
A Quick Method for Querying Top-k Rules from Class
Association Rule Set

Loan T.T. Nguyen
(Faculty of Information Technology, Nguyen Tat Thanh University

Ho Chi Minh City, Vietnam
nttloan@ntt.edu.vn; nthithuyloan@gmail.com)

Ngoc-Thanh Nguyen*

(Division of Knowledge and System Engineering for ICT and Faculty of Information
Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Department of Information Systems, Faculty of Computer Science and Management, Wroclaw
University of Technology, Wroclaw, Poland

nguyenngocthanh@tdt.edu.vn; Ngoc-Thanh.Nguyen@pwr.edu.pl)

Bogdan Trawiński
(Department of Information Systems, Faculty of Computer Science and Management

Wroclaw University of Technology, Wroclaw, Poland
Bogdan.Trawinski@pwr.wroc.pl)

Abstract: Finding class association rules (CARs) is one of the most important research topics
in data mining and knowledge discovery, with numerous applications in many fields. However,
existing techniques usually generate an extremely large number of results, which makes
analysis difficult. In many applications, experts are interested in only the most relevant results.
Therefore, we propose a method for querying top-k CARs based on their supports. From the set
of mined CARs that satisfy the minimum support and the minimum confidence thresholds, we
use a QuickSort-based method to query top-k rules. The whole rule set is partitioned into two
groups. If the number of rules in the first group is k, then the first group is the set of result rules.
If the number of rules in the first group is greater than k, the second group is partitioned to find
the remaining top-k rules. Experimental results show that the proposed method is more efficient
than existing techniques in terms of mining time.

Keywords: Data mining, class association rules, top-k class association rules.
Categories: I.2, M.1

1 Introduction

In 2012, Fournier-Viger et al. proposed the TopKRules algorithm for mining top-k
association rules [Fournier-Viger, 12a]. They used two thresholds: minimum
confidence (minConf) and k. Rules whose confidences do not satisfy minConf are
removed. The authors also used some techniques to prune the search space to reduce
runtime. However, this algorithm cannot mine enough k association rules when
minConf is large. Fournier-Viger and Tseng proposed an algorithm for mining top-k

* Corresponding author

Journal of Universal Computer Science, vol. 22, no. 6 (2016), 822-835
submitted: 30/11/15, accepted: 28/6/16, appeared: 1/6/16 © J.UCS

non-redundant association rules [Fournier-Viger, 12b]. Like TopKRules, the proposed
algorithm cannot mine enough top-k non-redundant association rules when minConf is
large. Some non-redundant rules are ignored by the pruning scheme. A method for
finding filtered-top-k association rules has been proposed [Geoffrey, 11].

Deng and Fang proposed the NTK algorithm for mining top-rank-k frequent
itemsets [Deng, 07]. NTK uses a divide-and-conquer scheme and an early pruning
technique. Quyen et al. proposed an improved algorithm, named iNTK [Le, 15].
iNTK uses the subsume concept to quickly determine itemsets with the same rank.

The above algorithms focus on mining top-rank-k frequent itemsets or top-k (non-
redundant) association rules. They cannot be used for mining top-k class association
rules (CARs). Methods for mining top-rank-k frequent itemsets cannot be used for
mining association rules and TopKRules cannot be used for mining top-k CARs
because the right-hand side of an association rule is any frequent itemset whereas the
right-hand side of a CAR only contains class labels. Therefore, an effective solution
for mining top-k CARs is necessary.

A naïve approach should sort all found rules and select the top-k rules with the
highest supports. However, this is inefficient, especially when the number of rules is
very large. Recently, an InsertionSort-based algorithm for finding top-k CARs has
been proposed [Nguyen, 16]. It maintains a list of sorted k rules and continuously
replaces rules at the end of the list with rules with higher supports from the remaining
rule set. This algorithm is more efficient than that based on sorting when k is small.
When k is large, the insertion-based method is not as efficient as the naïve technique
because it must sort many rules in the first step.

