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Abstract: The variety of applications requiring graph analysis is growing rapidly. Diameter is 
one of the most important metrics of a graph. The diameter is important in both designing 
algorithms for graphs and understanding the nature and evolution of graphs. So, detecting 
diameter of large graphs is very important. We propose an algorithm to calculate the diameter 
of such graphs. The main goal of this algorithm is to reduce the number of breadth-first 
searches required to determine the diameter of the graph by finding a better upper bound for the 
eccentricity of vertices. Based on experimental results, our proposed algorithm can quickly 
detect the exact diameter of the large-scale real world graphs with a few number of breadth-first 
searches. 
Keywords: diameter, static graphs, graph mining, social networks 
Categories: F.2, J.1, J.4, K.4.2 

1 Introduction  

Due to the spread use of networks, including web graphs [Reka et al., 1999], internet 
topology networks [Shudong and Azer, 2006], road networks [Jure and Krevl, 2014], 
peer-to-peer networks [Bawa et al., 2003], complex networks [Del Mondo et al., 
2010] and social networks ([Wasserman, 1994]; [Victor et al., 2012]), the size of 
these networks has been growing in recent years, so the graph processing becomes 
more and more important and many graph processing systems have been introduce 
recent years ([Malewicz et al., 2010]; [Sagharichian et al., 2015]; [Yan et al., 2014]). 
Since networks have a variety of applications in different areas such as economic, 
sociology, etc., extracting the characteristics of these networks has been an important 
research field [Newman, 2003]. One of the most important and basic feature of these 
networks is the diameter. Diameter of the graph is the longest shortest path between 
all vertices in the graph. Finding diameter of graphs is one of the fundamental issues 
in the graph theory that has many applications. For example, in the social networks, 
diameter of the graph indicates that how fast the information will be propagated in the 
network in the worst-case [Kumar et al., 2004]. Diameter is an important metric for 
the evolution of structure within social networks [Kumar et al., 2010] and analysing 
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the user interactions for different applications [Wilson et al., 2009] like spam email 
mitigation [Garriss et al., 2006] or Sybil attacks [Yu et al., 2006]. In an internet 
routing network, the diameter represents the maximum response time between any 
two machines in the network [Kumar et al., 2004].  

One way to calculate the diameter is All Pairs Shortest Path (APSP) 
algorithm, which is based on applying Breadth-First searches (BFS) on all vertices 
and selecting the longest path as the diameter. This algorithm has the complexity of ܱ(݊ଷ) for weighted graphs and ܱ(݉݊) for unweighted ones. The main problem of 
this algorithm is its large number of BFS searches. Many other algorithms have been 
introduced based on this algorithm which aimed at reducing the number of BFS 
searches to find the diameter ([Fujiwara et al., 2011]; [Crescenzi et al., 2010]; 
[Crescenzi et al., 2013]; [Takes and Kosters, 2011]). 

In this paper, we propose an algorithm named ݅ݎ݁ݐ݁݉ܽ݅ܦ to determine the 
diameter of the real world large-scale graphs. The main goal of this algorithm is to 
calculate a better upper bound for the maximum distance of all vertices to reduce the 
number of searches in APSP. The proposed algorithm has been tested over certain 
real world graphs and the results show that ݅ݎ݁ݐ݁݉ܽ݅ܦ	reduces the number of BFSes 
needed to determine the diameter more than 80 percent than the well-known existing 
algorithms in most cases while improves the time by almost 30 percent in average.  

The rest of the paper is structured as follows. In section 2, the necessary 
definitions will be introduced. In section 3, the related works will be presented and in 
section 4 we will outline our proposed algorithm to determine the diameter of real 
world large-scale graphs. In section 5, an experimental evaluation of the proposed 
algorithm will be presented and finally section 6 contains the conclusions and future 
works. 

2 Preliminaries 

A graph will be shown as ܩ = (ܸ, |ܸ| that ܸ is the set of all vertices, which (ܧ = ݊ 
and ܧ ⊆ ܸ × ܸ contains all edges of	ܩ, which	|ܧ| = ݉. The shortest path between 
two vertices ݑ and ݒ is denoted by	݀	(ݑ, ,ݑ)௩∈݀ݔܽ݉ which is obtained by ,(ݑ)ܿܿ݁	of the graph is represented by ݑ The value of eccentricity for each vertex .(ݒ	  as the (ݒ
longest shortest path from vertex	ݑ. The diameter of the graph is denoted by	ܦ, which 
is obtained by	݉ܽݔ௨∈݁ܿܿ(ݑ), which is the longest shortest path between all pairs of 
vertices of the graph [Takes and Kosters, 2011].  

