-383. DOI:
10.1137/0215025

[Cai et al. 2016] Cai, C., K.A. Carey, D.A. Nedosekin, Y.A. Menyaev, and M. Sarimollaoglu,
et al., 2016a. In Vivo Photoacoustic Flow Cytometry for Early Malaria Diagnosis. Cytometry
A, 89A:531-542. DOI: 10.1002/cyto.a.22854

[Cai et al. 2016] Cai, C., D.A. Nedosekin, Y.A. Menyaev, M. Sarimollaoglu, and M.A.
Proskurnin, et al., 2016b. Photoacoustic Flow Cytometry for Single Sickle Cell Detection In
Vitro and In Vivo. Anal. Cell. Pathol., 2642361:1-11. DOI: 10.1155/2016/2642361

[Cover and Thomas 2006] Cover, T.M. and Thomas, J.A. (2006). Elements of Information
Theory. 2nd Ed. John Wiley & Sons, New York. ISBN: 978-0-471-24195-9, pp: 776.

[Dagtas et al. 2004] Dagtas, S., Sarimollaoglu, M., and Iqbal, K. (2004). A Multi-modal Virtual
Environment with Text-Independent Real-Time Speaker Identification. Proceedings of the 6th
IEEE ISMSE conference. Dec. 13-15, Miami, FL, pp. 557-560. DOI: 10.1109/MMSE.2004.14

[Deon and Menyaev 2016] Deon, A. and Menyaev, Y. (2016). Parametrical Tuning of Twisting
Generators. J. Comp. Sci. DOI: 10.3844/jcssp.2016.___.___ [Epub ahead of print]
http://thescipub.com/abstract/10.3844/ofsp.10806

[Diffie and Hellman 1976] Diffie, W. and Hellman, M. (1976). New directions in cryptography.
IEEE Trans. Inform. Theory, 22:644-654. DOI: 10.1109/TIT.1976.1055638

[Diffie and Hellman 1979] Diffie, W. and Hellman M. (1979). Privacy and authentication: An
introduction to cryptography. Proc. IEEE, 67:397-427. DOI: 10.1109/PROC.1979.11256

[Dodis et al. 2013] Dodis, Y., Pointcheval, D., Ruhault, S., Vergniaud, D., and Wichs, D.
(2013). Security analysis of pseudo-random number generators with input: /dev/random is not
robust. Proceedings of ACM SIGSAC conference on Computer & communications security.
Nov. 4-8, ACM, New York, pp: 647-658. DOI: 10.1145/2508859.2516653

[Dorrendorf et al. 2009] Dorrendorf L., Gutterman Z., and Pinkas B. (2009). Cryptanalysis of
the random number generator of the Windows operating system. Journal ACM Transactions on
Information and System Security (TISSEC). 13(1), Article No.10. DOI:
10.1145/1609956.1609966

[Evans et al. 2001] Evans, S., Bush, S.F., and Hershey, J. (2001). Information assurance
through Kolmogorov complexity. Proceedings of DARPA Information Survivability
Conference & amp, Exposition II, Jun. 12-14, IEEE Xplore Press, Anaheim, CA, pp: 322-331
vol.2. DOI: 10.1109/DISCEX.2001.932183

[Feng et al. 2010] Feng, L., Qiu, M.H., Wang, Y.X., Xiang Q.L., Yang Y.F., et al. (2010). Fast
divisive clustering algorithm using an improved discrete particle swarm optimizer. Pattern
Recognit. Lett., 31: 1216-1225. DOI: 10.1016/j.patrec.2010.04.001

[Fister et al. 2013] Fister, I., Jr., I.F., Yang, X.S., and Brest, J. (2013). A comprehensive review
of firefly algorithms. Swarm Evolut. Computat., 13: 34-46. DOI: 10.1016/j.swevo.2013.06.001

[Forsati et al. 2013] Forsati, R., Mahdavi, M., Shamsfard, M., and Meybodi, M.R. (2013).
Efficient stochastic algorithms for document clustering. Informat. Sci., 220: 269-291.

[Gnedenko 1998] Gnedenko, B. (1998). Theory of Probability. 6th Ed. CRC Press. ISBN-
10: 9056995855, pp: 520.

