
Rewriting-Based Enforcement of Noninterference in

Programs with Observable Intermediate Values

Afshin Lamei

(Department of Computer Engineering and Information Technology

Amirkabir University of Technology (Tehran Polytechnic)

P.O.Box: 15875-4413, Tehran, Iran

lamei@aut.ac.ir)

Mehran S. Fallah

(Department of Computer Engineering and Information Technology

Amirkabir University of Technology (Tehran Polytechnic)

P.O.Box: 15875-4413, Tehran, Iran

msfallah@aut.ac.ir)

Abstract: Program rewriting is defined as transforming a given program into one sat-
isfying some intended properties. This technique has recently been suggested as a means
for enforcing security policies. In this paper, we propose rewriting mechanisms based
on program dependence graphs to enforce noninterference in programs with observ-
able intermediate values. We first formulate progress-insensitive and progress-sensitive
noninterference for the programs of a model language. Then, we give rewriting mech-
anisms that correctively enforce such policies. The notion of corrective enforcement is
also introduced. It is indeed a realization of transparent rewriting in which the good
behaviors of the program are preserved irrespective of whether the program is secure or
not. Unlike purely static mechanisms, our rewriting mechanisms allow tracking those
points on dependence graphs that are actually traversed at run-time, thereby achiev-
ing transparency. The rewriting-based enforcement of noninterference also obviates the
need for changing the run-time system, something that cannot be avoided in dynamic
enforcement mechanisms. The proposed rewriters are provably sound and transpar-
ent for the class of programs whose loops can be analyzed for termination and any
dependency in their dependence graphs definitely reflects the existence of a flow.

Key Words: Corrective enforcement; noninterference; program dependence graphs;
program rewriting.

Category: F.3.1, D.4.6, F.4

1 Introduction

Program rewriting is defined as comprising those mechanisms that transform

a given program so that the result satisfies some intended properties. This ap-

proach has traditionally been adopted for the migration of code between hard-

ware platforms, instrumentation, and performance optimization [Sutter et al.

2005]. Recently, it has been suggested as an effective method for enforcing se-

curity policies [Schneider et al. 2001]. A program rewriter should be sound and

Journal of Universal Computer Science, vol. 22, no. 7 (2016), 956-991
submitted: 8/3/15, accepted: 30/6/16, appeared: 1/7/16 © J.UCS

transparent with respect to the given security policy. It is sound if the result-

ing code complies with the policy and transparent if the program’s semantics is

preserved.

A security policy can in general be defined as a family of sets of executions,

that is, a set of programs, where an execution is an arbitrary sequence of states.

In other words, security policies are hyperproperties [Clarkson and Schneider

2010]. Some security policies, such as access control policies, are properties in

the sense that they can be characterized as a single set of executions—a property

is indeed the power set of the set characterizing that property, and therefore, a

program satisfies a security property if every possible execution of the program

is in the set characterizing the property. There are, however, important informa-

tion flow policies that cannot be expressed as properties. The Goguen-Meseguer

noninterference [Goguen and Meseguer 1982], generalized noninterference [Mc-

Cullough 1987], and observational determinism [Zdancewic and Myers 2003],

which are collectively known as noninterference policies, are a few examples.

This paper concentrates on the enforcement of noninterference policies. Such

policies basically state that a low observer (an attacker), who knows the pro-

gram and can only observe public run-time events, can learn nothing about high

(private) inputs to the program. A noninterference policy indeed demands that

the run-time observations of the attacker should be equivalent in every pair of

program executions that agree on public inputs. The definition of low-equivalent

observations is where things become interesting and leads to different notions of

noninterference.

Many static and dynamic mechanisms have been proposed to enforce nonin-

terference policies. Among the static mechanisms, security type systems [Den-

nis Volpano 1996, Hunt and Sands 2006, Van Delft et al. 2015] have been studied

more than the others. They are sound but overly conservative in the sense that

they reject many healthy programs. Although such mechanisms do not impose

any run-time overhead, they usually require complicated type annotations. Dy-

namic mechanisms, such as execution monitoring [Le Guernic et al. 2007, Shroff

et al. 2007, Austin and Flanagan 2010] and secure multi-execution [Devriese

and Piessens 2010], have access to run-time information, and thus, are more

permissive than static ones. Such mechanisms, however, inflict execution over-

head and may require substantial changes in the run-time environment; secure

multi-execution, for example, requires programs to be run in environment with

special schedulers. There are also various hybrid mechanisms which make use of

static information at run-time for the sake of more precision [Venkatakrishnan

et al. 2006, Beringer 2012, Buirs et al. 2015].

Another approach to the enforcement of noninterference is program rewriting.

The idea of secure multi-execution has been incorporated into a static trans-

formation technique based on self-composition [Barthe et al. 2012]. There are

957Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

other attempts, e.g., [Bello and Bonelli 2011, Magazinius et al. 2012, Chud-

nov and Naumann 2010, Chudnov and Naumann 2015], at in-lining information

flow monitors into programs. In this paper, we devise novel program rewriting

mechanisms for the enforcement of noninterference in programs with observable

intermediate values. The program rewriters we propose make use of program de-

pendence graphs (PDGs) [Ferrante et al. 1987, Krinke 2003], which are proven

at least as powerful as security type systems in detecting potential informa-

tion flows [Hammer and Snelting 2009, Mantel and Sudbrock 2013]. It has been

proven that the expression represented by node X on a PDG has no influence

on that represented by node Y if there is no path from X to Y [Wasserrab et al.

2009].

Unlike monitor in-lining, PDG-based rewriting does not introduce shadow

variables, program counters, and boxes into the code. It only makes use of path

conditions for some specific nodes on the PDG. Moreover, static information

like dependencies among statements helps us track information leakage via pro-

gram termination. Monitors, however, can barely detect such information leaks.

The rewriters proposed in this paper do not require the original program to be

run multiple times. This is in contrast to secure multi-execution which requires

multiple executions of the program, one for each security level. In fact, it is con-

ceivable that PDG-based rewriting incurs less performance overhead than secure

multi-execution if there is a large number of security levels and a small number

of paths from higher-level variables to lower-level outputs.

The rewriter based on secure multi-execution [Barthe et al. 2012] produces

one single program, but it may change the order of output commands of the orig-

inal program which are not at the same security level. It also embeds a specific

scheduler into the code. In contrast to black-box enforcement techniques like

secure multi-execution, PDG-based rewriting can change any command rather

than just manipulating I/O.

The policies investigated in this paper are progress-insensitive and progress-

sensitive noninterference [Askarov et al. 2008]. They reflect what is expected

of programs having interaction with environment during run-time. In progress-

insensitive noninterference, it is assumed that low observers can only see inter-

mediate low outputs. A low observer in the progress-sensitive formulation of non-

interference can additionally observe the progress status of the program meaning

that he can draw a distinction between program divergence and the situation in

which the program has terminated or is computing the next observable value.

Prior research on information-flow security, e.g., [Russo and Sabelfeld 2010, Den-

nis Volpano 1996, Sabelfeld and Myers 2006], focuses mainly on variants of

progress-insensitive noninterference. There are also few solutions for progress-

sensitive noninterference [O’Neill et al. 2006, Smith and Volpano 1998, Zhang

et al. 2011, Bohannon et al. 2009, Devriese and Piessens 2010] most of which

958 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

are excessively restrictive static mechanisms that reject many healthy programs

only due to the existence of control-flow dependencies on high values.

The rewriters proposed in this paper modify the code so that explicit and

implicit illegal flows as well as the ones arising from termination channels are

prevented at run-time. They also make use of path conditions to more accurately

verify the conditions required for an illegal flow to actually occur, thereby pre-

serving more valid behaviors of the given program. Our rewriters are provably

sound and transparent for the class of programs with perfect PDGs (as defined

in Definition 10) whose loops can be analyzed for termination—it is shown that

our rewriters are sound and transparent up to the precision of the methods and

tools, already devised in the literature, for deriving program dependence graphs

and for analyzing the termination behavior of loops. A rewriter is sound if its

output certainly satisfies the given policy. To deal with transparency more effec-

tively, we introduce the concept of corrective enforcement for our formulations

of noninterference—it is indeed an extension of the same concept for security

properties [Khoury and Tawbi 2012a]. A rewriter correctively enforces a policy

if the valid behaviors of the input program are preserved irrespective of whether

the program is secure or not. This is in contrast to earlier rewriters proposed for

enforcing noninterference which do not care about the extent to which a rewriter

may change an insecure program.

In brief, this paper has the following contributions.

– Novel rewriting mechanisms based on program dependence graphs are pro-

posed to enforce progress-insensitive and progress-sensitive noninterference.

This is a first attempt at incorporating PDGs into rewriting-based enforce-

ment of noninterference policies, to the best of our knowledge.

– A new paradigm of security policy enforcement through rewriting is formal-

ized. According to this notion of enforcement, transparency is redefined in

such a way that the set of possible executions of the transformed program

should be as close as possible to that of the input program whether the input

program is secure or not.

– The proposed rewriters are provably sound and transparent for the programs

with perfect PDGs whose loops can be analyzed for termination.

– An implementation of the proposed rewriting algorithms is also provided

[WLR 2016].

We proceed as follows: Section [2 Related Work] is an overview of the re-

lated work. Section [3 Preliminaries] gives basic definitions and some motivating

examples of rewriting as a security mechanism. Section [4 Security] gives a for-

malization of progress-insensitive and progress-sensitive noninterference in the

model language introduced in the same section. Section [5 Program Rewriting

959Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

for PINI and PSNI] first sketches out how noninterference can be enforced by

a rewriting mechanism based on program dependence graphs. Then, it elab-

orates on rewriting for the two formulations of noninterference given in [Sec-

tion 4 Security]. Section [6 Soundness and Transparency] is on the soundness

and transparency of our rewriting mechanisms. Section [7 Conclusion] concludes

the paper.

2 Related Work

A great deal of research, starting with [Hammer 2009], has been dedicated to

the use of PDGs in verifying and enforcing information flow policies. Indeed,

PDGs are proven as powerful as security type systems in detecting potential

illegal flows [Hammer and Snelting 2009, Mantel and Sudbrock 2013]. As with

other static mechanisms, the use of PDGs involves false positives. To mitigate

such an imprecision in practice, scholars have proposed the application of so-

called path conditions [Snelting et al. 2006]. By using path conditions, it can

be ascertained that if the information flows implied by PDGs actually occur at

run-time. However, path conditions also suffer from false positives. Taghdiri et

al. [Taghdiri et al. 2011] propose the use of SAT solvers to attain more precise

path conditions. The idea of generating more accurate path conditions is also

applicable to PDG-based rewriting. However, their work differs from ours in

the sense that it uses PDGs and path conditions to verify programs and not

to transform them to secure ones. In fact, some of the techniques they propose

to reduce false positives, such as multiple execution of the input program and

limiting the analysis and refinement of path conditions to a user-provided time-

out, cannot be used in program rewriting.

Program dependence graphs have also been used for information flow control

in high-level programming languages [Hammer and Snelting 2009, Johnson et al.

2015]. Nevertheless, the use of PDGs in program rewriting in such a way that

the resulting programs satisfy a given noninterference policy is proposed and

implemented for the first time in the current paper.