In this paper, we propose an algorithm for mining top-k CARs from the mined
rule set. Our algorithm uses a QuickSort-based method for effectively querying top-k
CARs. The whole rule set is first partitioned into two groups. The first group contains
rules whose supports are greater than or equal to that of a chosen rule x and the
second group contains the rest of the rule set. If the number of rules (kl) in the first
group is smaller than k, all of the rules in this group belong to the result set.
Therefore, we only need to find k – kl rules from the second group, which is done in
the same way as processing the whole rule set. Otherwise, no rules in the second
group belong to the result set, so we only need to find the results from the first group.

The rest of this paper is organized as follows. Section 2 presents works related to
mining CARs and top-k frequent itemsets/association rules. The main contributions
are described in Section 3. Section 4 presents the experimental results. Section 5 gives
the conclusions and suggestions for future work.

2 Related Works

2.1 Mining Class Association Rules

There are many methods for rules-based classification. Breiman et al. [Breiman, 84]
proposed a binary tree for mining rules. The CART (classification and regression tree)
algorithm was also proposed. CART chooses the attribute to split data using Gini
index measure. ID3 [Quinlan, 86] and C4.5 [Quinlan, 92][Do, 2015], two decision-
tree-based approaches, have been proposed. ID3 and C4.5 use the information gain
and the ratio gain to choose the attribute, respectively. ILA and ILA-2 [Tolun, 98a]

823Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

[Tolun, 98b], rules-based methods for prediction, have been proposed. Unlike CART,
ID3, and C4.5, ILA and ILA-2 do not build a tree; instead, they find rules using
maximum combination. In 2011, Parker analyzed seven ways to determine the best
classifier in the set of classifiers [Parker, 11]. This method can be applied in any
classifier.

Associative classification, which integrates association rule mining and
classification [Liu, 98][Thabtah, 07a], is an efficient classification approach. A
particular subset of association rules whose right-hand side is restricted to the class
attribute is mined. This subset of rules is denoted as CARs.

The first method for mining CARs was proposed in 1998 [Liu, 98]. The CBA
algorithm was developed in this work. CBA is based on the Apriori method for
mining CARs and uses a heuristic method to build a classifier. In 2001, a frequent
pattern (FP)-tree-based method for classification based on multiple association rules
was proposed [Li, 01]. The authors modified the FP-tree for storing single items with
their class information. CARs are then mined from the FP-tree and stored in a class
rule (CR)-tree. To build a classifier, a database coverage threshold is used to select
the rules. Classification based on predictive association rules [Yin, 03]. Thabtah et al.
used multi-class, multi-label association classification to mine and predict the class of
new records [Thabtah, 04][Thabtah, 05]. Thabtah and Cowling proposed a greedy
method to build a classifier to predict the class of new records using multiple rules
[Thabtah, 07b]. CAR mining based on the equivalence class rule (ECR)-tree was
proposed by Vo and Le [Vo, 08]. The proposed algorithm (ECR-CARM) first scans
the dataset to build the first level of the ECR-tree. It then expands the ECR-tree to
build child nodes using the parent nodes. CAR-Miner and CAR-Miner-Diff, two
improved versions of ECR-CARM, have been developed [Nguyen, 13][Nguyen, 15a].
Chen et al. proposed the principal association mining (PAM) method to improve the
accuracy and size of the classifier [Chen, 14a]. Some efficient methods have been
proposed to improve accuracy, such as methods that use CBA to handle class
imbalance [Chen, 12] and uncertain datasets [HooshSadat, 12], methods that use
interestingness measures [Lan, 06][Shaharanee, 11][Nguyen, 15b][Vo, 11], a method
that uses rule prioritization [Chen, 14b], and a method that uses closed sets [Liu, 09].
However, none of these techniques is designed for finding top-k CARs.

2.2 Mining Top-rank-k Frequent Itemsets

Deng et al. proposed the NTK algorithm for mining top-rank-k frequent itemsets
[Deng, 14]. NTK represents patterns with the Node-list data structure. It uses t-
patterns to form (t+1)-patterns. By using Node-list, the algorithm does not need to
rescan the dataset when computing the support of (t+1)-patterns. The main ideas of
NTK are as follows:

1) NTK traverses the pre-order post-order code (PPC)-tree and generates a Node-
list of 1-patterns. It then finds 1-patterns that belong to top-rank-k and inserts them
into the top-rank-k table. This table contains frequent 1-patterns and their supports.
All patterns with the same support are stored in the same entry. Therefore, the number
of entries in this table is smaller than k.