1044 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

[Hellekalek 1998] Hellekalek, P. (1998). Good random number generators are (not so) easy to
find. Math. Comput. Simulat., 46(5-6):485-505. DOI: 10.1016/S0378-4754(98)00078-0

[Hellekalek and Wegenkittl 2003] Hellekalek, P. and Wegenkittl, S. (2003). Empirical evidence
concerning AES. ACM T. Model. Comput. S., 13(4):322-333. DOI: 10.1145/945511.945515

[Jain 2010] Jain, A.K. (2010). Data clustering: 50 years beyond K-means. Patt. Recognit. Lett.,
31: 651-666. DOI: 10.1016/j.patrec.2009.09.011

[Johnsonbaugh 2008] Johnsonbaugh, R. (2008). Discrete Mathematics. 7th Ed. Pearson
Prentice Hall. ISBN-10: 0131354302, pp: 766.

[Juratly et al. 2015] Juratly, M.A., Siegel, E.R., Nedosekin, D.A., Sarimollaoglu, M., Jamshidi-
Parsian, A., et al. (2015). In vivo long-term monitoring of circulating tumor cells fluctuation
during medical interventions. PLoS One, 10(9):e0137613. DOI: 10.1371/journal.pone.0137613.

[Juratly et al. 2016] Juratly, M.A., Y.A. Menyaev, M. Sarimollaoglu, E.R. Siegel, D.A.
Nedosekin, et al., 2016. Real-Time Label-Free Embolus Detection Using In Vivo Photoacoustic
Flow Cytometry. PLoS One, 11(5):e0156269. DOI: 10.1371/journal.pone.0156269

[Karaboga and Ozturk 2011] Karaboga, D. and Ozturk, C. (2011). A novel clustering approach:
Artificial Bee Colony (ABC) algorithm. Applied Soft Comput., 11: 625-657. DOI:
10.1016/j.asoc.2009.12.025

[Karloff and Raghavan 1993] Karloff H. and Raghavan P. (1993). Randomized algorithms and
pseudorandom numbers. Journal of the ACM (JACM). 40(3):454-476. DOI:
10.1145/174130.174132

[Kasdin 1995] Kasdin, N.J. (1995). Discrete simulation of colored noise and stochastic
processes and 1/fα power law noise generation. Proc. IEEE. 83(5):802-827. DOI:
10.1109/5.381848

[Kolmogorov 1968] Kolmogorov, A.N. (1968). Three approaches to the quantitative definition
of information. Int. J. Comput. Math., 2(1-4):157-168. DOI: 10.1080/00207166808803030

[Kolmogorov and Fomin 1999] Kolmogorov, A.N. and Fomin, S.V. (1999). Elements of the
Theory of Functions and Functional Analysis. Dover Publication. Mineola, NY, ISBN-
10: 0486406830, pp: 128.

[Leeb and Wegenkittl 1997] Leeb, H. and Wegenkittl, S. (1997). Inversive and Linear
Congruential Pseudorandom Number Generators in Empirical Tests. ACM TOMACS,
7(2):272-286. DOI: 10.1145/249204.249208

[Li and Vitanyi 2008] Li, M. and Vitanyi, P. (2008). An Introduction to Kolmogorov
Complexity and its Applications. 3rd Ed. Springer-Verlag, New York. ISBN: 978-1-4899-
8445-6, pp: 790.

[Mani and Derick 2010] Mani, A. and Derick, A. (2010). An algorithm to reduce the size of
cipher text. Global J. Comput. Sci. Technol., 10: 50-54.

[Manning et al. 2008] Manning, C.D., Raghavan, P. and Schütze, H. (2008). Introduction to
Information Retrieval. 1 Edn., Cambridge University Press, New York, ISBN-10: 0521865719,
pp: 482.

[Matsumoto and Nishimura 1998] Matsumoto, M. and Nishimura, T. (1998). Mersenne twister:
a 623-dimensionnally equidistributed uniform pseudorandom number generator. ACM
TOMACS, 8(1):3-30. DOI: 10.1145/272991.272995

[Maurer 1992] Maurer, U.M. (1992). A universal statistical test for random bit generators. J.

1045Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

Cryptology, 5(2):89-105.