Recent results in enforcing information flow policies by means of purely dy-

namic or hybrid mechanisms indicate the capacity of program transformers for

doing so. RIFLE [Vachharajani et al. 2004] is an assembly-level rewriting mech-

anism to track implicit and explicit flows at run-time. Beringer [Beringer 2012]

generalizes the idea of RIFLE and gives a formalism so that it can be proven

that the proposed mechanism soundly enforces flow-sensitive multilevel security

in a while language. Our rewriting mechanisms differ from RIFLE and its exten-

sion in many respects. In particular, instead of flow-sensitive typing, our static

analysis is based on program dependence graphs. More importantly, dynamic

updating of the security class of a value is not allowed in our mechanisms. This

960 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

prevents the leakage arising from removing a value from the purview of a low

observer as a result of updating the security class of that value.

A hybrid transformation method for the enforcement of noninterference has

been proposed in [Venkatakrishnan et al. 2006]. The transformed program tracks

the security levels of assignments and terminates whenever an illegal flow is

about to occur. In this way, it is only applicable to those formulations of nonin-

terference disregarding the termination behavior of programs. A framework has

also been devised for in-lining security monitors while the program is being ex-

ecuted [Magazinius et al. 2012]. The method guarantees termination-insensitive

noninterference and can be applied to languages such as Perl and Javascript

that support dynamic code evaluation. It also requires a code transformer to be

available at run-time so that an appropriate monitor can be in-lined in the code

which is dynamically generated.

Secure multi-execution (SME) [Devriese and Piessens 2010] is a dynamic

technique for the enforcement of time- and termination-sensitive noninterference.

It runs multiple copies of the given program simultaneously, one per each security

level. The security guarantee of SME relies on an appropriate scheduling strat-

egy to control the concurrent execution of the program copies [Kashyap et al.

2011]. The authors give two noninterference policies: normal or time-insensitive

which only regards terminating runs of the program and strong or time-sensitive

which can deal with timing channels. Excluding external timing channels which

are realized by measuring the time through a watch, the strong noninterference

is similar to our progress-sensitive noninterference in the sense that both poli-

cies can deal with internal timing channels as well as the leakage of sensitive

information raised by silent divergence. A SME-based program transformation

method [Barthe et al. 2012] has also been proposed that eliminates the need for

modifying the run-time system, something required by SME.

Our PDG-based rewriting mechanisms differ from the SME-based transfor-

mation in several respects. The mechanisms proposed in the current paper do

not introduce local copies of variables nor do buffer input commands. Unlike

the SME-based rewriting, our rewriters do not change the order of outputs at

different security levels [Zanarini et al. 2013]. Moreover, SME does not neces-

sarily achieve its claimed security guarantees when there exist noncomparable

security levels [Kashyap et al. 2011]. PDG-based rewriting, on the contrary, pro-

vides security even in the case of noncomparable security levels. The SME-based

rewriter also embeds a scheduler into the code which is not trivial. Nevertheless,

one good feature of SME, compared to PDG-based rewriting, is that there are

no constraints on the programs it can be applied to.

It has been proven that there is no purely dynamic mechanism to enforce

flow-sensitive noninterference [Russo and Sabelfeld 2010]—the concept of non-

interference adapted for systems in which security classes can be updated dy-

961Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

namically. This has led to proposals that put some syntactic restrictions on the

code, make use of static information in monitoring, or even leverage on multi-

ple executions of programs. Bello and Bonelli [Bello and Bonelli 2011] suggest

in-lining a dynamic dependency monitor [Shroff et al. 2007] into the code. In

this way, they can go beyond policies such as no-sensitive [Austin and Flanagan

2009] and permissive [Austin and Flanagan 2010] upgrade. To detect an illegal

flow, however, their proposal may require several runs of the program, some-

thing that is not possible in many applications. Santos and Rezk [Santos and

Rezk 2014] implement the no-sensitive upgrade policy for termination-insensitive

noninterference.

Le Guernic et al. [Le Guernic et al. 2007] design an automaton that receives

abstract events at run-time and edits the execution using some static infor-

mation. The mechanism is interesting but allows termination channels. such a

mechanism has been implemented by Chudnov and Naumann [Chudnov and

Naumann 2010] who propose a hybrid monitor for flow-sensitive noninterference

in languages with dynamic code evaluation. Indeed, their mechanism stores and

processes information such as shadow variables, labels, variables inside branches

and so on at run-time similar to the VM-monitor proposed by Russo et al. [Russo

and Sabelfeld 2010]. This may lead to an unacceptable run-time overhead. The

mechanism does not inhibit termination channels either. A comparison of the

proposed rewriters with hybrid monitors in terms of transparency is given in

Section 6.2.

A taxonomy of information flow monitors including those we addressed above

has been provided by Bielova and Rezk [Bielova and Rezk 2016]. They compare

the security guarantees of different dynamic mechanisms to enforce information

flow policies. The authors also formalize the notion of Termination Aware Nonin-

terference (TANI) which distinguishes between the termination channel present

in the original program and the one that is added by the monitor. To compare

different mechanisms, they define true and false transparency. The false trans-

parency cares about the way a monitor produces outputs in response to insecure

executions. This concept is captured by the notion of corrective enforcement we

propose in the current paper.

3 Preliminaries

A program can be modeled as a set of traces ψ which is a subset of the universe

of all traces Ψ . Each trace in ψ represents one of the possible executions of the

program and is considered as a finite or an infinite sequence of states. A state

itself is a mapping of variables to values. For a given trace t = σ0 σ1 ..., the

symbols t[i], t[..i], and t[i..] stand for σi, σ0 ... σi, and σi σi+1..., respectively.

It is worth noting that sometimes it is more convenient to model a program

962 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

by the way it interacts with environment. To do so, we may model a program

execution as a sequence of input/output events raised in transit from one state

to the other. In this way, an execution in the form of a sequence of states can be

converted into a sequence of input/output events. In defining security policies,

we usually consider a mapping from events to a lattice of security classes. For

the sake of simplicity, it is often assumed that there are only two security classes,

high (private) and low (public).

A policy is defined to be a subset of the power set of the universe of all traces

Ψ . That is, every policy is a hyperproperty and the set P of all policies is

P = 22
Ψ

, (1)

where 2X denotes the power set of set X . A program represented by ψ ⊆ Ψ

satisfies a policy P ∈ P , written P (ψ), if ψ ∈ P . A policy P ∈ P is called a

property if P = 2ψ for some ψ ⊆ Ψ .

A program rewriter RW for a given (security) policy P ∈ P transforms

programs and is characterized as a total function RW : 2Ψ → 2Ψ . A program

rewriter RW for policy P is sound if

∀ψ ⊆ Ψ. P (RW (ψ)). (2)

It is also said to be transparent if

∀ψ ⊆ Ψ. P (ψ) ⇒ ψ ≈ RW (ψ), (3)

where ‘≈’ denotes a behavioral equivalence relation over programs [Hamlen et al.

2006]. The concept of transparency defined by (3) lacks an important feature

that seems essential to program rewriters. It puts no restriction on the way a

rewriter is allowed to transform the programs not complying with the policy.

We will further discuss the notion of transparency by introducing the paradigm

of corrective enforcement of security policies through rewriting in Section [6

Soundness and Transparency].

Now, we give an example of how a noninterference policy, which is usually not

a property, may be enforced through a program rewriting mechanism based on

PDGs. Fig. 1.a shows a program written in WL, the language we will introduce

later in this paper. In this program, L and H represent low and high values,

respectively. The program violates noninterference since it contains two illegal

flows from the high input h1 to the low outputs produced by the commands

outL l1 and outL l2. In fact, the commands at Lines 4 and 11 depend on the

command at Line 2. Such dependencies are reflected by the PDG of the program

on which there are paths from the node representing Line 2 to nodes representing

Lines 4 and 11. The dependencies reflected by the two paths, however, are of

different natures, control and data. The program rewriter uses PDGs to infer

the kind of dependency, and then, rewrites the program accordingly.

963Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

1. inL l1, l2;

2. inH h1;

3. if (h1 == 0) then

4. outL l1
5. else Nop

6. endif ;

7. if (l1 == 0) then

8. l2 = h1
9. else Nop

10. endif ;

11. outL l2

1. inL l1, l2;

2. inH h1;

3. if (h1 == 0) then

4. Nop

5. else Nop

6. endif ;

7. if (l1 == 0) then

8. l2 = h1
9. else Nop

10. endif ;

11. if (l1 == 0) then outL ⊥
12. else outL l2
13. endif

(a) (b)

Figure 1: An insecure program and its rewritten, secure version.

The program of Fig.1.b is the output of the rewriters of this paper when

their input is the program of Fig.1.a. As seen, the rewriters replace the low

output command at Line 4 with Nop representing no operation. The low output

command at Line 11, however, is replaced with the conditional structure of Lines

11 and 12 in the rewritten program. Indeed, the rewritten program outputs a

default value ⊥ whenever there is an explicit flow from h1 to l2 and outputs the

same value as the original program when there is not such a flow. It is evident

that there is no pair of traces of the rewritten program with the same low inputs

and different low outputs. That is, the following noninterference policy is satisfied

by the set ψM of the traces of the program of Fig.1.b, where tlin and tlout are

the sequences of low inputs and low outputs generated by trace t, respectively.

∀t, t′ ∈ ψM . tlin = t′lin ⇒ tlout = t′lout
. (4)

As seen, the rewriter produces a new system in which low outputs are not

affected by the inputs from high users. Information flow from high to low may be

explicit such as assigning a high value to a low variable, implicit such as the flow

from high to low when the value of a low variable is conditioned on a high value,

or even through the timing and termination behavior of the program. In general,

depending on the capabilities of low users, also known as the attacker model,

there are many subtle ways for information flow from high to low. A rewriting

mechanism for a specific formulation of noninterference should take into account

all possible kinds of illegal flows reflected by the underlying attacker model.

964 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

It is worth noting that dependence graphs give us the opportunity to rely

on strong guarantees and other significant characteristics backed up by ongoing

research. Although we formalize our notions through a model language, depen-

dence graphs for real-world programming languages with higher-order structures

are available [Hammer and Snelting 2009]. In particular, system dependence

graphs have been proposed as a substitute for PDGs when inter-procedural anal-

ysis is required [Krinke 2003]. Moreover, the idea of tracking sensitive paths can

be extended to complex language structures using path conditions. This means

that the rewriting algorithms proposed in this paper can, in principle, be ex-

tended to more advanced programming languages.

4 Security

We give a formalization of security in terms of noninterference for programs with

intermediate outputs. In doing so, we first specify the syntax and semantics

of a while language, WL, which allows programs to output values any time

during run-time. Then, we formulate two views of noninterference, progress-

insensitive and progress-sensitive, in the form of equivalence relations on program

executions.

4.1 WL: A while language

The abstract syntax of WL is shown in Fig. 2. An expression is a constant integer

or Boolean, an integer variable, or a binary operation or relation on expressions.