2) 1-patterns in the result are used to generate candidate 2-patterns. NTK inserts
candidate 2-patterns into the top-rank-k table if their support is not smaller than the
smallest support of patterns in this table.

824 Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

Step 2 is repeated using t-patterns in the top-rank-k table to create candidate
(t+1)-patterns until no candidates can be generated.

[Le, 15] developed an improved algorithm, called iNTK, based on NTK. iNTK
uses t-patterns to create candidate (t+1)-patterns. By using an N-list, it does not need
to rescan the dataset to compute the support of candidate (t+1)-patterns. The
algorithm uses the subsume concept to reduce the number of generated candidates
compared to those for NTK, reducing the time required to generate candidates.

2.3 Mining Top-k Association Rules

Fournier-Viger et al. proposed the TopKRules algorithm for mining top-k association
rules from datasets [Fournier-Viger, 12a]. This algorithm uses the minConf value
during the mining process of top-k rules. The minSup value depends on the lowest
support of itemsets. The TopKRules algorithm is based on the principle of extending
rules and uses some methods for early eliminating rules that do not belong to top-k
rules. Fournier-Viger and Tseng extended TopKRules for mining top-k non-redundant
rules [Fournier-Viger, 12b] and top-k sequential rules [Fournier-Viger, 11].

3 Method for Mining Top-k Class Association Rules

3.1 Basic Concepts

Let D be the set of training data with n attributes A1, A2, …, An and |D| objects (cases).
Let C = {c1, c2, …, ck} be a list of class labels. A specific value of an attribute Ai and
class C are denoted by the lower-case letters a and c, respectively [Nguyen, 15a].

Definition 1: An itemset is a set of some pairs of attributes and a specific value,

denoted {(Ai1, ai1), (Ai2, ai2), …, (Aim, aim)}.
Definition 2: A CAR r is of the form {(Ai1, ai1), …, (Aim, aim)}  c, where {(Ai1,

ai1), …, (Aim, aim)} is an itemset, and c  C is a class label.
Definition 3: The actual occurrence ActOcc(r) of a rule r in D is the number of

rows of D that match r’s condition.
Definition 4: The support of a rule r, denoted Sup(r), is the number of rows that

match r’s condition and belong to r’s class.
Definition 5: The confidence of a rule r, denoted by Conf(r), is defined as:

Conf(r) =
)(

)(

rActOccr

rSupp

For example, consider rule r = {<(A, a1)>  y} for the dataset in Table 1. We
have:

ActOccr(r) = 3
Sup(r) = 2

Conf(r) =
3

2

)(

)(


rActOccr

rSupp .

Definition 6: Given a set of CARs R and a rule r  R, the rank of r in R is defined

as follows: Rank(r) = |{ri  R | Sup(r) > Sup(ri)}| + 1.

825Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

Definition 7: (Top-k rules according to support): Given a set of CARs R and a
threshold k, mining the top-k CARs is equivalent to finding the k best rules in R based
on their supports, i.e.:

Top-k(R) = {r  R | Rank(r) ≤ k}

Based on the above two definitions, the problem of mining top-k CARs is simply

to filter out k rules whose supports are highest.

OID A B C class
1 a1 b1 c1 y
2 a1 b2 c2 n
3 a2 b2 c1 n
4 a3 b3 c1 y
5 a3 b1 c2 n
6 a3 b3 c1 y
7 a1 b3 c2 y
8 a2 b2 c2 n

Table 1: Example of training dataset

Below is a QuickSort-based algorithm for mining top-k CARs from the mined
rule set. The algorithm employs the idea of the QuickSort algorithm for partitioning
the rule set into two groups. The first group contains CARs whose supports are
greater than or equal to x (x is the support of a chosen rule). The second group
contains CARs whose supports are smaller than x. Assuming that kl is the number of
rules in the first group and kr is the number of rules in the second group, the
following proposition is used to speed up the runtime.

