
Web Data Amalgamation for Security Engineering: Digital

Forensic Investigation of Open Source Cloud

Asif Imran

(Institute of Information Technology, University of Dhaka

Ramna, Dhaka 1000, Bangladesh

asifimran@du.ac.bd)

Shadi Aljawarneh

(Software Engineering Dept

Jordan University of Science and Technology

Irbid 22110, Jordan

saaljawarneh@just.edu.jo)

Kazi Sakib

(Institute of Information Technology, University of Dhaka

Ramna, Dhaka 1000, Bangladesh

sakib@iit.du.ac.bd)

Abstract: The largely distributed nature and growing demand for open source Cloud
makes the infrastructure an ideal target for malicious attacks that grants unauthorized
access to its data storage and posses a serious threat to Cloud software security. In case
of any nefarious activity, the Cloud provenance information used by Digital Forensic
experts to identify the issue is itself prone to tampering by the malicious entities
and results in insecure software running in Cloud. This paper proposes a scheme that
ensures Software Security and Security of Cloud provenance in a series of steps, the
first of which involves binding the provenance journals with user-data from which those
were derived. Next, mechanisms for merging provenance with unstructured web data
for improved Security Intelligence (SI) is identified. Detection of attack models for
nefarious malware activities in six Software as a Service (SaaS) applications running
in real-life Cloud is taken as the research case and the performance of the proposed
algorithms for those are analyzed. The Success Rates (SR) for melding the web data
to secure provenance for the six specific SaaS applications are found to be 85.0554%,
96.7032%, 98.3871%, 93.9732%, 80.5000% and 84.9257% respectively. Hence, this paper
proposes a framework for effectively ameliorating the current scheme of Cloud based
Software Security, thereby achieving wider acceptance of open source Cloud.

Key Words: Software Security; Cloud Security Intelligence; Cloud Provenance Detec-
tion; Provenance-Web Data Amalgamation; Digital Forensic Investigation; Distributed
Applications; Security, Integrity and Protection.

Categories: D.2.11, D.4.6

1 Introduction

The demand for open source Cloud computing has increased manifold since its

inception, mainly due to rapid provisioning, low cost and high availability at-

Journal of Universal Computer Science, vol. 22, no. 4 (2016), 494-520
submitted: 1/10/15, accepted: 30/3/16, appeared: 1/4/16 © J.UCS



tributes of this technology. On the contrary, rapid adoption of Cloud computing

makes it a prime target of malicious attackers [Choo, 2014]. Nefarious attacks

can cause critical Cloud functionalities to cease and Software Security of Cloud

based applications to be compromised, resulting in unauthorized obtainment of

customer data that are stored in Cloud servers. Therefore, the service becomes

unreliable and it makes the wider acceptance of open source Cloud questionable

[Pearson, 2009].

Due to scalability and dynamic resource provisioning of Cloud computing

from a wide array of physical machines, traditional methods of system security

is no longer a feasible approach for Cloud-based Software Security. Previous re-

search has effectively quantified the security parameters needed for the Cloud

paradigm [Rahulamathavan et al., 2014]. In this regard, the use of provenance

meta-data have been advocated for detecting disputed activities in Cloud en-

vironment [Moreau et al., 2008], [Li et al., 2014]. However, the conventional ap-

proach of provenance based search and seizure technique is not applicable for

the Cloud since the provenance is itself prone to tampering. Additionally, only

provenance is not suitable enough to provide system wide security since it lacks

freshness of information [Jajodia et al., ]. In this regard, research needs to be

done to make Cloud provenance tamper-proof to ensure its integrity for Digital

Forensic Investigation (DFI). In addition, the scope of amalgamating unstruc-

tured web data with provenance to obtain analytics on latest security threats in

Cloud needs to be explored. More specifically, the following research questions

need to be addressed:

1. How can provenance meta-data be detected, annotated and se-

cured for DFI of Software running in open source Cloud?

2. How can fresh web data be merged with system provenance to

obtain improved Software Security in Cloud against threat models

of specific typed?

The arrival of Cloud computing provides new mechanisms of obtaining and

utilizing resources as discussed in [Schwiegelshohn et al., 2010]. Securing prove-

nance and amalgamating web data to it for security intelligence of Cloud will

make those technologies more widely acceptable to be used for a wide array com-

puting purposes by the public. Trenwith et al identified that the data stored and

produced in Cloud passes through a large amount of physical machines, mak-

ing it difficult to conduct forensic investigation using traditional mechanisms

[Trenwith and Venter, 2014]. The importance of provenance has been addressed

in this regard by the authors, however the provenance itself needs to be tamper-

proof to ensure its integrity. Provenance based access control mechanism for the

Cloud has been proposed by Danger et al in [Danger et al., 2015]. The authors

proposed a new provenance graph generation technique over traditional ones that

495Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



answers queries by ignoring missing fragments. Amalgamation of web data to

this technique will increase the possibility of recovering the missing fragments in

Cloud provenance and yield improved access control [Martin Gilje et al., 2014].

Aljawarneh [Aljawarneh, 2011] believes security should be an intrinsic part of

the System Development Life Cycle (SDLC), and so he presented a web engi-

neering security methodology, based on software engineering principles, to secure

distributed e-systems. Also Buyya et al addressed the importance of strong se-

curity measures in the Cloud to achieve trust and confidence of the customers

[Buyya et al., 2009]. In this case secure provenance and web data amalgamation

can be a persistent security solution for open source Cloud.

The proposed scheme ensures the security ofsoftware running in Cloud via

provenance in a series of steps, the first of which involves binding the prove-

nance journals and user data from which the provenance was derived. Active−
threading is the proposed mechanism that checks multiple provenance journals

and binds those from the vm’s to pm’s. Active− threading treats all provenance

journals as individual objects and those are then bounded with multiple user

data. Next the bounded provenance are encrypted using the private key of the

ProvenanceOwner (PO). Next, those are passed to an independent trusted body

called the Appraisor. The framework is implemented in real-life infrastructure

of commercial Cloud service provider.

The Appraisor is included to ensure that the PO does not have a single

point of control. The Appraisor process is controlled by an organization that

is trusted by both the Cloud provider and the Cloud customer. The Appraisor

encrypts the captured provenance using its private key. The public keys of the

PO and Appraisor are shared to aid in decryption of the provenance when those

are needed to be analyzed during DFI.