The set of commands is comprised of ‘Nop’ for no operation, ‘x = exp’ for

assignment, ‘inΓ varlist’ and ‘outΓ x’ for input and output where Γ is a security

level, ‘c; c’ for sequencing, conditionals, and ‘while’ for creating loops. There is

also a certain output command ‘outΓ ⊥’ that outputs the constant ⊥ differing

from all other constants of the language. The most important control structure

of WL is while, hence the name.

A trace is a sequence of states where transition to a state may be accompa-

nied by an event. Thus, a program execution can be represented by the sequence

of events it produces. In fact, events are inputs from and outputs to the envi-

ronment due to in and out commands. Silent divergence is also considered as an

event, shown by �, in case it is observable to low users. The set of all possible

sequences of events a programM may generate is denoted by S(M). Fig. 3 is an

example program and all sequences of events it may generate as well as part of its

PDG where it is assumed that variables only take 0 or 1 and data dependencies

originated from low variables are omitted. For a value v, v̌Γ and v̂Γ are input

and output events of security level Γ , respectively. Similarly, for a sequence of

events S ∈ S(M), we use ŠΓ , ŜΓ , and SΓ to refer to input, output, and the

entire subsequence of S at security level Γ . Each node of Fig. 3.c containing a

965Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

pr ::= ic; c

ic ::= inΓ varlist | ic; ic
c ::= Nop | x = exp | outΓ x | outΓ ⊥ | c; c

| if exp then c else c endif
| while exp do c done

exp ::= b | n | x | exp1 op exp2
op ::= == | < | > | <= | + | − | ∨ | ∧

varlist ::= x | x, varlist

Figure 2: Syntax of WL.

number corresponds to the statement at the same line of the program. There is

also a special node for each high variable which helps us to track dependencies

on that variable. Control and data dependencies are shown by solid and dashed

arcs, respectively.

As S(M) reflects all possible behaviors of program M , one can investigate

it to check that M respects a given security policy. For instance, our exam-

ple program in Fig. 3 does not satisfy noninterference because the subsequence〈
0̌L, 0̌L, 1̂L

〉
is not consistent with the high input

〈
0̌H

〉
, for example. That is, a

low observer can exclude the possibility of high input 0̌H whenever he observes

the sequence
〈
0̌L, 0̌L, 1̂L

〉
of low events. The subsequence

〈
0̌L, 1̌L, 0̂L

〉
precludes〈

1̌H
〉
as well. In essence, the low outputs produced at Line 7 are influenced by

the high input taken at Line 2. From now on, we also use the term trace to refer

to the sequence of events generated by a sequence of states.

Formal semantics of WL bears on how a program produces a trace of events

at run-time. As shown in Fig. 4, it builds on configurations where a config-

uration is either a terminal configuration (ε, σ, Š, Ŝ) or an intermediate one

(c, σ, Š, Ŝ) where ε denotes an empty string and c is a nonempty string of

terminal symbols. The set of all configurations is denoted by C. In fact, se-

mantic rules define the small-step transition relation ‘−→’ on C where expres-

sions are interpreted as usual arithmetic and Boolean expressions. The judgment

(c, σ, Š, Ŝ) −→ (c′, σ′, Š′, Ŝ′) means that the execution of command c in state σ

and in a configuration with input and output traces Š and Ŝ results in the con-

figuration (c′, σ′, Š′, Ŝ′). A transition may generate no event, that is, Š′ = Š and

Ŝ′ = Ŝ. When a transition produces an event, either Š′ = Š · 〈e〉 or Ŝ′ = Ŝ · 〈e〉
where e is the input or output event generated by this transition and ‘·’ is the

concatenation operator. We also use ‘−→∗’ as the transitive closure of ‘−→’.

966 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

1. inL l1, l2;

2. inH h1;

3. if (l1 == 0) then

4. l2 = h1
5. else Nop

6. endif ;

7. outL l2

〈
0̌L, 0̌L, 0̌H , 0̂L

〉
〈
0̌L, 0̌L, 1̌H , 1̂L

〉
〈
0̌L, 1̌L, 0̌H , 0̂L

〉
〈
0̌L, 1̌L, 1̌H , 1̂L

〉
〈
1̌L, 0̌L, 0̌H , 0̂L

〉
〈
1̌L, 0̌L, 1̌H , 0̂L

〉
〈
1̌L, 1̌L, 0̌H , 1̂L

〉
〈
1̌L, 1̌L, 1̌H , 1̂L

〉

(a) (b) (c)

Figure 3: A program, its traces, and a part of its PDG. (a) Program M . (b)

The trace set S(M) where v̌Γ and v̂Γ denote input and output values v ∈ {0, 1}
at security level Γ ∈ {L,H}. (c) A part of its PDG, where data dependencies

originated from low variables are omitted.

Let X be the set of variables. A state σ is defined to be a mapping σ : X →
N ∪ {null}, where N is the set of all integers and ‘null’ is the value of variables

before being assigned with inputs from the environment. The value of x in σ is

σ(x) and σ[x → v] is a state obtained from σ by updating the value of x to v.

The value of an expression exp in σ is also denoted by σ(exp). By ‘Γ ↓ v’, we
mean that the next input the environment provides is v at security level Γ . For

the sake of brevity, we do not include the rules for updating the environment.

4.2 Noninterference

Since WL has output commands, intermediate steps of computations should be

taken into account in the formulation of noninterference. That is, an effective

security requirement for WL programs is in the form of a progress-insensitive

or progress-sensitive noninterference [Askarov et al. 2008]. In order to formally

specify such requirements, we introduce some concepts.

If (c, σ, Š, Ŝ) −→ (ε, σ′, Š′, Ŝ′), we say that command c terminates in one

step. Moreover, (c, σ, Š, Ŝ) ⇒ (c′, σ′, Š′, Ŝ′) denotes evaluation until an observ-

able event where c′ �= ε and Ŝ′ = Ŝ · 〈v̂〉. Likewise, (c, σ, Š, Ŝ) ⇒ (ε, σ, Š′, Ŝ′)
denotes termination with or without any observable events—an observable event

is created when an output command is executed. The judgment (c, σ, Š, Ŝ) ⇒
(c′, σ′, Š′, Ŝ′) is defined by the rules in Fig. 5.

967Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

(Nop, σ, Š, Ŝ) −→ (ε, σ, Š, Ŝ)
Nop1

(x = exp, σ, Š, Ŝ) −→ (ε, σ[x �→ σ(exp)], Š, Ŝ)
Assign

Γ ↓ v

(inΓ x, σ, Š, Ŝ) −→ (ε, σ[x �→ v], Š · 〈v̌Γ 〉, Ŝ)
InputVar

Γ ↓ v

((inΓ x, varlist), σ, Š, Ŝ) −→ (inΓ varlist, σ[x �→ v], Š · 〈v̌Γ 〉, Ŝ)
InputVarList

σ(x) = v

(outΓ x, σ, Š, Ŝ) −→ (ε, σ, Š, Ŝ · 〈v̂Γ 〉)
OutputVar

(outΓ ⊥, σ, Š, Ŝ) −→ (ε, σ, Š, Ŝ · 〈⊥̂Γ 〉)
Output⊥

(c1, σ, Š, Ŝ) −→ (c′1, σ
′, Š′, Ŝ′)

(c1; c2, σ, Š, Ŝ) −→ (c′1; c2, σ
′, Š′, Ŝ′)

Seq1

(ε; c2, σ, Š, Ŝ) −→ (c2, σ, Š, Ŝ)
Seq2

σ(exp) = true

(if exp then c1 else c2 endif, σ, Š, Ŝ) −→ (c1, σ, Š, Ŝ)
If-Else-True

σ(exp) = false

(if exp then c1 else c2 endif, σ, Š, Ŝ) −→ (c2, σ, Š, Ŝ)
If-Else-False

(while exp do c done, σ, Š, Ŝ) −→ (if exp then (c;while exp do c done) else Nop, σ, Š, Ŝ)
While

Figure 4: Small-step semantics for WL.

(c1, σ1, Š1, Ŝ1) −→∗ (c2, σ2, Š2, Ŝ2) Ŝ2 = Ŝ1 · 〈v̂Γ 〉 c2 �= ε

(c1, σ1, Š1, Ŝ1) ⇒ (c2, σ2, Š2, Ŝ2)
EvlObs

(c1, σ1, Š1, Ŝ1) −→∗ (ε, σ2, Š2, Ŝ2)

(c1, σ1, Š1, Ŝ1) ⇒ (ε, σ2, Š2, Ŝ2)
Term

Figure 5: Rules defining the relation ‘⇒’.

A program diverges silently if it does not terminate nor does evaluate to any

observable event. In formal terms, (c, σ, Š, Ŝ) diverges silently if

�C′ ∈ C. (c, σ, Š, Ŝ) ⇒ C′.

An attacker (low observer) may or may not be able to observe silent divergence

of programs.

968 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

For two traces S and S′, we say that S is a prefix of S′, or S′ extends S, if there
exists S′′ such that S′ = S ·S′′. In such a case, S′′ is denoted by S′ \S. Now, we
define the evaluation relation ‘⇓’ by the rules in Fig. 6. As programs may produce

infinitely many observable events, the rules are interpreted coinductively.

(c1, σ1, Š1, Ŝ1) ⇒ (c′1, σ
′
1, Š

′
1, Ŝ

′
1) (c′1, σ

′
1, Š

′
1, Ŝ

′
1) ⇓ Ŝ0 c′1 �= ε

(c1, σ1, Š1, Ŝ1) ⇓ (Ŝ′
1 \ Ŝ1) · Ŝ0

Ev1

(c1, σ1, Š1, Ŝ1) ⇒ (ε, σ′
1, Š

′
1, Ŝ

′
1)

(c1, σ1, Š1, Ŝ1) ⇓ Ŝ′
1 \ Ŝ1

Ev2

�C ∈ C. (c1, σ1, Š1, Ŝ1) ⇒ C

(c1, σ1, Š1, Ŝ1) ⇓ 〈�〉 SilEv

Figure 6: Rules defining the evaluation relation ‘⇓’.

Definition 1 Two output traces Ŝ1 and Ŝ2 are said to be equivalent in the view

of low observers, written Ŝ1 =L Ŝ2, if their subsequences of all low events—�
and those resulting from outL commands—are equal.

We also define progress-insensitive equivalent traces as two output traces

that are equivalent in the view of low observers up to the first point at which

divergence appears in one of the traces. In other words, the sequence of low events

before divergence in one trace should be a prefix of that in the other trace. A

low observer cannot differentiate between two progress-insensitive output traces

if he cannot draw a distinction between program divergence and the situation

in which the program has been terminated or is computing the next observable

value.

Definition 2 Two output traces Ŝ1 and Ŝ2 are said to be progress-insensitive

equivalent, noted Ŝ1 ∼PINI Ŝ2, iff

(
Ŝ1 =L Ŝ2

)
∨ ∃Ŝ, Ŝ′, Ŝ′′.

((
Ŝ =L Ŝ

′) ∧
((
Ŝ1 = Ŝ · 〈�〉∧

Ŝ2 = Ŝ′ · Ŝ′′) ∨ (
Ŝ2 = Ŝ · 〈�〉 ∧ Ŝ1 = Ŝ′ · Ŝ′′))). (5)

Progress-insensitive noninterference, PINI for short, stipulates that any two

executions of the program with input sequences that are equivalent in the view

of low observers should result in progress-insensitive equivalent output traces.