Proposition 1: Assuming that the number of rules in the rule set is greater than or
equal to k. We have:

1. if kl > k then all rules in the second group cannot belong to top-k CARs.
2. if kl < k then all rules in the first group belong to top-k CARs.
3. if kl = k then the first group is the top-k CARs.

Proof:
1. kl > k means that the number of rules in the first group is greater than k. All

rules in the second group have supports smaller than x while all rules in the
first group have supports greater than or equal to x, and thus none of the rules
in the second group belong to the top-k CARs.

2. Because all supports of rules in the first group are greater than or equal to x
and x is greater than all supports of the rules in the second group, the
minimum support of the first group is always greater than the maximum
support of the second group. Therefore, kl rules in the first group always
belong to the top-k CARs. We need to find k – kl CARs from the second
group.

826 Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

3. According to the above two proofs, all rules in the first group have supports
greater than those of rules in the second group. The number of rules in the
first group is k. Therefore, the first group is the result.

Based on Proposition 1, we propose an algorithm for mining top-k CARs, shown
in Figure 1.

3.2 Algorithm

Figure 1: Proposed QuickSort-based algorithm

Figure 1 describes the proposed algorithm for finding top-k CARs based on the
partitioning idea of QuickSort. Line 1 compares right with k; if right = k, there is
nothing to be done because all rules from R1 to Rright belong to the top-k CARs. Lines
3 and 4 set i = left and j = right. x is the support of the middle rule (line 5). If the
support of Ri is greater than x, then we increase i; if the support of Rj is lower than x,
then we decrease j (lines 7-8). Line 9 compares the values of i and j; if i is lower than

827Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

j, then the two rules at positions i and j are swapped. After swapping, the value of i is
increased and the value of j is decreased (lines 11-12). We repeat the above steps until
i greater than j. If j is greater than k, then Quick-Sort-Top-k(R, left, j, k) is called
recursively. Otherwise, Quick-Sort-Top-k(R, i, right, k) (lines 13-14) is called.

QuickSort-Top-k(R, 1, |R|, k) sorts the rule set based on QuickSort and gets
enough k rules. On line 16, the algorithm assigns null for RS. Lines 17 and 18 are
used to copy the result to RS. When the algorithm ends, it returns the set of found
rules RS.

3.3 Example

Using CAR-Miner for the dataset in Table 1 with minSup = 20% and minConf = 80%,
the MECR-tree is obtained as shown in Figure 2.

Figure 2: MECR-tree for dataset in Table 1

From Figure 2, we have 9 rules whose confidences satisfy minConf. They are
shown in Table 2.

No. Ri Sup Conf
R1 If A = a2, then class = n 2/8 1
R2 If A = a2 and B = b2, then class = n 2/8 1
R3 If A =a3 and B = b3, then class = y 2/8 1
R4 If A = a3 and B = b3 and C = c1, then class = y 2/8 1
R5 If A = a3 and C = c1, then class = y 2/8 1
R6 If B = b2, then class = n 3/8 1
R7 If B = b2 and C = c1, then class = n 2/8 1
R8 If B = 3, then class = y 3/8 1
R9 If B = b3 and C = c1, then class = y 2/8 1

Table 2: Set of CARs from dataset in Table 1

From Table 2, we have R, which includes CARs with their supports, as follows:

828 Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

R R1 R2 R3 R4 R5 R6 R7 R8 R9
Sup 2/8 2/8 2/8 2/8 2/8 3/8 2/8 3/8 2/8

Table 3: Set of CARs and their supports

R R9 R8 R7 R6 R5 R4 R3 R2 R1
Sup 2/8 3/8 2/8 3/8 2/8 2/8 2/8 2/8 2/8

Table 4: Set of CARs and their supports after first partition

R R6 R8 R7 R9 R5 R4 R3 R2 R1
Sup 3/8 3/8 2/8 2/8 2/8 2/8 2/8 2/8 2/8

Table 5: Set of CARs and their supports after second partition

3.4 Complexity Analysis

For the best case, the proposed algorithm has complexity O(n), where n is the number
of rules. In this case, the whole rule set is partitioned into two groups, with the first
group having k rules. However, in the worst case, the rule set is partitioned into two
groups where one group has one rule and the other group has n-1 rules. In this case,
we need k loops to get the result, and thus the complexity is O(n*k). When k is large,
this case requires a lot of time to query the top-k rules. To avoid the worst case, we
sort nodes in the first level of the MECR-tree in increasing order according to their
supports and choose the support of middle node as x (refer to line 8 in Algorithm 1).