Provenance have been generally referred here as keystone data, signifying

the criticality of those in Cloud–based Software Security Intelligence (SI). On

the other hand, web data stores are referred to as cornerstone as specified ear-

lier since those only add value in specific situations. The importance of melding

cornerstone web data with keystone provenance is important since those pro-

vide freshness and large volume of useful information, thus ensuring Software

Security. Using provenance for Software Security for applications running in

Cloud can be increasingly effective if the strength of web cornerstone data can

be harnessed to increase the information volume. In addition to the above, this

paper also proposes a methodology and provides algorithms to acquire corner-

stone data on the web from specific sources using watchword matching scheme

[Hwang and Li, 2010], [Imran et al., 2013b].

Specific attributes like owner rating, user rating and freshness of information

have been considered as verification criteria for the algorithms to increase the

acceptance of those. Next, Effective−Descriptive set theory have been pro-

496 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



posed for identifying valid web data that treats sources as specific set of elements

[Imran et al., 2013b]. Each set of applications consists of a subset of processes

from which the cornerstone data are obtained. Analysis of results show that the

SR for profiling and amalgamating the web data to the secured provenance for

the six SaaS applications running on real life Cloud are found to be 85.0554%,

96.7032%, 98.3871%, 93.9732%, 80.5000% and 84.9257% respectively and 45%

of the instances faced an average delay of 7-8 seconds due to the application

of the proposed mechanism which is desirable. The delay between 9-9.9 seconds

is faced by 40% of the instances for encapsulating the provenance meta-files to

achieve Software Security for applications running in the Cloud.

2 Related Work

Cloud computing security has been initially investigated in a number of key

perspectives namely Critical data encryption based security, Topological anal-

ysis based security and Tracer data analysis and visualization based security.

Recent research efforts on the three mentioned perspectives are described in the

following sub-sections.

2.1 Critical data encryption in Cloud environment

Cloud security has been modelled from the perspective of securing user data

only, leaving many important areas unaddressed [Martini and Choo, 2014a]. In-

spired by earlier security encryptions of traditional data, the authors enforced

strict encryption mechanisms of user data in Cloud [Zhang et al., 2012]. The

basic approach was to consider the data from each user as individual objects

which were encrypted using private/public keypairs of the corresponding users.

Additionally, Auditors were proposed that verified the security fingerprints in

each data object. The rationale behind encrypting user data is that most critical

information are stored in those and it is frequently targeted during denial of

service attacks [Ficco and Rak, 2014].

While this rationale is sometimes true, it does not take into account the

system level data in open source Cloud environments, which is equally important

since system level provenance can contain information about malicious activities

which cannot be determined only by user data. Moreover, securing only the user

data may not provide fresh information on latest security vulnerabilities in open

source Cloud since those do not have provisions for merging with web data.

2.2 Topological analysis of provenance information

System that provides a forensic model to identify threats in vms of Cloud based

on provenance is proposed in [Trenwith and Venter, 2014]. It emphasizes the

497Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



discrepancies in traditional seizure approach of provenance and identifies the

importance of generating provenance graphs to abstract the unclear information.

Similarly, provenance cognition to detect malicious worms have been proposed

in [Imran et al., 2013a]. The intuition of the authors is that blocks of systems

provenance can be studied and pattern matched with worm behaviors that in

turn can be used to detect the presence of worms. Thus by capturing, storing and

profiling provenance information with worm monitoring signatures, the authors

tried to ensure Cloud security.

The authors in [Kumar et al., 2013] and [Dykstra and Sherman, 2012] ad-

dressed the fact that significant research needs to be conducted for provenance

usage information to reach decisions regarding Cloud computing security. A pub-

lic key framework to ensure the integrity, confidentiality and availability of prove-

nance information via encryption of provenance data before passing those over

the network is discussed in [Cao et al., 2014]. Every user was assumed to have a

public/private key pair and the public key of each receiver was known to their

respective senders [Cao et al., 2014]. Auditors were used to verify the trusted

connection among different nodes to ensure integrity.

The major contributions by the authors included comparison of the per-

formance of the proposed framework with other provenance detection schemes

[Krishnan et al., 2012]. At the same time, provenance overhead was calculated

and compared with existing solutions for performance analysis. Analysis of prove-

nance with security schemes detecting malicious activities from those were con-

sidered to a limited extent.

While signature matching the Cloud provenance is effective in detecting

some malicious entities (for example, host-based and network-based worms like

Ramen,Millen and Satyr worms as specified in [Naval et al., 2014]), for broader

security of the Cloud, the provenance itself needs to be made tamper-proof

through a generalized mechanism. Moreover, the requirement to meet system-

wide security from recent malicious activities cannot be met with the system

proposed by the authors as it only takes historical meta-data into contention

and ignores the importance of amalgamation of web data.

2.3 Analysis of tracer data in Cloud

For a distributed and virtualized computing environment like the Cloud, it would

be ideal to form a Directed Acycylic Graph (DAG) of provenance to identify

the nodes through which the malicious entities have passed and caused infection.

This mechanism can be implemented for sharing publicly viewable provenance

while protecting the integrity of critical information in those [Xue and Hong, ].

However, such a mechanism will not be suitable to thwart zero day attacks

as it mainly focuses on historical log data and does not take recent data into

contention. In particular, a state of the art Cloud security risk management

498 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



Figure 1: Encryption mechanism of the proposed framework

strategy was proposed in [Choo, 2014] that considered situational and environ-

mental awareness to identify the motivations and goals of Cloud attackers. Data

confidentiality, availability, integrity and authentication were considered to be

primary target of attackers in Cloud. A Bow − tie risk assessment mechanism

was proposed to effectively encapsulate causations and reduce the probability of

hazards from occurring. Securing the system level provenance of Cloud can be

used to complement the proposal of the author and reduce chances of attacks.

A six-step process of collecting evidential data remotely for ensuring secu-

rity of Cloud services is proposed in [Martini and Choo, 2014b]. The authors

effectively addressed the importance of evidential data to prevent cyber attacks

in the Cloud. The ever-increasing popularity of Cloud was considered to be an

integral cause of increasing cyber attacks. A number of forensic preservations

for the Cloud were identified and vMware vCloud was used as a case study to

describe the existing Cloud artifacts. The proposed model can be enhanced to

improve security of Cloud service through amalgamation of fresh web data that

will provide knowledge about latest threats.