Our formal definition of progress-insensitive noninterference is based on some

assumptions and notations. It is assumed that any WL program begins with a

batch of consecutive input commands which we call it the input block and that

no input command appears outside this block. A command in the input block

969Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

assigns the values provided by the environment to variables in that command.

The security level of such values is assumed to be that of the input command.

In this way, each variable in the input block can be thought of as a high or

a low variable. The sets H and L denote high and low variables in the input

block, respectively. The program obtained from M by removing its input block

is denoted by M c. Moreover, two states σ and σ′ are called low-equivalent,

written σ =L σ
′, if σ(l) = σ′(l) for any l ∈ L.

Definition 3 Program M satisfies progress-insensitive noninterference if for

any two configurations m = (M c, σ, Š, λ) and m′ = (M c, σ′, Š′, λ), σ =L σ′

implies Ŝ ∼PINI Ŝ′ whenever m ⇓ Ŝ and m′ ⇓ Ŝ′. Here, λ is the empty se-

quence.

It can easily be shown that Definition 3 and the termination-insensitive non-

interference defined in [Askarov et al. 2008] are equivalent—such an equivalence

has indeed been stated through the third item of Proposition 1 in the same pa-

per. The definition of progress-sensitive noninterference, PSNI for short, differs

from that of PINI only in the interpretation of equivalent output traces.

Definition 4 Two output traces Ŝ1 and Ŝ2 are progress-sensitive equivalent,

denoted Ŝ1 ∼PSNI Ŝ2, iff

Ŝ1 =L Ŝ2. (6)

The underpinning fact in PSNI is that the attacker is assumed to be able to

observe the progress status of the program.

Definition 5 Program M satisfies progress-sensitive noninterference if for any

two configurations m = (M c, σ, Š, λ) and m′ = (M c, σ′, Š′, λ), σ =L σ
′ implies

Ŝ ∼PSNI Ŝ′ whenever m ⇓ Ŝ and m′ ⇓ Ŝ′.

5 Program Rewriting for PINI and PSNI

We propose rewriting algorithms to enforce PINI and PSNI in WL programs. In

doing so, we first outline how such algorithms may build on program dependence

graphs (PDGs). Then, we elaborate on rewriting for the two formulations of

noninterference.

5.1 Rewriting Using PDGs

As a building block of any mechanism for enforcing noninterference, we need a

machinery to identify possible information flows from high inputs to low out-

puts. PDGs provide such a device where a program is represented by a directed

graph in which nodes are program statements or expressions and edges denote

970 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

control or data dependences between nodes. The PDG of a program reflects all

dependencies among the statements of that program, but the converse is not

necessarily true in the sense there may be some false positives.

The PDG is chiefly derived from the control flow graph (CFG) [Allen 1970].

The CFG represents the sequence in which statements are executed. It is a di-

rected graph with nodes representing program statements and edges representing

control flows among the nodes. There are also two particular nodes Start and

Stop in the CFG as the entry and exit points of the program. By identifying

control and data dependences, the CFG is converted to the PDG.

A data dependence edge from X to Y in the PDG is denoted by X
d
↪→ Y .

Similarly, a control dependence edge is noted X
c
↪→ Y . An edge X

d
↪→ Y in the

PDG means that Y involves a variable that has been assigned in X . Likewise,

X
c
↪→ Y means that the execution of Y is controlled by the value computed at

X . When the type of the edge is not of concern, we use X ↪→ Y without any

label. As with the CFG, there exists a particular node Start in the PDG that

represents the entry point to the program. A path from X to Y in the PDG is

denoted by X � Y . Each path indicates a data or control dependence depending

on the type of the last edge of the path. The path constructed by adding the

edge X ↪→ Y to the path Y � Z is shown by X ↪→ Y � Z. A path X � Y in

the PDG indicates that there may exist a flow from X to Y .

Definition 6 Given two nodes X and Y on the PDG of program M , we say that

there is a flow from X to Y if the value computed at Y or the mere execution of

Y depends on the value computed at X.

To formalize the intuitive notion of dependence in Definition 6, assume that

N is the set of all nodes on the PDG G of program M . Moreover, let Q be the

set of nodes on paths Start � X except for Start. Assume also that R is the

set of nodes other than Start in N\Q which are on paths of the form V � W

where V ∈ Q andW is a node with no outgoing edge in G. Evidently, R ⊆ N\Q
and the set N\(Q∪R) comprises the nodes of G that are not branched from the

nodes on paths from Start to X . Then, there is a flow from X to Y if there exist

two executions ofM with different values at X and different values or execution

statuses—reflecting whether or not the statement is executed—at Y in which

the value computed at any node Z ∈ N\(Q∪R), as well as the execution status

of Z, is the same in both executions.

It is worth noting that there is a flow from X to Y only if there is a path

from X to Y . This result was formally proven in [Wasserrab et al. 2009]. The

converse, however, is not necessarily true. That is, the existence of paths from X

to Y may not reflect the existence of a flow from X to Y . PDG-based rewriting

converts a program into one whose PDG either contains no paths from high

variables to low outputs or contains such paths but they do not reflect any flow.

971Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

1. inH h1, h2;

2. inL l1, l2, l3;

3. if (l1 ≤ 0) then

4. l2 = h1;

5. outL l1;

6. outL l2
7. else

8. if(h2 == h1) then

9. l3 = 0;

10. outL l1
11. else

12. l1 = 1

13. endif ;

14. outL l1;

15. if(l3 == 0) then

16. l3 = 1

17. else

18. Nop

19. endif ;

20. endif ;

21. outL l3
(a) (b)

Figure 7: (a) A program. (b) A part of its PDG, where data dependencies orig-

inated from low variables are omitted. Boldface arcs make a path from h1 to

outL l3.

We distinguish two types of flow from X to Y concerning the path X �
Y , explicit and implicit. An explicit flow arises if the value computed at X is

directly transferred to that in Y . This may simply occur as a result of a chain of

assignments on the path. An implicit flow occurs when the value computed at Y

depends on whether a specific statement on the path X � Y has been executed

or not and the execution of that statement is controlled by the value computed

at X .

Definition 7 A path X � Y on the PDG of a program is said to indicate an

explicit flow from X to Y if all its edges are of type data dependence. Otherwise,

it is said to denote an implicit flow.

Fig. 7 shows a program and part of its PDG where control and data depen-

dence edges are shown by solid and dashed arcs, respectively. When we use PDGs

to enforce noninterference, the data dependences originated from low inputs are

972 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

Algorithm 1: A general rewriting algorithm for noninterference.
1 foreach statement X producing a high input event hin do
2 foreach statement Y producing a low observable event eL do
3 if Y ∈ affect(X) then
4 transform Y into Y ′ such that Y ′ /∈ affect(X) in the new program.
5 end
6 end
7 end

not of concern. Thus, the graph in Fig. 7 does not contain edges reflecting such

dependences. Boldface arcs in this figure show the path

h1 � outL l3 = h1
d
↪→ 8

c
↪→ 9

d
↪→ 15

c
↪→ 16

d
↪→ 21.

This path indicates that the value computed at Line 8 of the program depends

on the value of h1 and the execution of Line 9 depends on the value computed at

8, i.e., the Boolean value of ‘h2 == h1’. Our representation of PDGs is similar

to that of [Krinke 2004].

Now, one may define a function affect which takes an expression or state-

ment of a program—or equivalently, its corresponding node on the programs’s

PDG—and returns those expressions and statements that depend on the given

expression or statement. In other words, given a node X on the PDG, the func-

tion affect returns a set containing all the nodes Y to which there is a path from

X . A general rewriting algorithm for noninterference can then be suggested using

this function, as shown in Algorithm 1. It is worth noting that the interpretation

of a low observable event differs from one formulation of noninterference to the

other.

A PDG, as a static representation of dependences in a program, warns us

of possible illegal flows. Such flows, however, may not occur in all runs of the

program. Thus, while implementing the Algorithm 1, we should regard the run-

time conditions indicating whether or not a potential illegal flow addressed by

PDG actually occurs at run-time. Furthermore, the implementation of the al-

gorithm relies on our interpretation of low observable events. For example, one

may consider the termination of a program as an event that can be observed by

low users. In such a case, the program

if (h == l) then while (true) do Nop done; else Nop endif

leaks high information and is not secure. It may also be assumed that low vari-

ables cannot be observed before the termination of the program. These are things

that may influence the way we refine the algorithm shown in Algorithm 1.

973Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

5.2 Rewriting for PINI

We elaborate the general rewriting algorithm in Algorithm 1 so that its output

program satisfies the policy defined in Definition 3. The main idea is the replace-

ment of any outL command with outL ⊥ or Nop provided it is affected by high

inputs. As an example, outL l2 in the program of Fig. 3 is replaced by outL ⊥
because it is influenced by inH h1. This change prevents leakage in the form of

an explicit flow from Line 2 to Line 7. Such a modification, however, disregards

run-time information and may be more than required. Since programs have ac-

cess to run-time information, it is plausible to incorporate such information into

the rewritten program. In fact, outL ⊥ should be executed instead of outL l1
only if l1 == 0 holds.

To resolve this, we suggest the use of a variant of path conditions [Snelting

et al. 2006]. A path condition p(X,Y), in our setting, is defined over program

variables and gives conditions under which the flow represented by X � Y

actually occurs. That is, our path conditions must be true for the flow represented

by the path to occur. The path conditions proposed earlier can be used to check

that a path is indeed traversed at run-time. This is useful for identifying explicit

flows. In case of implicit flows, however, the flow may occur at run-time even if

the path is not traversed completely. This occurs when a node on the path with

an incoming control dependence edge does not execute due to the value of the

controlling expression. Thus, the execution of all nodes on the path indicating

an implicit flow is not necessary for the flow to occur. In brief, the following

holds for paths from high inputs to low outputs.

Observation 1 The flow indicated by the path h� outL l on the PDG of a WL

program occurs only if every node on the path with incoming data dependence

edge is executed.

That is, there are no pair of program executions delineated under Definition 6

in which some nodes with incoming data dependence edge are not executed.

The implication of this observation is that all intermediate nodes on the path

indicating an explicit flow should be tracked at run-time. An intermediate node

on the path indicating an implicit flow, however, should be tracked only if its

incoming edge is of type data dependence. As will be seen shortly, our rewriters

make changes to the given program so that it can be checked that all intermediate

nodes with incoming data dependence edges on the path terminating at outL l

commands are executed at run-time. If so, outL ⊥ or Nop is executed instead of

the command. Otherwise, outL l itself is executed.

WL programs involve simple path conditions [Krinke 2004] which are derived

from the execution conditions of the nodes. The execution condition for a node

X is generally obtained by backtracking from X to Start through control depen-

dence edges on the path. It is a Boolean expression which is true iff X executes.

974 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

Algorithm 2: RWPINI : A rewriter for progress-insensitive noninterference

which takes program M and its PDG G.