[McConnell 2002] McConnell, M. (2002). Information Assurance in the twenty-first century.
IEEE Comput., 35: 16-19. DOI: 10.1109/MC.2002.1012425

[Menyaev et al. 2013] Menyaev, Y.A., Nedosekin, D.A., Sarimollaoglu, M., Juratli, M.A.,
Galanzha, E.I., et al. (2013). Optical clearing in photoacoustic flowcytometry. Biomed. Opt.
Express, 4(12):3030-41. DOI: 10.1364/BOE.4.003030.

[Menyaev et al. 2016] Menyaev, Y.A., K.A. Carey, D.A. Nedosekin, M. Sarimollaoglu, and
E.I. Galanzha et al., 2016. Preclinical photoacoustic models: application for ultrasensitive
single cell malaria diagnosis in large vein and artery. Biomed. Opt. Express, 7(9):3643-58.
DOI: 10.1364/BOE.7.003643

[Menyaev and Zharov 2006] Menyaev, Y.A. and Zharov, V.P. (2006). Experience in
Development of Therapeutic Photomatrix Equipment. Biomedical Engineering, 40(2):57-63.
DOI: 10.1007/s10527-006-0042-6

[Menyaev and Zharov 2006] Menyaev, Y.A. and Zharov, V.P. (2006). Experience in the Use of
Therapeutic Photomatrix Equipment. Biomedical Engineering, 40(3):144-147. DOI:
10.1007/s10527-006-0064-0

[Menyaev et al. 2006] Menyaev Y.A., V.P. Zharov, E.A. Mishanin, A.P. Kuzmich, S.E.
Bessonov, 2006. Combined photovacuum therapy of copulative dysfunction. Proc. SPIE, 6078,
pp.241-248. DOI: 10.1117/12.656713

[Miklós et al. 2009] Miklós, I., Novák, A., Satija, R., Lyngs, R. and Hein, J. (2009). Stochastic
models of sequence evolution including insertion-deletion events. Stat. Methods Med. Res.
18(5):453-485. DOI: 10.1177/0962280208099500

[Miner et al. 2012] Miner, G., Elder, J., Fast, A., Hill, T., Nisbet, R., et al. (2012). Practical
Text Mining and Statistical Analysis for Non-Structured Text Data Applications. 1st Edn.,
Academic Press, Elsevier, ISBN-01: 012386979X, pp: 1000.

[Nandy et al. 2012] Nandy, S., Sarkar, P.P. and Das, A. (2012). Analysis of a nature inspired
firefly algorithm based back propagation neural network training. Int. J. Comput. Applic., 43:
8-16. DOI: 10.5120/6401-8339

[Nishimura 2000] Nishimura, T. (2000). Tables of 64-bit Mersenne Twisters. ACM TOMACS,
10(4):348-357. DOI: 10.1145/369534.369540

[O’Donnell et al. 2005] O’Donnell, C.W., Suh, G.E. and Devadas, S. (2005). PUF-Based
Random Number Generation. Technical report, MIT CSAIL CSG Technical Memo 481.

[Park and Miller 1988] Park, S.K. and Miller, K.W. (1988). Random number generators: good
ones are hard to find. Commun. ACM., 31(10):1192-1201. DOI: 10.1145/63039.63042

[Sarimollaoglu et al. 2011] Sarimollaoglu M., Nedosekin D.A., Simanovsky Y., Galanzha E.I.,
Zharov V.P. (2011). In vivo photoacoustic time-of-flight velocity measurement of single cells
and nanoparticles. Opt. Lett. 36(20):4086-4088. DOI: 10.1364/OL.36.004086

[Sarimollaoglu et al. 2014] Sarimollaoglu, M., Nedosekin, D.A., Menyaev, Y.A., Juratly, M.A.
and Zharov, V.P. (2014). Nonlinear photoacoustic signal amplification from single targets in
absorption background. Photoacoustics, 2(1):1-11. DOI: 10.1016/j.pacs.2013.11.002

[Schildt 2010] Schildt, H. (2010). C# 4.0: The Complete Reference. The McGraw-Hill
Companies. New York. ISBN-10: 007174116X, pp: 949.