3 Active-Threaded framework for tamper-proofing
provenance

The statements of the previous section emphasized the importance of not only

capturing provenance, but also making the provenance tamper-proof to prevent

unauthorized manipulations. The framework proposed here consists of encapsu-

499Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



Figure 2: Architecture of the proposed provenance security framework

lation of the captured provenance meta-data with the original data using the

proposed ProvCapsule algorithm. Next ProvOCal and ObProv algorithms are

used to ensure that the bounded provenance are encrypted with private keys from

Provenance Owner (PO) and Appraiser. Both PO and Appraiser processes are

under the control of two different trusted bodies to ensure accountability and

prevent the unwanted practice of single point evaluation. The PO and Appraiser

processes share the public keys with each other.

Figure 1 identifies the flow of sequence to ensure provenance security. The

user can access a Cloud application through a browser or may request some

data file in the Cloud storage. The data is stored in the Ci and provenance is

collected from those using the ProvCapsule algorithm. Next the provenance file

containing the time (t), source vm-id (svm), target vm-id (tvm) and date are

stored in the provenance file which is then encrypted by PO using its private key.

PO generates a private/public key pair and shares it with Appraiser. Appraiser

receives key K1 from PO and provides its own public key K2 to PO.

The proposed framework consists of two trusted bodies that compose of many

processes at the application level. The framework for secured provenance cogni-

tion is stated in Figure 2. Data requested in the Cloud are secured jointly by the

Provenance Owner (PO) and Appraiser processes stated in the legend of Figure

2. The critical processes identified in the legend are described in the following.

Security of the Cloud is often the most cited objection since customers are

severely concerned about the security of the data stored on the Cloud servers

[Yu et al., 2012], [Chen and Lee, 2014]. The security issues which are used to

protect the Cloud from attacks are similar to the ones implemented at large

scale data centres, with the exception that both customers and not only Cloud

administrators are responsible for the security. In addition to the two parties,

500 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



a third party may be involved for the security of the Cloud as well which in-

cludes providers of value added services which are incorporated into the Cloud.

For example, RightScale provides value added services, a few of which are auto-

matically incorporated with Amazon Elastic Cloud Compute (EC2) and helps

dynamic scale up or scale down of EC2 [Armbrust et al., 2010].

3.1 ProvCapsule algorithm

Initially the provenance are stored in separate provenance files identified as

FPROV in Algorithm 1 that can be uniquely identified with an identity number.

The files analyzed for provenance cognition are termed as FORG and those are

stored in Prov[y] array. FORG are next encapsulated with the related prove-

nance information as identified in FPROV [Chen and Lee, 2014]. Afterwards,

each amalgamated file is assigned specific unique identifying information.

Algorithm 1 Provenance Capsule at Cloud Activity Layer

1: procedure ProvCapsule(a, b)
2: BID ← key and FORG ← DataF ile[x] and
3: FPROV ← ProvF ile[y] and
4: PSB ← Loc[z]
5: while BID �= 0 do
6: Read inputs in FORG

7: Record for every object a in DataF ile[x]
8: while a = DataF ile[x] do
9: BID = a.BID and

10: FORG=FORG+1

11: DataF ile[x+ 1]=FORG

12: continue
13: end while
14: Record for every object c in ProvF ile[y]
15: If BID.FPROV =c.FPROV

16: BID.FPROV ← BID.FORG

17: BID ← BID + 1
18: end while
19: ProvF ile[y]=(Loc[PSB],PSB .Exec,BID)
20: return BID.FPROV & length.DataF ile[x]
21: end procedure

The proposed methodology aims for a unique identity number in the FPROV

file and the documents stored in the DataF ile. In case of a match, the input

Ia from the target document are read from the set of original inputs denoted as

501Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



BID. Next, provenance information such as date, time, operator and the type of

operation in a specific activity are determined and enrolled into the ProvF ile.

Afterwards the delivered information is stored in FPROV and bounded to

the FORG that contains the process data to uniquely identify the source of the

detected provenance as stated in Algorithm 1. The trigger commands of the

activity layer are responsible to move the encapsulated provenance files onto the

Cloud storage as stated in Algorithm 2 of the next section.

3.2 ProvOCal algorithm

The algorithm described in this section identifies provenance data read from

memory and it is also concerned with provenance data that are written on hard

disks. At the same time, overhead incurred during information collection is iden-

tified here. In the stated algorithm, variable lenM and lenD are used to store the

size of provenance data from memory and disks respectively. Minf stores mem-

ory location of Forg together with length of the obtained provenance to address

the requirement of measuring the space consumed by the software under obser-

vation. Msum identifies the length of the disjoint memory blocks that is used to

read provenance data to obtain the exact volume of memory consumption for

the proposed methodology.

Algorithm 2 ProvOCal Algorithm for Provenance Detection in Memory and
Disks
1: procedure ProvOCal(a, b)
2: g ← 0 and h← 0
3: MInf = Loc[PSB + 1]
4: while g < len.MInf do
5: MSum = MInf
6: S = min(g, len.MInf − 1)
7: MSum = MSum+ S
8: end while
9: while h < len.SBInfo do

10: SBSum = SBInf
11: T = min(h, len.SBInf − 1)
12: SBSum = SBSum+ T
13: end while
14: If len.BID < len.MemInf , then
15: f ← len.MemInf − len.BID

16: h = h+1;
17: return Memory and Disk block consumption for provenance capsule
18: end procedure

502 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



As stated above, disk location can be calculated in a similar way to that of

memory location since those occupy blocks of empty storage in the hard disk.

After detecting the different blocks in the disk that stores provenance data files,

those are summed up in Msum and the total time taken to write down the

provenance files on disk is calculated by Tdisk since this information will be

critical to estimate the time overhead of the proposed mechanism.

3.3 ReadProv algorithm

The ReadProv algorithm is designed to encapsulate the provenance meta-data

together with the main message body. As a result, the provenance capsule pro-

duced by ReadProv consists of the Cloud provenance meta-data. Simultaneously

users can enter the query that will generate the desired provenance information.