1 initialize F to the set of all paths Start ↪→ P � P ′ in the PDG G of M where P is the node

representing a high input and P ′ is the node representing outL l for some l;
2 if F = ∅ then
3 return M ;
4 end

5 create a copy of M , name it M ′, and change it as follows:
6 determine the type of flow indicated by each path f ∈ F ;
7 foreach f ∈ F do
8 Generate the path condition of f as the conjunction of the execution conditions of

nodes N satisfying f = Start� X
d
↪→ N � P ′ if there are such nodes on the path and

true otherwise;

9 end
10 foreach node n on G representing outL l for some l do
11 let c be the disjunction of the path conditions of all f ′ ∈ F which terminate at n;

12 if all paths f ′ ∈ F terminating at n indicate an explicit flow then
13 replace outL l with the statement “if c then outL ⊥ else outL l endif”;
14 else
15 replace outL l with the statement “if c then Nop else outL l endif”;
16 end
17 end

18 return M ′

The path condition p(X,Y) for X � Y is then defined to be the conjunction of

the execution conditions of the nodes on the path—we may also use p(m) as the

path condition of the path m. The execution and path conditions of this paper

differ slightly from what explained above. In constructing execution conditions,

the Boolean expressions containing high variables are considered to be always

true. Path conditions are also defined as the conjunction of the execution condi-

tions of the nodes on the path with an incoming data dependence edge. If there

is no such a node, the path condition is considered to be true.

To employ path conditions more efficiently, we assume that programs only

have static single assignments [Cytron et al. 1991, Taghdiri et al. 2011]. That is,

they do not contain multiple assignments for a single variable. In this way, it is

guaranteed that the execution condition of a node remains the same in the rest

of the path. There are different algorithms for converting a given program to the

one having only static single assignments. We assume that such a conversion has

been applied to the inputs of our rewriting algorithms. The two algorithms are

also assumed to only take inputs that are free of loop-carried data dependences.

Section 5.5 discusses how one may extend the algorithms to handle such data

dependences.

Now, we propose RWPINI as a rewriter for PINI. As shown in Algorithm 2, it

takes the code of a program M and its corresponding dependence graph G and

returns a program code M ′ that satisfies progress-insensitive noninterference.

The application of RWPINI to the program in Fig. 3 yields the one in Fig. 8.

Since the illegal flow from h1 to outL l2 occurs only when the path condition

975Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

1. inL l1, l2;

2. inH h1;

3. if (l1 == 0) then

4. l2 = h1
5. else Nop

6. endif ;

7. if (l1 == 0) then outL ⊥
8. else outL l2
9. endif

〈0̌L, 0̌L, 0̌H , ⊥̂L〉
〈0̌L, 0̌L, 1̌H , ⊥̂L〉
〈0̌L, 1̌L, 0̌H , ⊥̂L〉
〈0̌L, 1̌L, 1̌H , ⊥̂L〉
〈1̌L, 0̌L, 0̌H , 0̂L〉
〈1̌L, 0̌L, 1̌H , 0̂L〉
〈1̌L, 1̌L, 0̌H , 1̂L〉
〈1̌L, 1̌L, 1̌H , 1̂L〉

(a) (b) (c)

Figure 8: Rewriting the program in Fig. 3 using RWPINI . (a) Part of the PDG of

the input program where dependencies originated from low variables are omitted.

(b) The transformed program M ′. (c) Traces of M ′.

p(2, 7) = (l1 == 0) is true, the rewritten program decides between outL l1 and

outL ⊥ according to the value of l1. The program in Fig. 8 satisfies PINI because

its output traces are progress-insensitive equivalent for any two executions of the

program with the same low inputs.

Note that a high-dependent output command is replaced by outL ⊥ only if

all the paths to it indicate explicit flows. Otherwise, the presence or absence of

⊥̂L, which is generated by a path indicating an implicit flow, violates PINI. If

there is a path from high variables to a low output command which indicates

an implicit flow, the output command will be replaced with Nop. It is obvious

that one can replace the outL commands which depend on high values with

Nop regardless of the type of the flow. That is, a constant output ⊥ may be

interpreted as equivalent to Nop in the view of the attacker in case of explicit

flows. However, similar to some previous works such as [Le Guernic et al. 2007],

we choose to preserve the mere existence of such output commands whenever

they does not result in violation of soundness. In particular, an interpretation of

transparency may require the same number of output events at run-time for an

insecure execution and its corresponding execution of the rewritten program.

Note that SME [Devriese and Piessens 2010] runs (in parallel) two copies of

the program of Fig. 3, one for the high and one for the low security level. The

copies for the high and low security levels are the same as the program of Fig. 3

except that Line 7 is removed for the high level and Line 2 is replaced with

inH ⊥ for the low level—we have abused the syntax of WL and used inH ⊥
instead of vdefault in SME. It can easily be verified that the set of traces of the

(parallel) execution of the two copies is the same as that given in Fig. 8.c.

976 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

1. inH h1;

2. inL l1;

3. if (h1 == l1) then

4. while (true) do outL l1 done

5. else Nop

6. endif ;

7. outL l1

Figure 9: A PINI-violating program. The rewriter RWPINI replaces the outL
command in Line 4 with Nop but the result does not satisfy PSNI.

5.3 Rewriting for PSNI

The progress-sensitive formulation of noninterference imposes more restrictions

on low observable behavior than the progress-insensitive one. Consider the pro-

gram shown in Fig. 9. The algorithm RWPINI replaces outL l1 in Line 4 with

Nop. The resulting program satisfies PINI. It is, however, insecure in terms of

PSNI because the loop in the program may diverge depending on the value of

the high input h1. In other words, a low observer can infer the value of h1 by

observing the progress status of the program.

Hence, to enforce PSNI, it should additionally be ensured that the progress

status of the program does not reveal any high information. That is, the program

must always terminate or must always diverge when it begins from low-equivalent

initial states. There are a number of techniques and tools to determine whether

or not a program, from some specific classes of programs, terminates [Cook

et al. 2006, Spoto et al. 2010, Cook et al. 2008]. Nevertheless, the problem is

in general undecidable. This is perhaps the main reason why the few solutions

proposed for PSNI are too conservative and reject any program in which there

is a high-dependent loop—a loop that the execution of its body, or the number

of rounds it executes, depends on high values [O’Neill et al. 2006, Smith and

Volpano 1998, Zhang et al. 2011]. Moore et. al. [Moore et al. 2012] propose a

type system together with a run-time mechanism, called termination oracle, to

detect those loops whose progress status depends only on low values. Such an

oracle may provide a higher precision in comparison with static solutions but at

the cost of an extra run-time overhead. On the other hand, the execution of the

program gets stuck if the oracle cannot predict the progress status of the loop.

We propose a rewriter that transforms programs so that the progress sta-

tus of the result does not depend on high values. In this way, a program that

leaks high values through its progress status is given the chance to execute, al-

beit its semantics may be changed for the sake of soundness. In WL, while is

the only construct being responsible for divergence. Thus, we need a device—a

function—to analyze while loops. In devising our rewriter, we assume that there

977Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

1. inH h1;

2. inL l1;

3. while (h1 < 1) do

4. Nop;

5. h1 = h1 + 1

6. done;

7. while (true) do

8. outL l1;

9. h1 = h1 + l1
10. done;

11. outL l1

1. inH h1;

2. inL l1;

3. while (h1 < l1) do

4. Nop;

5. h1 = h1 − l1
6. done;

7. outL l1

(a) (b)

Figure 10: (a) A program with a loop (Line 3) that always terminates and a loop

(Line 7) that diverges in all states. (b) A loop (Line 3) that terminates in states

where l1 < 0 or h1 ≥ l1.

is a loop analyzer which is able to statically examine the code of a given loop.

The rewriting algorithm guarantees that the resulting program terminates, or

diverges, for any two low-equivalent initial states.

The loop analyzer is assumed to take the code of a loop and return a Boolean

expression which is true for the states in which the execution of that loop def-

initely terminates. It returns the constant ‘True’ if the loop always terminates

and ‘False’ if it diverges in all states. For example, it returns True for the first

loop in the program in Fig. 10.a and False for the second one. Likewise, the loop

analyzer returns the expression ‘h1 ≥ l1 ∨ l1 < 0’ for the loop of the program in

Fig. 10.b meaning that it may diverge in a state with l1 > 0, for example. Notice

that our rewriter for PSNI relies on the existence of a powerful loop analyzer.

Such a device analyzes most loops successfully. Its performance also improves

by new achievements in identifying the patterns indicating specific termination

behaviors. Nonetheless, there may be loops for which the loop analyzer cannot

return any expression. We assume that the input to the rewriter does not contain

such loops.

Our rewriter for PSNI transforms the code using what is returned by the loop

analyzer as well as the paths from high variables to loop guards in the PDG of the

code. The rewriter leaves the loop intact if the loop analyzer returns True for that

loop. The same holds for an always diverging loop, i.e., the one for which the loop

analyzer returns False, provided there is no control dependence path from high

inputs to the guard of that loop—recall that a control dependence path is the

one whose last edge is of type control dependence. In fact, an always diverging

978 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

Algorithm 3: RWPSNI : A rewriter for progress-sensitive noninterference

which takes program M and its PDG G.

1 initialize D to the set of all paths Start ↪→ P ↪→ E+ in G where E+ is a path terminating
at a loop guard and P is the node representing a high input;

2 M ′ = RWPINI(M,G);
3 if D = ∅ then
4 return M ′
5 end
6 H = max{height(n) | n is a node on G}, where height is a function that returns the height

of a given node on the tree obtained by removing data dependence edges from G;

7 change M ′ as follows:
8 for h=H to 1 do
9 foreach node n with height(n) = h representing a loop on some path f ∈ D do

10 r=LoopAnalyzer(loop(n));
11 if r = False then

12 if X
c
↪→ n appears on at least one path f ∈ D then

13 replace loop(n) with the statement “if guard(n) then body(n) endif”;
14 end
15 else
16 if r �= True then
17 replace loop(n) with the statement “if r then loop(n) endif”;
18 end
19 end
20 end
21 h = h− 1;
22 end

23 return M ′

loop may divulge high information if it is controlled by an expression which

depends on high inputs. If so, the loop is replaced with an if-then construct with

the same guard and body as the loop. If the loop analyzer returns an expression

which is not True nor False, the rewriter conditions the execution of the loop on

the expression returned. In this way, the new code definitely terminates.

RWPSNI as shown in Algorithm 3 takes the code of programM and its cor-

responding dependence graph G. It returns the program code M ′ that satisfies
PSNI. This algorithm also makes use of ‘LoopAnalyzer’ which is a loop ana-

lyzer as specified above. RWPSNI first calls RWPINI . The result of applying

RWPINI to M is a program that satisfies PSNI if M does not contain high-

dependent loops. Otherwise, the loops may be rewritten by collecting all the

paths of the form Start ↪→ h ↪→ E+ where h is a high input and E+ is a path

terminating at a loop guard. Notice that such paths may also contain intermedi-

ate nodes representing some other loop guards. The functions guard(n), body(n),

and loop(n) return the Boolean guard, the body, and the entire loop represented

by node n on the PDG, respectively.