3 Related works 

There are a number of research works have been developed to determine the diameter 
of graphs. We can categorize these works based on three aspects. The first 
categorization is based on the accuracy of finding the diameter, which can be exact 
and approximate. This article will focus on calculating the exact diameter. However, a 
lot of approximate methods have been introduced which obtain the diameter of the 
graph with a certain approximation ratio ([Roditty and Vassilevska Williams, 2013]; 
[Chechik et al., 2014]; [Zwick, 2001]). The second categorization is based on 
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calculating the diameter for directed or undirected graphs. In this paper, we focus on 
finding diameter of undirected graphs, but for directed graphs we can refer the readers 
to ([Crescenzi et al., 2012]; [Borassi et al., 2015]). The last category is based on 
determining the diameter of static or dynamic graphs. In this paper, we focus on 
finding diameter of static graphs. There are several methods that determine the 
diameter of static graphs. One of these methods is matrix multiplication, which 
has the time complexity of ܱ(݊ଶ.ଷ) and requires a lot of space, which is not suitable 
for large graphs [Yuster, 2010]. Another algorithm is ܲܵܲܣ that applies many BFSes 
starting from all vertices to obtain the longest shortest path as diameter, which is not 
feasible for large graphs. There are some algorithms which try to minimize the 
number of BFSes in APSP by pruning vertices that cannot effect on diameter 
calculation. One of these algorithms is ݏݎ݁ݐ݁݉ܽ݅ܦ݃݊݅݀݊ݑܤ [Takes and Kosters, 
2011]. This algorithm determines upper and lower bounds for diameter and 
eccentricity of all vertices.  At each stage, it selects a vertex (ݑ) with the maximum 
upper bound or the minimum lower bound and perform BFS on	ݑ. Then, it tries to 
limit diameter boundaries with ݁ܿܿ	(ݑ)	and	2 ∗  Besides, boundaries of the .(ݑ)	ܿܿ݁
eccentricity of all vertices will be updated by selecting the minimum value between 
the previous upper bound and ݁ܿܿ	(ݑ) + ,ݑ	)݀  as new upper bound and selecting (ݒ
the maximum value between the previous lower bound and ݉ܽݔ	)	ܿܿ݁	(ݑ) ,ݑ)	݀− ,(ݒ ,ݑ)݀  as new lower bound. Vertices that their eccentricity upper bound is ((ݒ
less than the diameter lower bound and their eccentricity lower bound is greater than 
half of the diameter upper bound will be pruned after this stage. This algorithm will 
be completed when lower and upper bounds of the diameter become equal or there are 
no vertices remained to perform BFS. It acts like APSP in the worst-case scenario. 
The author extend this algorithm to compute the eccentricity distribution of graphs. 
We refer the readers to [Takes and Kosters, 2013] for details. 

Fujiwara [Fujiwara et al., 2011] introduced an algorithm named ݂݈݅݃݊݅ݎ݁ݐ, which 
uses an upper bound for eccentricity of all vertices. Along each stage it selects a 
vertex (ݑ) with the highest degree and computes ݁ܿܿ(ݑ). Then, the upper bound of all 
vertices will be updated with ݁ܿܿ(ݑ) + ,ݑ)݀  Vertices that their eccentricity upper .(ݒ
bound is less than the diameter will be pruned. This algorithm completes when either 
all vertices have pruned or there are no vertices remained from which already a BFS 
was started. In practice, this method has lower performance than ݃݊݅݀݊ݑܤ	ݏݎ݁ݐ݁݉ܽ݅ܦ. 