Table 6 compares the proposed algorithm with QuickSort- and InsertionSort-
based algorithms.

No Case QuickSort QuickSort-based InsertionSort-based
1 Best case O(n*logn) O(n) O(n*k)
2 Worst case O(n2) O(n*k) O(n*k)
3 Average case O(n*logn) O(n*logn) O(n*k)
4 Optimization Using order of

nodes in MECR-
tree

Table 6: Complexity of algorithms

4 Experiments

4.1 Datasets and Testing Environment

The algorithms used in the experiments were coded using C# 2012, and run on a
laptop with Windows 8.1 OS, an i5-4200U 1.60-GHz CPU, and 4 GB of RAM.

Experimental datasets were downloaded from the UCI Machine Learning
Repository (http://mlearn.ics.uci.edu). Their charesteristics are shown in Table 7.

829Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

Dataset
of
attributes

of
classes

of distinct
items

of
records

Breast 12 2 737 699
German 21 2 1077 1000
Lymph 18 4 63 148
Zoo 17 7 43 101
Vehicle 19 4 1434 846

Table 7: Characteristics of experimental datasets

Table 8 shows the number of CARs obtained from the experimental datasets with
a given minSup for each dataset. minConf was set to 50%.

Dataset minSup (%) # of rules
Breast 0.3 13,870
German 5 19,343
Lymph 8 30,911
Zoo 10 116,813
Vehicle 0.2 126,221

Table 8: Number of CARs in each dataset

4.2 Mining Time

Figures 3-7 compare the mining time of the proposed algorithm with those of an
InsertionSort-based algorithm [Mai, 13a] with various k values.

These figures show that the QuickSort-based algorithm is more efficient than the
InsertionSort-based method in all cases. For example, considering the Lymph dataset,
the runtimes for mining top-k rules using the InsertionSort-based method are 1.558,
4.948, 10.193, 17.193, 25.553 s for k = 2000, 4000, 6000, 8000, and 10,000,
respectively. For the QuickSort-based algorithm, the mining times are 0.367, 0.38,
0.394, 1.357, and 0.411 s for k = 2000, 4000, 6000 and 8000, and 10,000,
respectively. Similar results were obtained for the other datasets.

The experimental results show that the QuickSort-based algorithm is faster than
the InsertionSort-based one. The proposed algorithm is efficient when datasets have
many rules and the threshold k is very large. For example, with the German dataset
and k = 10,000, the runtime for the QuickSort-based algorithm is 0.03 s and that for
the InsertionSort-based one is 10.03 s.

830 Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

Figure 3: Mining times of InsertionSort-based and QuickSort-based methods for
Breast dataset

Figure 4: Mining times of InsertionSort-based and QuickSort-based methods for
German dataset

831Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

Figure 5: Mining times of InsertionSort-based and QuickSort-based methods for
Lymph dataset

Figure 6: Mining times of InsertionSort-based and QuickSort-based methods for Zoo
dataset

832 Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

Figure 7: Mining times of InsertionSort-based and QuickSort-based methods for
Vehicle dataset

5 Conclusion and Future Work

This paper proposed a method for mining top-k CARs using a QuickSort-based
algorithm. In our algorithm, a divide-and-conquer scheme is used to significantly
enhance performance. Some additional heuristics are used to avoid the worst case for
the algorithm. The proposed algorithm is faster than InsertionSort-based method.

In the future, we will continue to study how to prune rules that cannot belong to
top-k rules to reduce the search space. We will also extend our method to the mining
of top-k non-redundant CARs and sequential rules [Van, 14]. For very large datasets,
we are also interested in “anytime” algorithms [Mai, 13a; Mai, 13b; Mai, 15] to
further enhance performance and provide results under some resource constraints.

Acknowledgements

This research is funded by NTTU Foundation for Science and Technology
Development under grant number 2016.01.42.