The query is executed and the information is placed in the message array Msd

as shown in the algorithm. Variable g is used to store the size of the message

array as this information is important to keep track of the storage consumption

for calculation of the storage overhead caused for detection of provenance.

Algorithm 3 ObProv algorithm for capturing provenance at the application
level
1: procedure ObProv(Msg,Mbd,g)
2: Mpr ← Req(T, Tvm, Svm, Date)
3: Mbd ← msg1,msg2, ..,msgn
4: Msg ←Mpr +Mbd

5: A[x]← 0
6: g ← 0
7: while g <= sizeof(Msg) do
8: A[g] = Msg
9: g = g + 1

10: ObProv ← ProvOwnerc, d
11: end while
12: If len.Msg < len.Mpr, then
13: Msg ← len.Req(T, Tvm, Svm, Date)
14: g = g+1;
15: return Provenance information file Msg
16: end procedure

The array A[x] consists of the messages that are stored as strings together

with the timestamp T . The timestamps are used to compare the authenticity of

the requests in the later algorithm. The request body Req(T, Tvm, Svm, Date)

ensures that the critical provenance information as specified by the digital foren-

sic experts. The contents are T, Tvm, Svm, Date to represent time, vm-id, storage

503Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



allocated for the vm and date of access respectively. If the counter of g that con-

sists of the size of the message that does not exceed, then the message Msg is

placed the the array A[g] in the location identified by the current value of g. At

the same time, ProvOwner is read from ProbCapsule and placed in the owner

variable of ObProv. Finally the Msg is assigned the Req body and send to the

next algorithm called Appraiser that is described in the next sub-section.

3.4 Appraiser algorithm

The Appraiser of the process is responsible for verifying the request on the basis

of the timestamps. The variable R1 and R2 are used to measure the size of the

buffer array and at the same time implement the check constraint that it is under

the limit of the initial consideration. Both variables are initialized to 0 to ensure

that it is not reduced variables are incremented and counted, hence providing a

variable that can be used as a counter function.

Algorithm 4 Appraiser: Setting permission for provenance access through time-
stamp authentication

1: procedure Appraiser(R1,R2,R3,R4,ObProv,size)
2: R1 ← 0
3: R2 ← 0
4: Peri ← 0
5: size← 1000
6: Buf [size]← ObProv
7: while R1 <= sizeof(Buf [size]) do
8: while R2 <= sizeof(Buf [size]) do
9: R1 = sizeof(Buf [size] +Msg)

10: R2 ← En.(Req(T, Tvm, Svm, Date))
11: R1 = R1 + 1
12: end while
13: end while
14: while R3 <= sizeof(Buffer[size]) do
15: while R4 <= sizeof(Buffer[size]) do
16: R3 ← timetoread.Buffer[size]
17: R4 ← timeofarrival.Buffer[size]
18: If R1 = R3 and
19: If R2! = R4

20: Peri = 1
21: else Peri=0
22: end while
23: end while
24: end procedure

504 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



The two other variables R3 and R4 that are used to store the time-stamp

when the first message is read and the arrival time of the second message respec-

tively. The times of arrival of the new request is matched with the time when

the first request if made. At the same time the vm-instance id that is making

the request is also recorded.

The two time-stamps of the requests do not meet even in the case that the

vm−id of those matches, the Peri will be set to 0 and the permission to access the

provenance information will not be allowed because the mismatch of timestamp

is caused by a different vm− id philishing the identity of the authentic vm. The

difference in the time-stamp will ensure that the vm requesting access does not

have the authorization and it is philishing identity.

The algorithms discussed above function in line to detect system level prove-

nance, at the same time, those are synchronized to ensure proper activity from

provenance cognition, to secured provenance encryption. Hence, the 4 algorithms

described here perform closely to achieve secured Cloud provenance to be used

for DFI.

As stated earlier, the proposed mechanism detects provenance for enabling

forensic experts to use it in digital forensic investigation. The next section iden-

tifies the amalgamation mechanism of secured provenance with recent web data

to enhance the proposed framework’s capability of identifying latest privacy and

integrity threats in the Cloud.

4 Experimental Evaluation

This section identifies the effect of the proposed provenance securing and anal-

ysis schemes through experimentation on real life Cloud service environments.

Performance benchmarks in terms of CPU overhead, delay, vm-counts and file

sizes have been analyzed. Global Delay (TGD), Inter-message Delay (IMT) and

Number of Retries for securing Cloud provenance have been analyzed upon com-

parison with existing benchmarks identified in [Slipetskyy, 2011]. Real life sce-

narios for the collection of provenance information namely file read, write and

copy operations have been tested during experimentation and results obtained

for those are shown here.

Securing the provenance using the proposed mechanism resulted in system

delay and decreased throughput. Additionally frequencies and cumulative fre-

quencies of the total number of retries for specific ranges of delay caused by

securing the provenance have been analyzed using standard formulae identified

in [Taylor et al., 2010], [Zhu and Gong, ].

After analysis of the provenance securing scheme, experimental results have

been represented graphically for the algorithms proposed for web cornerstone

data amalgamation with provenance to achieve increased SI. The cornerstone

505Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



Figure 3: Representation of the real life environment for implementation of the
proposed framework

data are crawled, converted to structured format and merged with provenance

information as discussed in the previous sections. Next, data were collected for

six real life applications running in pre-specified number of vm’s identified by

vm − id in OpenStack Icehouse Cloud on Ubuntu 14.04 Long Term Service

(LTS) servers. The accuracy of the amalgamation and the increased SI achieved

through merging cornerstone and keystone provenance information have been

presented. The rest of the section discusses in detail about the obtained results.