Another algorithm to find the diameter of static graphs is ݂݁݃݊݅ݎ [Crescenzi et 
al., 2010]. This algorithm also determines  lower and upper bounds for the diameter, 
and continues until these boundaries become equal. It uses ݈ܾ݀݁ݑ −  ݁݁ݓݏ
([Corneil et al., 2001]; [Magnien et al., 2009]) to determine a lower bound and then 
by exploiting the	݂݁݃݊݅ݎ algorithm, acquires the upper bound such that it is equal to 
the lower bound. In addition to the lower bound, ݈ܾ݀݁ݑ −  method returns a ݁݁ݓݏ
vertex as a centre of the graph, which is the starting point of	݂݁݃݊݅ݎ. The biggest 
problem of this algorithm is that if this vertex is not chosen correctly, the algorithm 
may fail to find the answer. In this case, we should use another algorithm to determine 
the diameter. ݂݁݃݊݅ݎ has been improved in ݅ܤܷܨ [Crescenzi et al., 2013]. This algorithm uses 4 − ݈ܾ݁ݑ݀ instead of ([Magnien et al., 2009] ;[Corneil et al., 2001]) ݁݁ݓݏ  to find the center and lower bound of the diameter of the graph. In this ݁݁ݓݏ−
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method, ݂݁݃݊݅ݎ has been implemented iteratively, so it acts like APSP in the worst-
case scenario. But still start point selection influences the running time, seriously. 

Our proposed algorithm for diameter calculation of static graphs is based on 
finding a better upper bound for the eccentricity of the vertices and pruning unlikely 
vertices that are not influential in diameter determination. The upper bound used in ݏݎ݁ݐ݁݉ܽ݅ܦ݃݊݅݀݊ݑܤ	and	݂݈݅݃݊݅ݎ݁ݐ methods is ݁ܿܿ	(ݑ) 	+ ,ݑ)	݀  but we try to ,(ݒ
find a better upper bound that leads us to better pruning and faster diameter detection. 

4 The Proposed Algorithm 

In this section, we introduce an algorithm to obtain the diameter of real world large-
scale static graphs. As mentioned before, the APSP algorithm is considered the 
foundation of numerous graph diameter identification algorithms. In this algorithm, 
we should perform BFS from all vertices to find the diameter. The proposed 
algorithm, ݅ݎ݁ݐ݁݉ܽ݅ܦ, applies BFS from a few vertices, instead of all vertices to 
obtain the diameter. In this algorithm, vertices which their eccentricity will not 
certainly become greater than the diameter will be pruned after each BFS.  

4.1 Diameter of static graphs 

The main problem of APSP is the large number of BFSes required to obtain the 
diameter. Therefore, the aim of the proposed method is to reduce the number 
of BFSes required to calculate the diameter of the graph. What previous works have 
done to this aim is to calculate an upper bound for eccentricity of all vertices 
(݁ܿෞܿ ) and use it to prune unlikely vertices. For example, by selecting a vertex like ݒ௫ 
and computing	݁ܿܿ௩ೣ , we can obtain ݁ܿෞܿ  for all vertices using Equation 1. ∀	ݒ ∈ ܸ	 → 	 ݁ܿෞܿ ௩ = ݁ܿܿ௩ೣ + ,௫ݒ)݀  (ݒ

Equation 1: Upper bound for eccentricity 

By using this upper bound, we can prune vertices that their upper bound is less 
than or equal to the current diameter (݁ܿෞܿ ௩ ≤ ݀) (since ݁ܿܿ௩ ≤ ݁ܿෞܿ ௩, and it can be 
concluded that ݁ܿܿ௩ ≤ ݀). It means that if we perform BFS from these vertices, the 
maximum height of the resulting tree will be	݀. But the Equation 1 does not have 
good precision in obtaining the upper bound and therefore less pruning may be 
done in the graph. 

For example, consider the graph of Figure 1. If we perform BFS from vertex 2, 
Figure 2(a) will be produced, where ݒ௫ = 2 and	݁ܿܿ௩ೣ = 5. In this figure, along with 
the vertex number, there is another number that represents ݁ܿෞܿ  which is obtained by 
Equation 1. According to this figure, there is no vertex which can be pruned after this 
step because ݁ܿෞܿ  of all vertices is greater than 5. 

Now, if we perform the second BFS from vertex 13, Figure 2(b) will 
be produced. If the new ݁ܿෞܿ  is smaller than the previous one, calculated with Equation 
1, ݁ܿෞܿ  will be updated. The height of this tree is 7. Therefore, vertices that their	݁ܿෞܿ  
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are smaller than 7 will be pruned. As this example clearly illustrates, there are 4 
vertices have not pruned yet. So, one more BFS is needed to prune them. 