References

[Breiman, 84] Breiman L., Friedman J.H., Olshen R.A., Stone C.J.: Classification and
Regression Trees, In Proc. of Wadsworth, Belmont, CA. Republished by CRC, vol.1, 14-23,
1984.

[Chen, 12] Chen W.C., Hsu C.C., Hsu J.N.: Adjusting and generalizing CBA algorithm to
handling class imbalance, Expert Systems with Applications, vol.39, no.5, 5907-5919, 2012.

833Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

[Chen, 14a] Chen F., Wang Y., Li M., Wu H., Tian J.: A Principal Association Mining An
efficient classification approach, Knowledge-Based Systems vol.67, 16-25, 2014.

[Chen, 14b] Chen C.H., Chiang R.D., Lee C.M., Chen C.Y.: Improving the performance of
association classifiers by rule prioritization, Knowledge-Based Systems, vol.36, 59-67, 2014.

[Deng, 07] Deng Z.H., Fang G.: Mining top-rank-k frequent patterns, ICMLC, 851-856, 2007.

[Deng, 14] Deng Z.H.: Fast mining top-rank-k frequent patterns by using Node-lists, Expert
Systems with Applications, vol.41, no.4, 1763-1768, 2014.

[Do, 15] Do T.N., Lenca P., Lallich S.: Classifying many-class high-dimensional fingerprint
datasets using random froest of oblique decision trees, Vietnam Journal Computer Science,
vol.2, 3-12, 2015.

[Fournier-Viger,, 11] Fournier-Viger P., Tseng V.S.: Mining Top-K Sequential Rules, 7th
International conference. In Proc. of ADMA 2011, Beijing, China, vol.7121, 180-194, 2011.

[Fournier-Viger,, 12a] Fournier-Viger P., Wu C.W., Tseng V.S.: Mining Top-K Association
Rules, In Proc. of Canadian Conference on AI 2012, Toronto, Canada, vol.7310, 61-73, 2012.

[Fournier-Viger,, 12b] Fournier-Viger P., Vincent S. Tseng: Mining Top-K Non-redundant
Association Rules, In Proc. of 20th International Symposium, ISMIS 2012, Macau, China,
vol.7661, p. 31-40, 2012.

[Geoffrey, 11] Geoffrey I. W.: Filtered-top-k association discovery, WIREs Data Mining and
Knowledge Discovery, vol. 1, 183-192, 2011.

[HooshSadat, 12] HooshSadat M., Zaïane O.R.: An associative classifier for uncertain datasets,
In Proc. of PAKDD 2012, 342-353, 2012.

[Lan, 06] Lan Y., Janssens D., Chen G., Wets G.: Improving associative classification by
incorporating novel interestingness measures, Expert Systems with Applications, vol.31, no.1,
84-192, 2006.

[Le, 15] Le Q.H.T., Le T., Vo B., Le B.: An efficient and effective algorithm for mining top-
rank-k frequent patterns, Expert Systems with Applications, vol.42, no.1, 156-164, 2015.

[Li, 01] Li W., Han J., Pei J.: CMAR: Accurate and efficient classification based on multiple
class-association rules, In Proc. of The 1st IEEE International Conference on Data Mining, San
Jose, California, USA, 369-376, 2001.

[Liu, 98] Liu B., Hsu W., Ma Y.: Integrating classification and association rule mining, In Proc.
of the 4th International Conference on Knowledge Discovery and Data Mining, New York,
USA, 80-86, 1998.

[Liu, 09] Liu H., Sun J., Zhang H.: Post-processing of associative classification rules using
closed sets, Expert Systems with Applications, vol.36, no.3, 6659-6667, 2009.

[Nguyen, 13] Nguyen L.T.T., Vo B., Hong T.P., Thanh H.C.: CAR-Miner: An efficient
algorithm for mining class-association rules,” Expert Systems with Applications, vol.40, no.6,
2305-2311, 2013.

[Nguyen, 15a] Nguyen L.T.T., Nguyen N.T.: An improved algorithm for mining class
association rules using the difference of Obidsets, Expert Systems with Applications. vol. 42,
no. 9, 4361-4369, 2015.