[Shannon 1948] Shannon, C.E. 1948. A mathematical theory of communication. Bell System

1046 Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

Technical Journal, 27(4):623-656. DOI: 10.1002/j.1538-7305.1948.tb00917.x

[Shannon and Weaver 1963] Shannon, C.E. and Weaver, W. (1963). The Mathematical Theory
of Communication. University of Illinois Press, Urbana, IL. ISBN-10: 0252725484, pp: 127.

[Song et al 2006] Song, Y., Liu, C., Malmberg, R.L., He, C. and Cai, L. (2006). Memory
efficient alignment between RNA sequences and stochastic grammar models of pseudoknots.
Int. J. Bioinform. Res. Appl., 2(3):289-304.

[Storm and Price 1997] Storm, R. and Price, K. (1997). Differential evolution - a simple and
efficient heuristic for global optimization over continuous spaces. J. Global Optimizat., 11:
341-359. DOI: 10.1023/A:1008202821328

[Suh et al. 2004] Suh, G.E., O’Donnell, C.W., Sachdev, I. and Devadas, S. (2004). Design and
Implementation of the AEGIS Single-Chip Secure Processor Using Physical Random
Functions. Technical report, MIT CSAIL CSG Technical Memo 483.

[Tan et al. 2011] Tan, S.C., Ting, K.M. and Teng, S.W. (2011). A general stochastic clustering
method for automatic cluster discovery. Patt. Recognit., 44: 2786-2799. DOI:
10.1016/j.patcog.2011.04.001

[Turing 1950] Turing, A.M. (1950). Computing Machinery and Intelligence. Mind,
49(236):433-460. DOI: 10.1093/mind/LIX.236.433

[Velmurugan and Santhanam 2010] Velmurugan, T. and Santhanam, T. (2010). Computational
complexity between k-means and k-medoids clustering algorithms for normal and uniform
distributions of data points. J. Comput. Sci., 6:363-368. DOI: 10.3844/JCSSP.2010.363.368

[Waerden 1991] Waerden, B.L. van der. (1991). Algebra: Volume I. Springer-Verlag, New
York. ISBN: 978-0-387-40624-4, pp: 265.

[Waerden 1991] Waerden, B.L. van der. (1991). Algebra: Volume II. Springer-Verlag, New
York. ISBN: 978-0-387-40625-1, pp: 284.

[Wallace 1996] Wallace C.S. (1996) Fast pseudorandom generators for normal and exponential
variates. Journal ACM Transactions on Mathematical Software (TOMS). 22(1):119-127. DOI:
10.1145/225545.225554

[Wegenkittl 2001] Wegenkittl, S. (2001). Entropy estimators and serial tests for ergodic chains.
IEEE Inform. Theory, 47(6):2480-2489. DOI: 10.1109/18.945259

[Yang 2010] Yang, X.S. (2010). Nature-Inspired Metaheuristic Algorithms. 2nd Edn., Luniver
Press, United Kingdom, ISBN-10: 978-1-905986-28-6, pp: 116.

[Yang 2010] Yang, X.S. (2010). Firefly algorithm, stochastic test functions and design
optimization. Int. J. Bio-Inspired Comput., 2: 78-84. DOI: 10.1504/IJBIC.2010.032124

[Yujian and Liye 2010] Yujian, L. and Liye, X. (2010). Unweighted multiple group method
with arithmetic mean. Proceedings of the IEEE 5th International Conference on Bio-Inspired
Computing: Theories and Applications, Sept. 23-26, IEEE Xplore Press, Changsha, pp: 830-34.
DOI: 10.1109/BICTA.2010.5645232

[Zharov et al. 2001] Zharov, V.P., Menyaev Y.A., Gorchak Y.Y., Utkina K.V., and Y.A.
Menyaev. (2001). Methods for photoultrasonic treatment of festering wounds in oncological
patients. Crit. Rev. Biomed. Eng., 29(1):111-24. DOI: 10.1615/CritRevBiomedEng.v29.i1.50

[Zharov et al. 2001] Zharov, V.P., Menyaev Y.A., Kabisov R.K., Al’kov S.V., and Nesterov
A.V. et al. (2001). Design and application of low-frequency ultrasound and its combination
with laser radiation in surgery and therapy. Crit. Rev. Biomed. Eng., 29(3):502-19. DOI:
10.1615/CritRevBiomedEng.v29.i3.130

1047Deon A.F., Menyaev Y.A.: The Complete Set Simulation ...