As seen, RWPSNI may transform a high-dependent loop into a conditional

statement where the body of the loop executes at most once. Other strategies,

such as changing the guard so that the loop body can only execute finitely

many times, are also possible. Such strategies may be compared to ours via a

transparency analysis. It should also be noted that nested loops are analyzed

979Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

1. inH h1;

2. inL l1;

3. if(l1 ≤ h1 ∨ l1 < 0) then

4. while (h1 < l1) do

5. Nop;

6. h1 = h1 − l1
7. done

8. endif ;

9. outL l1

Figure 11: Program of Fig. 10.b rewritten by RWPSNI .

first, since the influence of their rewritten version on the termination behavior

of outer loops may differ from that of the ones before rewriting. To achieve this,

RWPSNI uses that height of the nodes representing loops in the tree obtained

by removing data dependence edges from the PDG. Fig. 11 shows the result of

applying RWPSNI to the program shown in Fig. 10.b.

5.4 Multilevel Security

Algorithms 2 and 3 scale to multilevel security with small changes. We explain

how Algorithm 2 can be modified to support more than two security levels mak-

ing an arbitrary lattice. The same argument applies to Algorithm 3. Let (Γ,)

be the finite lattice of security levels. An information flow is allowed from γ to

γ′ only if γ 	 γ′. The complement of 	 can be thought of as the noninterference

relation in the sense that there should be no information flow from inputs at

security level γ to the outputs at security level γ′ iff (γ, γ′) /∈ 	. For a secu-

rity level γ, we also define Hγ as the set of all security levels γ′ which do not

have the relation 	 with γ, that is, the security levels that are higher than or

noncomparable to γ.

For any output command outγ x in a given program, the rewriter for PINI

finds all paths on the PDG of the program from input variables at security lev-

els γ′ ∈ Hγ to outγ x. After determining the type of the flow corresponding to

each path and computing the path conditions (the execution conditions involv-

ing variables with security levels in Hγ are considered to be always true), the

PINI rewriter replaces outγ x with appropriate statements similar to that in the

Algorithm 2 devised for the lattices of security levels having only the two ele-

ments L and H . If all the paths reflect explicit flows, the algorithm substitutes

a conditional structure for the command outγ x. The condition part is the dis-

junction of the path conditions, the if-part is outγ ⊥, and the else-part is outγ x.

If some paths reflect implicit flows, the if-part will be Nop instead of outγ ⊥.

980 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

5.5 Loop-carried data dependence

The proposed rewriting algorithms could scale to programs with loop-carried

data dependences. Such a data dependence occurs when the body of a loop

executes more than once causing the value computed at a node of the PDG

to depend on the value of another node computed in previous iterations of the

same loop. If we do not consider such dependencies, the path conditions may

not reflect the conditions required for a flow to actually occur. A solution to this

problem is to decompose path conditions at loop-carried data dependence edges

[Krinke 2004].

Let m = m1m2...mn be a path such that mi’s are paths without loop-carried

data dependences and that each mi is connected to mi+1 by a loop-carried data

dependence edge. Then, the path condition of m would be

p(m) =
∧

1≤i≤n
p(mi, i), (7)

where p(mi, i) denotes the path condition p(mi) for path mi in which every oc-

currence of a variable v is replaced by its new instance vi. In fact, vi stores the

value of the variable v at iteration i of the loop. Since the proposed rewriting al-

gorithms produce an output program, such variable instances should be inserted

inside the loop and properly be updated at run-time to hold the value of v at

iterations i. In this way, path conditions are correctly evaluated.

6 Soundness and Transparency

Assume that M , M ′, G, and G′ are a given program, its rewritten version, and

their PDGs, respectively. Moreover, F and F ′ are the sets of paths of the form

Start ↪→ h � outL l in G and G′ where h is a node representing a high input

and l is a low variable. It is also assumed that D and D′ are sets of paths of the
form Start ↪→ h ↪→ E+ in G and G′ in which h is a node representing a high

input and E+ is a path terminating at a loop guard. We begin with the proof

of soundness for PINI and PSNI. Next, we formalize and prove transparency for

these rewriting mechanisms.

6.1 Soundness

Proposition 1 The flow indicated by the path f ′ ∈ F ′ in the PDG of

RWPINI(M,G) does not occur.

Proof. Let n(f ′) be the set of nodes on f ′ whose incoming edge is of type data

dependence. From Observation 1, the flow indicated by f ′ occurs only if
∧

X∈n(f ′)

e(X), (8)

981Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

Figure 12: Possible configurations for a path from a high input to an outL com-

mand in the PDG G′ of RWPINI(M,G). The nodes C and N represent the

controlling node inserted by the rewriter and the last node before the outL l com-

mand on a path in G, respectively. (a) Every path in G terminating at outL l

indicates an explicit flow. (b) Some path in G terminating at outL l represents

an implicit flow and outL l is data dependent to N . (c) Some path in G termi-

nating at outL l represents an implicit flow and outL l is control dependent to

N .

where e(X) is the execution condition ofX . Fig. 12 shows possible configurations

of f ′ ∈ F ′ in the PDG G′ of RWPINI(M,G) in which N is the last node on

f ′ before outL l. The node C also represents the path condition of f ′ which is

added by the PINI rewriter such that it controls the execution of outL l. If C

does not hold for a particular mapping of variable to values in an execution,

the condition (8) is not satisfied for that execution, and therefore, the flow does

not occur. If C holds for an execution, (8) is not satisfied in Cases (a) and (b)

because the execution condition for outL l, whose incoming edge is of type data

dependence in these cases, is not satisfied for that execution. The only remaining

case is when C holds for an execution and the incoming edge of outL l is of type

control dependence. The following is the reasoning for this case. As C holds

Nop is executed instead of outL l. We claim that in any other execution with the

same low values and possibly a different value of h the command Nop is executed

instead of outLl, and therefore, the flow does not occur. This is immediate as path

conditions are indeed defined on low variables. That is, an execution condition

is regarded as true when the corresponding execution is conditioned on a high

value. Thus, changing a high value while low values remain unchanged does not

make C false. �

Theorem 1 Let M be a program and G its PDG. Then, M ′ = RWPINI(M,G)

982 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

satisfies progress-insensitive noninterference.

Proof. Assume that the initial states σ1 and σ2 in two initial configurations m1

and m2 are low-equivalent, m1 ⇓ Ŝ1, m2 ⇓ Ŝ2 and Ŝ1 �PINI Ŝ2. Then, from (5),

we have

∃i > 0.
(
(Ŝ1)L[..i − 1] = (Ŝ2)L[..i− 1]

∧ � �= (Ŝ1)L[i] �= (Ŝ2)L[i] �=�
)
, (9)

where (Ŝ1)L and (Ŝ2)L denote the subsequences obtained from Ŝ1 and Ŝ2 by

restricting them to low events. Thus, there are computations

T1 : (M ′c, σ1, Š1, λ) ⇒∗ (M ′r, σ′
1, Š1, Ŝ1)

and

T2 : (M ′c, σ2, Š2, λ) ⇒∗ (M ′s, σ′
2, Š2, Ŝ2),

where ‘⇒∗’ is the transitive closure of ‘⇒’ andM ′r andM ′s denote the remaining

sequences of commands of M ′c when the two computations have led to exactly i

low-observable events. Since WL is a deterministic language, (Ŝ1)L[i] �= (Ŝ2)L[i]

and σ1 =L σ2 imply that there is a high variable h in the input block such

that σ1(h) �= σ2(h). Furthermore, there exists at least one outL l command that

leads to the inequality of events (Ŝ1)L[i] and (Ŝ2)L[i]. This implies that there is

a paths f ′ = Start ↪→ h � outL l in F ′ where outL l is the command whose

execution leads to one of (or both) the events (Ŝ1)L[i] and (Ŝ2)L[i]. Assume

that (Ŝ1)L[i] is generated by outL l. There are two possibilities for (Ŝ2)L[i]. If

(Ŝ2)L[i] is generated by the same outL l command, the flow indicated by f ′ is
an explicit flow occurred at run-time. Otherwise, it is generated by a different

outL command indicating that an implicit flow has occurred at run-time. Both

cases contradict Proposition 1. Thus, such computations do not exist and the

assumption Ŝ1 �PINI Ŝ2 does not hold. This completes the proof. �

Now, we prove that RWPSNI is sound. Since RWPSNI first applies RWPINI

to the given program, the resulting rewritten code, before applying the instruc-

tions of the block beginning at Line 8 of the algorithm, satisfies PINI. In addition

to having PINI-equivalent output traces, PSNI also requires every pair of runs

from low-equivalent initial states to have the same progress status, termination

or silent divergence. The proof is based on the properties of the PDG of the

output program as well as the semantics of WL programs.

Theorem 2 Let M be a program with statically decidable loop termination be-

haviors and G its PDG. Then, M ′ = RWPSNI(M,G) satisfies progress-sensitive

noninterference.

983Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

Proof. Assume that the initial states σ1 and σ2 of two initial configurations m1

and m2 are low-equivalent, m1 ⇓ Ŝ1, m2 ⇓ Ŝ2, and Ŝ1 �=L Ŝ2. Then,

∃i > 0.
(
(Ŝ1)L[..i− 1] = (Ŝ2)L[..i− 1] ∧ (Ŝ1)L[i] �= (Ŝ2)L[i]

)
, (10)

where (Ŝ1)L and (Ŝ2)L denote the subsequences obtained from Ŝ1 and Ŝ2 by

restricting them to low events. RWPSNI invokes RWPINI and does not create

any new path of the form Start ↪→ h � outL l for some high input h and low

variable l. Therefore, from Theorem 1, it is concluded that paths in G′ from high

variables to outL commands cannot result in (Ŝ1)L[i] �= (Ŝ2)L[i]. Thus,

�= (Ŝ1)L[i] ⊕ (Ŝ2)L[i] =�, (11)

where ⊕ denotes exclusive or. Without loss of generality, we assume that (Ŝ1)L[i]

=�. Now, consider the computations T1 and T2 of M ′ producing i low events

such that their first i − 1 low events are the same and their ith low events are

(Ŝ1)L[i] =� and (Ŝ2)L[i] �=�, respectively. Since WL is deterministic and σ1 =L
σ2, there is at least one high input h such that σ1(h) �= σ2(h). Furthermore,

there are paths f ′ ∈ D′ of the form Start ↪→ h ↪→ E+ such that E+ contains a

node representing a loop that produces � in T1. This means that the termination

behavior of the loop depends on h. Thus, it is either an always diverging loop

controlled by some node on paths f ′ ∈ D′ or a loop that diverges for a subset of

input variables. None of these cases is possible as RWPSNI replaces such loops

with terminating “if-then” statements. Thus, T1 does not exist and M ′ satisfies
PSNI. �

6.2 Transparency

The concept of transparency defined by (3) puts no restriction on the programs

not complying with the policy. We believe that there should be a relation, not

necessarily an equivalence relation, between a program and its rewritten version

even though the input program does not satisfy the policy. Such a relation cap-

tures the idea that changes to a program should be minimal in the sense that the

set of possible executions of the transformed program are as close as possible to

that of the input program. There is a similar conception of transparency for exe-

cution monitors, termed corrective enforcement, which stipulates that valid parts

of any execution should be preserved in the corresponding transformed execu-

tion [Bielova and Massacci 2011, Khoury and Tawbi 2012a]. However, execution

monitors can only enforce properties, a specific kind of policy, by monitoring and

transforming individual executions. Thus, the concept of corrective enforcement

should be revised and adapted for program rewriting.