[Nguyen, 15b] Nguyen L.T.T., Vo B., Hong T.P.: CARIM: An Efficient Algorithm for Mining
Class-association Rules with Interestingness Measures, The International Arab Journal of
Information Technology, vol.12, no.7, 627-634, 2015.

834 Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

[Nguyen, 16] Nguyen L.T.T., Nguyen H., N.T., Vo B., Nguyen N.T.: An efficient method for
query top-k rules from class association rule set, 8th Asian Conference on Intelligent
Information and Database Systems (ACIIDS), Da Nang, Vietnam, 2016.

[Mai, 13a] Mai S.T., He X., Feng J., Böhm C.: Efficient anytime density-based clustering, In
Proc. Of SIAM International Conference on Data Mining (SDM’13), 112-120, 2013.

[Mai, 13b] Mai S.T., He X., Hubig N., Plant C., Böhm C.: Active Density-based Clustering, in
Proc. of International Conference on Data Mining (ICDM’13), 508-517, 2013.

[Mai, 15] Mai S.T., He X., Feng J., Plant C., Böhm C.: Anytime density-based clustering of
Complex Data, Knowledge and Information System, vol. 45, 319-355, 2015.

[Parker, 11] Parker C.: An Analysis of Performance Measures For Binary Classifiers, In Proc.
of ICDM 2011, 517-526, 2011.

 [Quinlan, 86] Quinlan J. R.: Introduction of decision tree, Machine Learning, vol.1, no.1, 81-
106, 1986.

[Quinlan, 92] Quinlan J. R.: C4.5: program for machine learning, Morgan Kaufmann, 1992.

[Shaharanee, 11] Shaharanee I.N.M., Hadzic F., Dillon T.S.: Interestingness measures for
association rules based on statistical validity, Knowledge-Based Systems, vol.24, 386-392,
2011.

[Thabtah, 04] Thabtah F., Cowling P., Peng Y.: MMAC: A new multi-class, multi-label
associative classification approach, In Proc. of the 4th IEEE International Conference on Data
Mining, Brighton, UK, 217-224, 2004.

[Thabtah, 05] Thabtah F., Cowling P., Peng Y.: MCAR: Multi-class classification based on
association rule, In Proc. of The 3rd ACS/IEEE International Conference on Computer Systems
and Applications, Tunis, Tunisia, 33-39, 2005.

[Thabtah, 07a] Thabtah F.A.: A review of associative classification mining, Knowledge
Engineering Review, vol.22, no.1, 37-65, 2007.

[Thabtah, 07b] Thabtah F.A., Cowling P.I.: A greedy classification algorithm based on
association rule, Applied Soft Computing, vol.7, no.3, p. 1102-1111, 2007.

[Tolun, 98a] Tolun M.R., Abu-Soud S.M.: ILA: An inductive learning algorithm for production
rule discovery, Expert Systems with Applications, vol.14, no.3, 361-370, 1998.

[Tolun, 98b] Tolun M.R., Sever H., Uludag M., Abu-Soud S.M.: ILA-2: An inductive learning
algorithm for knowledge discovery, Cybernetics and Systems, vol.30, no.7, 609-628, 1998.

[Van, 14] Van T.T., Vo B., Le B.: IMSR_PreTree: An improved algorithm for mining
sequential rules based on the prefix-tree, Vietnam Journal Computer Science, vol.1, no.2, 97-
105, 2014.

[Vo, 08] Vo B., Le B.: A novel classification algorithm based on association rule mining, In
Proc. of the 2008 Pacific Rim Knowledge Acquisition Workshop (Held with PRICAI’08),
LNAI 5465, vol.5465, 61-75, 2008.

[Vo, 11] Vo B., Le B.: Interestingness measures for association rules: Combination between
lattice and hash tables, Expert Systems with Applications, vol.38, no.9, 11630-11640, 2011.

[Yin, 03] Yin X., Han J.: CPAR: Classification based on predictive association rules, In Proc.
of SIAM International Conference on Data Mining (SDM’03), San Francisco, CA, USA, 331-
335, 2003.

835Nguyen L.T.T., Nguyen N.-T., Trawinski B.: A Quick Method ...