4.1 Sample Scenarios subject to Secured Provenance Detection

The experiments were conducted in real life Cloud environment running Open-

Stack Icehouse in Ubuntu 14.04 LTS servers. Total of 10 nodes were involved

each with 32 GB of Random Access Memory (RAM), 2 Terabytes (TB) of hard

drive and core i7 processors. Kernel Virtual Machine (KVM) was used for the

506 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



Table 1: Global Delay, Inter-Message Delay (IMT) and Retries of provenance
capture

VM-Count Size TGD(s) IMT(s) Retries
140 512 1817 28.9 0
100 1024 1603 91.4 0
160 1536 1533 90.9 0
162 2048 1470 102.7 7
184 2560 1389 169.3 3
190 3072 1118 281.61 7

Cloud, that enabled obtainment of 20 vCPUs from each CPU and memory was

shredded in different flavours in accordance to the requirements of the Cloud

vm-instances. Next, the scenarios for which the provenance was collected for the

system level was identified. In an Operating System each event is divided into a

series of atomic steps. Each of the steps can be derived from the atomic actions

and the kernel system calls. A specific pattern must be followed [Xu et al., 2013],

[Slipetskyy, 2011], which is called the signature of the operation. It is necessary

for provenance detection since it characterizes and provides behavioral informa-

tion of that process.

At the Data Layer, the main objective is to analyze the logs which are col-

lected at the system level [Zeng et al., 2012], [Yao et al., 2012]. Journal files of

Cloud Computing provide information that can be used to collect end-to-end

system provenance. The provenance information collected in this way has been

highly useful to achieve security and trust on behalf of the Cloud customers from

the Cloud service providers.

Based on the analysis of the Cloud computing infrastructure and existing

provenance models, provenance detection algorithms are placed forward with an

aim of detecting file operations which have possibility of enabling data leakage.

ProvCapsule and ProvOCal are such algorithms that are proposed in the pa-

per which aim to drive real time provenance from Cloud activity layer without

hampering the fault tolerance of the Cloud.

4.2 Analysis of results for the securing mechanism

The overhead incurred for encapsulating provenance in terms of global delay and

message transmission delay needs to be measured for the algorithms proposed

here. The results of the algorithms must be compared to established bench-

marks to ensure that the overhead incurred does not exceed the pre-defined

limit [Slipetskyy, 2011]. The following sections identify the performance of the

algorithms in terms of overhead incurred for Transmission Delay (TD) and

507Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



Figure 4: Graphical representation of the Total Global Delay (TGD)

Figure 5: Graphical representation of the Inter Message Transmission Delay
(IMT )

Global Delay (GD) for encapsulating provenance.

The results of overhead calculation for the proposed algorithms are tabu-

lated in Table 1 and Table 3. The overheads of the proposed ProvCapsule with

SecLaaS [Zawoad et al., 2013] has been shown in Table 2. The number of vm-

counts that transferred files of specific sizes ranging from 512-3072MB are shown

in column vm count. The Total Global Delay TGD is shown for the specific vm-

instance counts in seconds. The TGD was found to be 1603 seconds and the

minimum value is found to be 1118 seconds for 100 and 190 vm’s respectively.

In addition the Inter Message T ransmission Delays (IMTD) are also shown

in seconds together with the number of retries of provenance encapsulation.

The algorithms were implemented in the Cloud controller that hosted 936

508 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



Figure 6: Comparison of TGD and File-size together with IMT for VM counts

Table 2: Overhead of the proposed model as compared to earlier mechanisms

Model VM-C Size ORn(%) OSq(%) OAc(%)

ProvCapsule
200 512-1024 2.44 1.13 0.80
200 2048-2560 0.66 0.48 0.24

SecLaaS[Zawoad et al., 2013]
200 512-1024 4.12 2.06 NA
200 2048-2560 1.88 1.37 NA

Figure 7: Overhead in terms of varying file size

vm-instances. Hence there were a finite population of vm-instances

509Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



Figure 8: Error rate in terms of different files

Table 3: Mean Delay and Standard Deviation of Provenance Encapsulation

Size M.Cont. M.Time(s) M.Delay(s) STD.Dev
512 5.104 6.042
100 5.924 8.584
160 6.368 7.505 8.198 1.434
162 7.011 8.866
184 8.026 9.990

Xi =

∑n
i=1 Xi

n
(1)

The value can be obtained for a large number of observations as denoted by

n. The variance of the delays in different ranges of Global Delays (TBD) and

Inter-Message Time (IMT ) is given by,

Table 4: Frequencies and Cumulative Frequencies of different Delay Ranges

Delay Range Frequency Cumulative Freq.(%)
1 - 2 14 1.50
3 - 4 22 2.40
5 - 6 104 11.1
7 - 8 422 45.1
9 - 9.9 374 40.0

510 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



F

S2(n) =

∑n
i=1(Xi −X(n))2

n− 1
(2)

The closeness of the variance S2
n to mean µ can be determined as V ar(X(n))

is the ratio of total variance and number of occurrences for a given period ti.

The deviation calculated for each case were found through the formula in (3).

STD.dev =

√∑n
i=1(Xi −X(n))2

n(n− 1)
(3)

Table 3 highlights the Mean Time (M.T ime) required for provenance en-

capsulation for different sized files and different counts of vm-instances. The

M.T ime is shown to be less than 10 seconds for 936 vm-instances. As identified

in [Dastjerdi and Buyya, 2012], the benchmark of tolerable time for provenance

encapsulation is 10 seconds for a large system. Taking that value as a bench-

mark, implementation of ProvCapsule and ProvOCal algorithms show that the

time overhead is below 10 seconds for over 900 instances tested in real-life Cloud.

The overhead is found to be 8.198 seconds on average which is acceptable. The

standard deviation is found to be 1.434 which is desirable.

An important aspect of provenance management regarding data leakage is the

causality of information. Information from one process can be causally related to

information of another process, hence the atomic actions can be causally com-

bined to evaluate against pre-specified benchmarks and reduce false-positives.

Finally Table 4 shows the delay range and frequency of delay for all the

vm-instances. It is seen that 45% of the instances face an average delay of 7-8

seconds. The delay between 9-9.9 seconds is faced by 40% of the instances for

encapsulating provenance metafile. Hence the average delay is below 10 seconds

for both the algorithms.

The variance and the distribution of the vm-instance classes are shown in

Figure 8a and Figure 8b. The variance is maximum for M.Con whereas it is

minimum for M.Delay since the resources allocated in terms of memory and

storage for each instance class was different. Hence the benchmark stated in

[Dastjerdi and Buyya, 2012] is satisfied.