Our formulation of transparency involves a preorder � on programs. This

relation is defined in terms of the good features of programs. Indeed, we first

984 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

decide on an appropriate abstraction function A : 2Ψ → I, which captures some

particular features of programs, and a preorder� on the abstract values returned

by A. The preorder � is then defined as

∀ψ, ψ′ ⊆ Ψ. ψ � ψ′ ⇔ A(ψ) � A(ψ′). (12)

A program rewriter is said to be transparent with respect to � if

∀ψ ⊆ Ψ. ψ � RW (ψ). (13)

A transparent rewriter should indeed produce a secure program that is higher

than, or equal to, the input program on �. This is an extension of the notion of

corrective
 enforcement, in the literature of execution monitoring [Khoury and

Tawbi 2012b], to program rewriting.

To analyze the transparency of our rewriters, we first remind that a path

from a high variable to a low output in the PDG may not denote an actual

dependency. This is due to the very nature of static analysis methods and is

not limited to PDGs. For example, assume that the command outL l1 is con-

ditioned on a very hard decision problem involving some high inputs. We may

then act in a conservative manner and add the corresponding path to the PDG,

though the event raised by outL l1 may not depend on the high inputs. Fortu-

nately, PDG construction tools are supported by advanced code optimization

techniques [Hammer and Snelting 2009] eliminating many of such imprecisions.

Notwithstanding, in our analysis of transparency, we merely focus on the un-

derpinning logic of the proposed algorithms. Thus, we evaluate transparency of

our rewriters under the assumption that input WL programs are those for which

PDG construction tools yield perfect PDGs. Such a PDG perfectly reflects de-

pendencies in the program and contains the path X � Y if and only if there is

a flow from X to Y .

To define transparency, we first give an appropriate preorder relation on

programs according to the given security policy. Transparency then stipulates

that the rewritten program must be higher than or equal to the input program

on the preorder relation. As stated above, the preorder relation on programs is

defined in terms of the abstract values returned by an abstraction function A.

For a given program represented by its set of traces ψ, A(ψ) is intended to reflect

the desired characteristics of ψ.

Definition 8 The abstraction function for a formulation NI of noninterference

is defined to be the function ANI : 2
Ψ → 2Ψ which returns the set of those traces

of the given program that, in terms of NI, are compatible with any trace of that

program. That is,

ANI(ψ) =
{
S ∈ ψ | ∀S′ ∈ ψ. Š =L Š

′ ⇒ Ŝ ∼NI Ŝ′
}
. (14)

985Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

The preorder relation �NI on programs for a formulation NI of noninterference

is then defined by

ψ �NI ψ′ ⇔ ANI(ψ) ⊆ ANI(ψ
′). (15)

Definition 9 A rewriter RW is said to correctively enforce the formulation NI

of noninterference for the set of programs Δ ⊆ 2Ψ if for any program ψ ∈ Δ,

RW (ψ) satisfies NI and ψ �NI RW (ψ).

It is worth noting that our rewriters for PINI and PSNI take a program

together with its PDG, while a rewriter is defined to be a total function taking

a sole program. To resolve this difference, one may think of our rewrites as the

ones that first derive the given PDG from the given program and then transform

the program by using that PDG. Also note that we use programs and their trace

sets interchangeably. Thus, in the following, RWNI(M,G) has the same meaning

as RWNI(ψ) where ψ is the trace set of M and NI is PINI or PSNI. RWNI(ψ)

can be interpreted as the rewritten program or its traces as well.

Definition 10 The PDG of a program is said to be perfect if its any path X � Y

implies the existence of a flow from X to Y and vice versa.

Theorem 3 RWPINI correctively enforces PINI for WL programs with perfect

PDGs.

Proof. Let ψ be the trace set of program M and ψ′ be that of RWPINI(M,G)

where G is the perfect PDG of M . Notice that as RWPINI is sound, we have

APINI(ψ
′) = ψ′. Now, assume thatM satisfies PINI. It follows thatAPINI(ψ) =

ψ and, as G is the perfect PDG ofM , there is no path of the form Start ↪→ h�
outL l in G. Therefore, RWPINI(M,G) = M and ψ′ = ψ. Hence, APINI(ψ) ⊆
APINI(ψ

′) and, in turn, ψ �PINI RWPINI(ψ). Another case is when M does

not satisfy PINI. Assume that S ∈ APINI(ψ). This means that there is no trace

in ψ that is incompatible, in terms of PINI, with S. Thus, there is no output

event in S produced by an outL command for which there is a path of the form

Start ↪→ h � outL l in G. Hence, the events in S remain intact in ψ′ since
RWPINI only changes those output commands to which there are paths from

high inputs. �

According to Theorem 3, RWPINI acts transparently if the PDG of the input

program reflects actual dependencies. To illustrate the point, we make use of

the following programs drawn from [Bielova and Rezk 2016, Hedin et al. 2015].

Consider the following program.

if (h == l) then l = 0 else l = 0 endif ; outL l

It satisfies PINI since it always outputs 0. However, given an imperfect PDG,

RWPINI changes the output to Nop . Similarly, for the program

986 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

l = 1; if (h != h) then l = h endif ; outL l,

which contains dead code, an imperfect PDG indicates a flow. Thus, RWPINI

converts the output command to Nop. Furthermore, inability to detect nontermi-

nation in situations such as the following program makes the rewriter to behave

conservatively by substituting Nop for outL l.

l = 1; if (h == 0) then while(true) do l = h done endif ; outL l

Notice that a perfect PDG of this program does not indicate a flow from l = h

to outL l.

By applying the achievements of ongoing research on PDG-based information

flow analysis, one may improve the transparency of RWPINI . The same holds

for hybrid monitors where the transparency of the monitor can be improved if

we can better identify high contexts [Besson et al. 2016].

Another point is the way RWPINI treats some secure programs compared

to SME. Consider the following program, from [Bielova and Rezk 2016], that

satisfies PINI.

if (l == 1) then

while (h == 0) do Nop done

else

while (h == 0) do Nop done

endif ;

outL l

SMEmodifies the executions of this program to eliminate termination channels—

by the default high value h = 1, SME eliminates the low output 1. However,

RWPINI does not change the executions of this program since the PDG does

not indicate any flow from h to outL l.

Now, we prove that RWPSNI correctively enforces PSNI. In the following

theorem, we consider programs whose loops can be successfully analyzed by

LoopAnalyzer. That is, the loop analyzer in RWPSNI returns a Boolean expres-

sion for any loop in those programs.

Theorem 4 RWPSNI correctively enforces PSNI for WL programs with perfect

PDGs whose loops, if any, can be successfully analyzed by LoopAnalyzer.

Proof. The proof is similar to that of Theorem 3 except that paths of the form

Start ↪→ h ↪→ E+ terminating at loop guards also appear in the argument. �

Notice that more accurate abstraction functions can be devised to constrain

the manner in which the rewriter is allowed to change a bad trace. For example,

the abstraction function may also return the traces obtained by removing low

987Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

outputs from bad traces. An appropriate preorder relation may then prohibit

the modification of events other than low outputs. In fact, while low outputs in

a bad trace can be removed or replaced with ⊥, the other events should remain

intact.

7 Conclusion

We propose program rewriters that enforce the information flow policies ap-

propriate for programs with observable intermediate values. To do so, we de-

vise rewriting algorithms based on program dependence graphs for progress-

insensitive and progress-sensitive noninterference. We prove that our rewriters

are sound and transparent for the class of programs with perfect PDGs whose

loops can be analyzed for termination. To do so, we introduce and formalize

the paradigm of corrective security policy enforcement as an interpretation of

soundness and transparency. According to this paradigm, valid aspects of pro-

grams should be preserved. However, there is still much to be done. Extending

the ideas presented in this paper to the languages supporting classes, objects,

method invocation, multithreading, and other features of modern languages de-

serves future research. Characterizing the policies enforceable by rewriting in a

corrective enforcement paradigm is another challenging problem.

References

[Allen 1970] Allen, F. E.: “Control flow analysis”; ACM Sigplan Notices; volume 5;
1–19; ACM, 1970.

[Askarov et al. 2008] Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: “Termination-
insensitive noninterference leaks more than just a bit”; Computer Security - ES-
ORICS 2008; volume 5283 of Lecture Notes in Computer Science; 333–348; Springer-
Verlag Berlin, Heidelberg, 2008.

[Austin and Flanagan 2009] Austin, T. H., Flanagan, C.: “Efficient purely-dynamic in-
formation flow analysis”; Proceedings of the ACM SIGPLAN Fourth Workshop on
Programming Languages and Analysis for Security; PLAS ’09; 113–124; ACM, 2009.

[Austin and Flanagan 2010] Austin, T. H., Flanagan, C.: “Permissive dynamic infor-
mation flow analysis”; Proceedings of the 5th ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security; number 3 in PLAS ’10; 1–12; ACM,
2010.

[Barthe et al. 2012] Barthe, G., Crespo, J., Devriese, D., Piessens, F., Rivas, E.: “Se-
cure multi-execution through static program transformation”; Formal Techniques
for Distributed Systems;186–202; Springer, 2012.

[Bello and Bonelli 2011] Bello, L., Bonelli, E.: “On-the-fly inlining of dynamic depen-
dency monitors for secure information flow”; Formal Aspects in Security and Trust;
volume 7140 of Lecture Notes in Computer Science; 55–69; Springer-Verlag Berlin,
Heidelberg, 2011.

[Beringer 2012] Beringer, L.: “End-to-end multilevel hybrid information flow control”;
Programming Languages and Systems; 50–65; Springer, 2012.

[Besson et al. 2016] Besson, F., Bielova, N., Jensen, T.; “Hybrid Monitoring of At-
tacker Knowledge.”; 29th IEEE Computer Security Foundations Symposium, 2016.

988 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

[Bielova and Massacci 2011] Bielova, N., Massacci, F.: “Predictability of enforcement”;
Proceedings of the Third International Conference on Engineering Secure Software
and Systems; ESSoS’11; 73–86; Springer-Verlag, 2011.

[Bielova and Rezk 2016] Bielova, N., Rezk, T.: “A Taxonomy of Information Flow
Monitors”; Principles of Security and Trust ;46–67;Springer-Verlag, 2016.

[Bohannon et al. 2009] Bohannon, A., Pierce, B. C., Sjöberg, V., Weirich, S.,
Zdancewic, S.: “Reactive noninterference”; Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security; CCS ’09; 79–90; ACM, 2009.

[Buirs et al. 2015] Buiras, P., Vytiniotis, D., Russo, A.; “HLIO: Mixing static and dy-
namic typing for information-flow control in Haskell.”; Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming. ACM; 2015.

[Chudnov and Naumann 2010] Chudnov, A., Naumann, D. A.: “Information flow
monitor inlining”; Proceedings of the 2010 23rd IEEE Computer Security Foun-
dations Symposium; CSF ’10; 200–214; IEEE, 2010.

[Chudnov and Naumann 2015] Chudnov, A. and Naumann, D.; “Inlined Information
Flow Monitoring for JavaScript”; Proceedings of the 22Nd ACM SIGSAC Confer-
ence on Computer and Communications Security,CCS ’15; ACM; 2015.

[Clarkson and Schneider 2010] Clarkson, M. R., Schneider, F. B.: “Hyperproperties”;
Journal of Computer Security - 7th International Workshop on Issues in the Theory
of Security (WITS’07); 18 (2010), 6, 1157–1210.

[Cook et al. 2008] Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.:
“Proving conditional termination”; Computer Aided Verification; volume 5123 of
Lecture Notes in Computer Science; 328–340; Springer-Verlag Berlin, Heidelberg,
2008.

[Cook et al. 2006] Cook, B., Podelski, A., Rybalchenko, A.: “Termination proofs for
systems code”; SIGPLAN Not.; 41 (2006), 6, 415–426.

[Cytron et al. 1991] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., Zadeck,
F. K.: “Efficiently computing static single assignment form and the control de-
pendence graph”; ACM Transactions on Programming Languages and Systems
(TOPLAS); 13 (1991), 4, 451–490.

[Dennis Volpano 1996] Dennis Volpano, G. S., Cynthia Irvine: “A sound type system
for secure flow analysis”; Journal of Computer Security; 4 (1996), 2, 167–187.

[Devriese and Piessens 2010] Devriese, D., Piessens, F.: “Noninterference through se-
cure multi-execution”; Proceedings of the 2010 IEEE Symposium on Security and
Privacy; SP ’10; 109–124; IEEE, 2010.

[Erlingsson and Schneider 1999] Erlingsson, U., Schneider, F. B.: “Sasi enforcement
of security policies: A retrospective”; Proceedings of the 1999 workshop on New
security paradigms; 87–95; ACM, 1999.

[Ferrante et al. 1987] Ferrante, J., Ottenstein, K. J., Warren, J. D.: “The program de-
pendence graph and its use in optimization”; ACM Transactions on Programing
Languages and Systems; 9 (1987), 3, 319–349.

[Goguen and Meseguer 1982] Goguen, J. A., Meseguer, J.: “Security policies and secu-
rity models”; Proceedings of IEEE Symposium on Security and Privacy; volume 12;
11–18; IEEE, 1982.

[Hammer 2009] Hammer, C.: “Information Flow Control for Java - A Comprehensive
Approach based on Path Conditions in Dependence Graphs”; PhD Thesis; Univer-
sitat Karlsruhe (TH), Fak. f. Informatik; 2009.

[Hammer and Snelting 2009] Hammer, C., Snelting, G.: “Flow-sensitive, context-
sensitive, and object-sensitive information flow control based on program depen-
dence graphs”; International Journal of Information Security; 8 (2009), 6, 399–422.

[Hamlen et al. 2006] Hamlen, K., Morrisett, G., Schneider, F. B.: “Computability
classess for enforcement mechanisms”; ACM Transactions on Programming Lan-
guages and Systems; 28 (2006), 1, 175–205.

[Hedin et al. 2015] Hedin, D., Bello, L., Sabelfeld, A,;“Value-sensitive hybrid informa-
tion flow control for a JavaScript-like language”; Computer Security Foundations

989Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

Symposium (CSF), 2015 IEEE 28th. 351–365; IEEE, 2015.
[Hunt and Sands 2006] Hunt, S. and Sands, D.; “On flow-sensitive security types.”;

ACM SIGPLAN Notices. Vol. 41. No. 1; ACM, 2006.
[Johnson et al. 2015] Johnson, A., Waye, L., Moore, S., Chong, S.: “Exploring and

Enforcing Security Guarantees via Program Dependence Graphs”; Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation; 291–302; ACM, 2015.

[Kashyap et al. 2011] Kashyap, V., Wiedermann, B., Hardekopf, B.: “Timing-and
termination-sensitive secure information flow: Exploring a new approach”; Security
and Privacy (SP), 2011 IEEE Symposium on; 413–428; IEEE, 2011.

[Khoury and Tawbi 2012a] Khoury, R., Tawbi, N.: “Corrective enforcement: A new
paradigm of security policy enforcement by monitors”; ACM Transactions on Infor-
mation and System Security; 15 (2012a), 2, 1–27.

[Khoury and Tawbi 2012b] Khoury, R., Tawbi, N.: “Which security policies are en-
forceable by runtime monitors? a survey”; Computer Science Review; 6 (2012b), 1,
27–45.

[Krinke 2003] Krinke, J.: Advanced slicing of sequentioal and concurrent programs;
Ph.D. thesis; University of Passau (2003).

[Krinke 2004] Krinke, J.: “Advanced slicing of sequential and concurrent programs”;
Proceedings of the 20th IEEE International Conference on Software Maintenance;
ICSM ’04; 464–468; IEEE, 2004.

[Le Guernic et al. 2007] Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D. A.:
“Automata-based confidentiality monitoring”; Proceedings of the 11th Asian com-
puting science conference on Advances in computer science: secure software and re-
lated issues; volume 4435 of ASIAN’06; 75–89; Springer-Verlag Berlin, Heidelberg,
2007.

[Magazinius et al. 2012] Magazinius, J., Russo, A., Sabelfeld, A.: “On-the-fly inlining
of dynamic security monitors”; Computers & Security; 31 (2012), 7, 827 – 843.

[Mantel and Sudbrock 2013] Mantel, H., Sudbrock, H.: “Types vs. pdgs in informa-
tion flow analysis”; Logic-Based Program Synthesis and Transformation; 106–121;
Springer, 2013.

[McCullough 1987] McCullough, D.: “Specifications for multi-level security and a
hook-up”; IEEE Symposium on Security and Privacy; 161–166; IEEE, 1987.

[Moore et al. 2012] Moore, S., Askarov, A., Chong, S.: “Precise enforcement of
progress-sensitive security”; Proceedings of the 2012 ACM Conference on Computer
and Communications Security; CCS ’12; 881–893; ACM, 2012.

[O’Neill et al. 2006] O’Neill, K., Clarkson, M., Chong, S.: “Information-flow security
for interactive programs”; Computer Security Foundations Workshop, 2006. 19th
IEEE; CSFW ’06; 190–201; IEEE, 2006.

[Russo and Sabelfeld 2010] Russo, A., Sabelfeld, A.: “Dynamic vs. static flow-sensitive
security analysis”; Proceedings of the 2010 23rd IEEE Computer Security Founda-
tions Symposium; CSF ’10; 186–199; IEEE, 2010.

[Sabelfeld and Myers 2006] Sabelfeld, A., Myers, A. C.: “Language-based information-
flow security”; IEEE Journal of Selected Areas in Communications; 21 (2006), 1,
5–19.

[Santos and Rezk 2014] Santos, J. F., Rezk, T.: “An information flow monitor-inlining
compiler for securing a core of javascript”; ICT Systems Security and Privacy Pro-
tection; 278–292; Springer, 2014.

[Schneider et al. 2001] Schneider, F. B., Morrisett, J. G., Harper, R.: “A language-
based approach to security”; Informatics - 10 Years Back. 10 Years Ahead; 86–101;
Springer-Verlag Berlin, Heidelberg, 2001.

[Shroff et al. 2007] Shroff, P., Smith, S., Thober, M.: “Dynamic dependency monitor-
ing to secure information flow”; Proceedings of the 20th IEEE Computer Security
Foundations Symposium; CSF ’07; 203–217; IEEE, 2007.

990 Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

[Smith and Volpano 1998] Smith, G., Volpano, D.: “Secure information flow in a multi-
threaded imperative language”; Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages; POPL ’98; 355–364; ACM,
1998.

[Snelting et al. 2006] Snelting, G., Robschink, T., Krinke, J.: “Efficient path conditions
in dependence graphs for software safety analysis”; ACM Transactions on Software
Engineering and Methodoly; 15 (2006), 4, 410–457.

[Spoto et al. 2010] Spoto, F., Mesnard, F., Payet, E.: “A termination analyzer for java
bytecode based on path-length”; ACM Transactions on Programming Languages
and Systems; 32 (2010), 8, 1–70.

[Sutter et al. 2005] Sutter, D., De Bus, B., De Bosschere, K.: “Link-time binary rewrit-
ing techniques for program compaction”; ACM Transactions on Programming Lan-
guages and Systems; 27 (2005), 5, 882–945.

[Taghdiri et al. 2011] Taghdiri, M., Snelting, G., Sinz, C.: “Information flow analy-
sis via path condition refinement”;Formal Aspects of Security and Trust; 65–79;
Springer, 2011.

[Vachharajani et al. 2004] Vachharajani, N., Bridges, M. J., Chang, J., Rangan, R.,
Ottoni, G., Blome, J. A., Reis, G. A., Vachharajani, M., August, D. I.: “Rifle: An
architectural framework for user-centric information-flow security”; Microarchitec-
ture, 2004. MICRO-37 2004. 37th International Symposium on; 243–254; IEEE,
2004.

[Van Delft et al. 2015] van Delft, B., Hunt, S., Sands, D.; “Very Static Enforcement of
Dynamic Policies.”; Principles of Security and Trust. 32-52; Springer Berlin Heidel-
berg; 2015.

[Venkatakrishnan et al. 2006] Venkatakrishnan, V. N., Xu, W., DuVarney, D. C.,
Sekar, R.: “Provably correct runtime enforcement of non-interference properties”;
Proceedings of the 8th International Conference on Information and Communica-
tions Security; ICICS’06; 332–351; Springer-Verlag Berlin, Heidelberg, 2006.

[Wahbe et al. 1994] Wahbe, R., Lucco, S., Anderson, T. E., Graham, S. L.: “Efficient
software-based fault isolation”; ACM SIGOPS Operating Systems Review; vol-
ume 27; 203–216; ACM, 1994.

[Wasserrab et al. 2009] Wasserrab, D., Lohner, D., Snelting, G.: “On pdg-based non-
interference and its modular proof”; Proceedings of the ACM SIGPLAN Fourth
Workshop on Programming Languages and Analysis for Security; PLAS ’09; 31–44;
ACM, 2009.

[WLR 2016] Formal Security Lab, Tehran Polytechnic: While Language Rewriter.
(2016) http://ceit.aut.ac.ir/formalsecurity/rewriter/tool/WLRewriter.
html.

[Zanarini et al. 2013] Zanarini, D., Jaskelioff, M., Russo, A.: “Precise enforcement of
confidentiality for reactive systems”;Computer Security Foundations Symposium
(CSF), IEEE 26th; 18–32; IEEE, 2013.

[Zdancewic and Myers 2003] Zdancewic, S., Myers, A. C.: “Observational determinism
for concurrent program security”; Proceedings of IEEE Computer Security Founda-
tions Workshop; 29–43; IEEE, 2003.

[Zhang et al. 2011] Zhang, D., Askarov, A., Myers, A. C.: “Predictive mitigation of
timing channels in interactive systems”; Proceedings of the 18th ACM Conference
on Computer and Communications Security; CCS ’11; 563–574; ACM, 2011.

991Lamei A., Fallah M.S.: Rewriting-Based Enforcement ...