4.3 Analysis of Results for Merging Cornerstone and Keystone

Provenance

The performance of the proposed algorithms were tested and analyzed in real

life Cloud environments running OpenStack Icehouse Cloud. Six commercial real

life applications provided as Software as a Service (SaaS) in Cloud vm-instances

were analyzed at the servers of the Cloud service provider. The SaaS applications

511Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



Table 5: Performance evaluation of application level provenance cognition

App. VM-id Case Alg Det. SR (%) MR (%)
IM 10 1084 922 85.0554 14.9446
AM 13 1001 968 96.7032 3.2968
HRM 07 834 772 98.3871 1.6129
ODM 16 896 842 93.9732 6.0268
SM 22 1200 966 80.5000 19.5000
CRM 20 942 800 84.9257 15.0743

Figure 9: Sequence of transitions from one state to another in the proposed
architecture

included Inventory Management Software (IM), Accounting Management Soft-

ware (AM), Human Resource Management Software (HRM), Office Document

Management Software (ODM), Sales Management Software (SM), Customer Re-

lationship Management Software (CRM) as identified in Table 5.

There are a finite population of vm-instances so the number of accepted

requests is finite as well. Hence we detect mean acceptance rate for any Xi as,

Acci =

∑Count
i=1 Acci
Count

(4)

512 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



VM-id Success Rate Miss Rate
-40

-20

0

20

40

60

80

100

120

140

R
an

ge

VM-id

Figure 10: Box-plot of success rates

IM AM HRM ODM SM CRM

80

85

90

95

100

M
is

s 
R

at
e 

(%
)

Success Rate
Miss Rate

Applications (count)

Su
cc

es
s 

R
at

e 
(%

)

0

2

4

6

8

10

12

14

16

18

20

Figure 11: Comparison of malware capture and miss rates

The value can be obtained for a large number of observations n. The variance

of the delays in different ranges of Total Global Delays (TBD) and Inter −
Message T ime (IMT ) is given by,

513Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



Figure 12: Graphical analysis of SR for the proposed algorithms

Figure 13: Query formulation to scenario based keystone and cornerstone data
integration

S2(n) =

∑Count
i=1 (Acci −Rej(Count))2

Count− 1
(5)

Individual vm-instances were allocated for each of the SaaS applications spec-

ified and provided to Cloud customers. Each customer has multiple users ac-

cessing the applications with their specific user names and passwords. For each

customer, specific provenance information were collected that includes id-used to

access, time and date of access, pages visited and changes made to files in terms

of write operations. The provenance were detected from the SaaS level using

ObProv algorithm and stored in a separate Cloud server running the Appraiser

514 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



Table 6: Mean Rejects and Cumulative frequency values for ObProv

Req. Size Count Acc. Rej. M.Delay C.freq
10-100 63 13 50
101-200 74 4 70
201-300 69 20 49 64 21.43
301-400 82 18 64
401-500 69 10 59

algorithm for a period of 6 months to ensure that the data are in large volume,

increased value and velocity, thereby satisfying the three v’s of web cornerstone

data.

The captured provenance using ObProv algorithm were stored in Cloud

Provenance server that as Appraiser algorithm implemented on the machine

using Linux platform and PostgreSQL database was used as it was already con-

figured in the data center of the Cloud service provider where the experiments

were conducted. The Appraiser algorithm provides authorized access to the

provenance information based on timestamp authentication, thereby enabling

the prevention of undesired access that would otherwise obtain the provenance

files and tamper those [Zissis and Lekkas, 2012]. Hence Appraiser algorithm en-

sures tamper-proofness of provenance information. Table 5 highlights the results

of provenance access acceptance and rejections by Appraiser algorithm.

5 Discussion of Results

Collection of provenance from the application layer are obtained for six real

life applications provided as Software as a Service (SaaS) already identified in

the previous section. The applications are used in real life by different number of

users and provenance were collected from those in terms of operation executions,

file accesses times and file user’s identity. Next the system and application level

provenance keystone data were secured by the PO and passed to the independent

Appraiser process.

The Appraiser process further encrypted the provenance with its private

key, as a result the causal chain of provenance security was used instead of

onion framework as it would prevent the top level of encryption from being

exposed because the second level of encryption is conducted by a different body

than the first layer. At the same time the processes executed in the Cloud are

dynamic and those occur in real-time. Hence the causal chain mechanism will

have less overhead as found in the research because of its less layer of encryption.

The onion framework provides increased security since it implements atleast 4

layers of encryption, however the overhead incurred in terms of CPU cycles and

515Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



turnaround time is significantly higher for the onion framework as compared to

the causal chain. Hence the causal chain framework is more applicable for the

Cloud due to its low CPU overhead and adaptability to rapid response that is

desirable for the Cloud system.

Web cornerstone data amalgamation results highlight the success at which

unstructured cornerstone web data can be structured using watchword matching

and fitted with keystone provenance. Six real life applications running as SaaS

were monitored and provenance information were collected from those. Security

cornerstone data were collected from malware and anti-virus websites as stated

previously in the research.

Confidence on the cornerstone data were determined on the basis of user

rating as specified in [Groth and Moreau, 2009]. Next the unstructured data

were converted to structured format on the basis of watchword matching and

stored in database using multi-dimensional Spider Schemas, giving rise to a

fusion-cube. Section 4 identified the validity values from 1 to 4 assigned to the

data obtained from specific web sources based on freshness, applicability in Cloud

security intelligence, user ratings and owner ratings. The Success Rates (SR) for

structuring and melding the cornerstone data to security keystone provenance of

the six specific SaaS applications are found to be 85.0554%, 96.7032%, 98.3871%,

93.9732%, 80.5000% and 84.9257% respectively.

6 Conclusion and Future Work

This paper aims to identify a solution to the bottleneck of tamper-proofing prove-

nance for open source Cloud and amalgamating those with web cornerstone data

for improved SI for Software Security. The target was to provide a generalized

framework for making the provenance itself tamper-proof for achieving effective

Software Security for Cloud based applications and a case-specific mechanism of

combining web cornerstone data to provide fresh information about open source

Cloud’s integrity and reliability.

The goal of this paper is to identify a solution to the issue of provenance

detection and Software Security in a widely distributed environment such as the

Cloud. Generalized framework for provenance cognition and mapping those to

specific objects are provided in this paper to ensure Software Security. The pro-

posed algorithms based on Active − threading are capable of securing system-

level provenance for vm-instances of Cloud, an improvement over traditional

mechanisms that are concerned with provenance at the physical level only. The

second goal is to propose novel algorithms for parsing cornerstone and ensuring

the accuracy of those, thereby obtaining security of software running in cloud.

Effective algorithms to conduct keyword based structuring of the cornerstone

data has been proposed here. Secondly, algorithm for determination of the relia-

bility and integrity of the cornerstone data is proposed based on owner ratings,

516 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



user ratings and freshness of information to achieve Software Security. Finally,

results of merging cornerstone data with keystone provenance are analyzed and

performance compared for those.

The experimental environment for securing Cloud computing provenance in

this paper have been implemented in real life Cloud service and the test-bed

for the amalgamation of provenance with web data is described. Next, Spider

Schema was proposed for the amalgamation of Cloud provenance keystone with

web cornerstone data. The result of the proposed model yielded a fusion cube

that consisted of multi-dimensional schemas. The fusion cube comprised of cor-

nerstone data and keystone information for effective analysis of security threats

to the Cloud. Graphical result analysis showed that the mean delay incurred for

the proposed provenance securing schema is 8.1% which is desirable. For prove-

nance amalgamation and fusion cube formation, the Mean Success Rate (MSR)

was found to be 89.33%. At the same time the MR was 9.67% that is below the

benchmark of 10.00%, yielding suitable results. The reason for the desirable SR

is due to the web page rating mechanism on the basis of data freshness, user

ratings and owner ratings as proposed in this paper. The SR for the six real

life SaaS applications were determined to be 85.0554%, 96.7032%, 98.3871%,

93.9732%, 80.5000% and 84.9257%, yielding desirable results. Also 45% of the

instances had a delay of 7-8 seconds caused due to implementing the algorithms

that is acceptable based on specified benchmarks.

The proposed mechanism identifies a generalized framework of tamper proof-

ing as an important mechanism for securing provenance and a case-specific

framework for amalgamation of web data for better DFI in open source Cloud.

The amalgamation of the cornerstone has been case-based and tested for spe-

cific real life Cloud applications running as SaaS. Performance of the proposed

frameworks in other SaaS applications not tested here can be an area of future

research interest. In addition, amalgamation of data from sources other than the

web (i.e. newspaper) can be tested as part of future research for checking the

performance of those in Cloud forensic investigations.

Acknowledgment

This research has been supported by UGC, Bangladesh under the Dhaka Uni-

versity Teacher Grant No-Reg/Admn-3/2015/48743. The experiments have been

implemented and tested in the real-life commercial cloud infrastructure of Pa-

nacea Systems LTD. The researchers would like to convey their gratitude to

Panacea Systems LTD for providing the opportunity of implementing the frame-

work.

517Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



References

[Aljawarneh, 2011] Shadi Aljawarneh. A web engineering security methodology for
e-learning systems. Network Security, 2011(3):12–15, 2011.

[Armbrust et al., 2010] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin,
Ion Stoica, et al. A view of cloud computing. Communications of the ACM, 53(4):50–
58, 2010.

[Buyya et al., 2009] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James
Broberg, and Ivona Brandic. Cloud computing and emerging it platforms: Vision,
hype, and reality for delivering computing as the 5th utility. Future Generation
computer systems, 25(6):599–616, 2009.

[Cao et al., 2014] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou.
Privacy-preserving multi-keyword ranked search over encrypted cloud data. Parallel
and Distributed Systems, IEEE Transactions on, 25(1):222–233, 2014.

[Chen and Lee, 2014] Henry CH Chen and Patrick PC Lee. Enabling data integrity
protection in regenerating-coding-based cloud storage: Theory and implementation.
Parallel and Distributed Systems, IEEE Transactions on, 25(2):407–416, 2014.

[Choo, 2014] Kim-Kwang Raymond Choo. A cloud security risk-management strat-
egy. Cloud Computing, IEEE, 1(2):52–56, 2014.

[Danger et al., 2015] Roxana Danger, Vasa Curcin, Paolo Missier, and Jeremy Bryans.
Access control and view generation for provenance graphs. Future Generation Com-
puter Systems, 2015.

[Dastjerdi and Buyya, 2012] Amir Vahid Dastjerdi and Rajkumar Buyya. An au-
tonomous reliability-aware negotiation strategy for cloud computing environments.
In Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM Interna-
tional Symposium on, pages 284–291. IEEE, 2012.

[Dykstra and Sherman, 2012] Josiah Dykstra and Alan T Sherman. Acquiring forensic
evidence from infrastructure-as-a-service cloud computing: Exploring and evaluating
tools, trust, and techniques. Digital Investigation, Elsevier, 9:90–98, 2012.

[Ficco and Rak, 2014] Massimo Ficco and Massimiliano Rak. Stealthy denial of service
strategy in cloud computing. Cloud Computing, IEEE Transactions on, 3(1):80–94,
2014.

[Groth and Moreau, 2009] Paul Groth and Luc Moreau. Recording process documen-
tation for provenance. Parallel and Distributed Systems, IEEE Transactions on,
20(9):1246–1259, 2009.

[Hwang and Li, 2010] Kai Hwang and Deyi Li. Trusted cloud computing with secure
resources and data coloring. Internet Computing, IEEE, 14(5):14–22, 2010.

[Imran et al., 2013a] Asif Imran, Alim Ul Gias, Rayhanur Rahman, and Kazi Sakib.
Provintsec: a provenance cognition blueprint ensuring integrity and security for real
life open source cloud. International Journal of Information Privacy, Security and
Integrity, 1(4):360–380, 2013.

[Imran et al., 2013b] Asif Imran, Alim Ul Gias, Rayhanur Rahman, Amit Seal, Tajkia
Rahman, Farhan Ishraque, and Kazi Sakib. Cloud-niagara: A high availability and
low overhead fault tolerance middleware for the cloud. In Computer and Information
Technology, 2013 International Conference on, pages 164–170. IEEE, 2013.

[Jajodia et al., ] Sushil Jajodia, Krishna Kant, Pierangela Samarati, Anoop Singhal,
Vipin Swarup, and Cliff Wang. Secure cloud computing.

[Krishnan et al., 2012] Srinivas Krishnan, Kevin Z Snow, and Fabian Monrose. Trail of
bytes: New techniques for supporting data provenance and limiting privacy breaches.
Information Forensics and Security, IEEE Transactions on, 7(6):1876–1889, 2012.

[Kumar et al., 2013] Naveen Kumar, Anish Mathuria, Manik Lal Das, and Kanta Mat-
suura. Improving security and efficiency of time-bound access to outsourced data.
In Proceedings of the 6th ACM India Computing Convention, page 9. ACM, 2013.

518 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



[Li et al., 2014] Jin Li, Xiaofeng Chen, Qiong Huang, and Duncan S Wong. Digital
provenance: Enabling secure data forensics in cloud computing. Future Generation
Computer Systems, 37:259–266, 2014.

[Martin Gilje et al., 2014] Jaatun Martin Gilje, Pearson Siani, Gittler Frederic, and
Leenes Ronald. Towards strong accountability for cloud service providers. In Cloud
Computing Technology and Science (CloudCom), 2014 IEEE 6th International Con-
ference on, pages 1001–1006. IEEE, 2014.

[Martini and Choo, 2014a] Ben Martini and Kim-Kwang Raymond Choo. Cloud
forensic technical challenges and solutions: A snapshot. IEEE Cloud Computing,
(4):20–25, 2014.

[Martini and Choo, 2014b] Ben Martini and Kim-Kwang Raymond Choo. Remote
programmatic vcloud forensics. In Proceedings of 13th IEEE International Confer-
ence on Trust, Security and Privacy in Computing and Communications (TrustCom
2014), 2014.

[Moreau et al., 2008] Luc Moreau, Paul Groth, Simon Miles, Javier Vazquez-Salceda,
John Ibbotson, Sheng Jiang, Steve Munroe, Omer Rana, Andreas Schreiber, Vic-
tor Tan, et al. The provenance of electronic data. Communications of the ACM,
51(4):52–58, 2008.

[Naval et al., 2014] Smita Naval, Vijay Laxmi, Neha Gupta, Manoj Singh Gaur, and
Muttukrishnan Rajarajan. Exploring worm behaviors using dtw. In Proceedings of
the 7th International Conference on Security of Information and Networks, page 379.
ACM, 2014.

[Pearson, 2009] Siani Pearson. Taking account of privacy when designing cloud com-
puting services. In Proceedings of the 2009 ICSE Workshop on Software Engineering
Challenges of Cloud Computing, pages 44–52. IEEE Computer Society, 2009.

[Rahulamathavan et al., 2014] Y Rahulamathavan, PS Pawar, Pete Burnap,
M Rajarajan, Omer F Rana, and G Spanoudakis. Analysing security requirements
in cloud-based service level agreements. In Proceedings of the 7th International
Conference on Security of Information and Networks, page 73. ACM, 2014.

[Schwiegelshohn et al., 2010] Uwe Schwiegelshohn, Rosa M Badia, Marian Bubak,
Marco Danelutto, Schahram Dustdar, Fabrizio Gagliardi, Alfred Geiger, Ladislav
Hluchy, Dieter Kranzlmüller, Erwin Laure, et al. Perspectives on grid computing.
Future Generation Computer Systems, 26(8):1104–1115, 2010.

[Slipetskyy, 2011] Rostyslav Slipetskyy. Security issues in OpenStack. PhD thesis,
Masters thesis, Norwegian University of Science and Technology, 2011.

[Taylor et al., 2010] Mark Taylor, John Haggerty, David Gresty, and Robert Hegarty.
Digital evidence in cloud computing systems. Computer Law & Security Review,
26(3):304–308, 2010.

[Trenwith and Venter, 2014] Philip M Trenwith and Hein S Venter. A digital forensic
model for providing better data provenance in the cloud. In Information Security for
South Africa (ISSA), 2014, pages 1–6. IEEE, 2014.

[Xu et al., 2013] Guoyan Xu, Zhijian Wang, Li Yang, and Xiaoyi Sun. Research of
data provenance semantic annotation for dependency analysis. In Advanced Cloud
and Big Data (CBD), 2013 International Conference on, pages 197–204. IEEE, 2013.

[Xue and Hong, ] Kaiping Xue and Peilin Hong. A dynamic secure group sharing
framework in public cloud computing. Cloud Computing, IEEE Transactions on,
3(1).

[Yao et al., 2012] Junjie Yao, Bin Cui, Zijun Xue, and Qingyun Liu. Provenance-based
indexing support in micro-blog platforms. In Data Engineering (ICDE), 2012 IEEE
28th International Conference on, pages 558–569. IEEE, 2012.

[Yu et al., 2012] Zhiwei Yu, Chaokun Wang, Clark Thomborson, Jianmin Wang,
Shiguo Lian, and Athanasios V Vasilakos. A novel watermarking method for software
protection in the cloud. Software: Practice and Experience, 42(4):409–430, 2012.

[Zawoad et al., 2013] Shams Zawoad, Amit Kumar Dutta, and Ragib Hasan. Se-
claas: secure logging-as-a-service for cloud forensics. In Proceedings of the 8th ACM

519Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...



SIGSAC symposium on Information, computer and communications security, pages
219–230. ACM, 2013.

[Zeng et al., 2012] Kai Zeng, Kannan Govindan, Prasant Mohapatra, et al. Chain-
ing for securing data provenance in distributed information networks. In Military
Communications Conference, 2012. MILCOM 2012. IEEE, pages 1–6. IEEE, 2012.

[Zhang et al., 2012] Olive Qing Zhang, Ryan KL Ko, Markus Kirchberg, Chun Hui
Suen, Peter Jagadpramana, and Bu Sung Lee. How to track your data: Rule-based
data provenance tracing algorithms. In Trust, Security and Privacy in Comput-
ing and Communications (TrustCom), 2012 IEEE 11th International Conference on,
pages 1429–1437. IEEE, 2012.

[Zhu and Gong, ] Shasha Zhu and Guang Gong. Fuzzy authorization for cloud storage.
Cloud Computing, IEEE Transactions on, 2(4).

[Zissis and Lekkas, 2012] Dimitrios Zissis and Dimitrios Lekkas. Addressing cloud
computing security issues. Future Generation Computer Systems, 28(3):583–592,
2012.

520 Imran A., Aljawarneh S., Sakib K.: Web Data Amalgamation ...