 

Figure 1: A sample graph with 13 vertices and 20 edges 

Our main idea is to obtain ݁ܿෞܿ  closer to its real value as much as possible. This 
will result in more pruning, reducing number of BFSes, and reducing the running 
time. For this purpose, we should find the maximum distance of all vertices in the 
BFS tree. To do so, we introduce an algorithm that finds the maximum distance of all 
vertices in an accurate and fast manner. 

 

Figure 2: ݁ܿෞܿ  are calculated by Equation 1. (a) BFS from vertex 2 (b) BFS from 
vertex 13 

If we ignore the root (ݒ) of the BFS tree (ܶ) and its edges, we would have k sub-
trees where ݒ has k children. Each sub-tree is named as ݎ and the sub-tree with the 
maximum height is called	ݎ௫ . The maximum height of ܶ is ℎ௧ଵ, that is certainly 
located in ݎ௫ and the second height of ܶ is ℎ௧ଶ, which should not belong to	ݎ௫ . For 
all vertices that are not in	ݎ௫ , the value of ݁ܿෞܿ  will be calculated with Equation 1. 
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But for vertices which are in	ݎ௫ , this equation does not always hold. To calculate ݁ܿෞܿ  of any vertex (ݒ௫), we use the following method. 
 Case 1: if ݒ௫ is not in	ݎ௫ , ݁ܿෞܿ  is obtained from Equation 1. As an example, 

consider vertex 4 in Figure 3(a), which it’s	݁ܿෞܿ  is 7 from vertex 13. 
If ݒ௫ belongs to	ݎ௫ , we should investigate the following three cases and take the 

maximum of them as	݁ܿෞܿ . 
 Case 2.1: ݁ܿෞܿ  of	ݒ௫ is the distance to the farthest leaf in	ݎ௫, like. For 

example vertex 6, which it’s	݁ܿෞܿ  is 4 in Figure 3(b). 
 Case 2.2: ݁ܿෞܿ  of ݒ௫ is the sum of distances to the root, and	ℎ௧ଶ, e.g. Vertex 11 

in Figure 3(c), which it’s	݁ܿෞܿ  is 5 from vertex 4. 
 Case 2.3: starting from ݒ௫ and moving towards the root. If any of its 

ancestors (ݒ) has more than one child, we check these two conditions for 
them: 

 Case 2.3.1: ݁ܿෞܿ  of ݒ௫ is the sum of the distance to ݒ	(݀(ݒ, (௫ݒ	 ,ݒ)݀−  ௫ does not belongݒ  (ifݒ )) and the height of the highest sub-tree ofݒ	
to the highest sub-tree of	ݒ). As an example, consider vertex 11 in Figure 
3(d), which it’s ݁ܿෞܿ  is 8. Vertex 11 does not belong to the highest sub-tree of 
12. 

 Case 2.3.2: ݁ܿෞܿ  of ݒ௫ is the sum of the distance to ݒ	(݀(ݒ, (௫ݒ	 ,ݒ)݀−  ௫ belongsݒ  (ifݒ )) and the height of the second highest sub-tree ofݒ	
to the highest sub-tree of	ݒ). For instance vertex 5 in Figure 3(e), which it’s ݁ܿෞܿ  is 6. Vertex 11 belongs to the highest sub-tree of 12. 

 

Figure 3: Five Different cases to obtain the maximum distance of a vertex in a BFS 
tree 
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Figure 4: ݁ܿෞܿ ’s are calculated by proposed procedure. (a) BFS from vertex 2 (b) BFS 
from vertex 13 

To check whether ݒ௫ belongs to the highest sub-tree of ݒ or not, we only have to 
compare the sum of distances from ݒ௫ to	ݒ, and the height of the maximum sub-tree 
of ݒ௫ with the height of the maximum sub-tree of	ݒ. If these two values became 
equal, ݒ௫ belongs to the highest sub-tree of	ݒ, otherwise it does not. 

By using this procedure, we can determine ݁ܿෞܿ  of all vertices in the BFS tree. 
Figure 4 will be achieved if we compute ݁ܿෞܿ  for the previous example based on this 
procedure. As it can be seen from Figure 4(a), after the first BFS from vertex 2, ݁ܿෞܿ  
of vertices 6, 8, 9, 10, 11 will be smaller or equal to 5. This means that these vertices 
can be pruned after this step. If we perform BFS from vertex 13, Figure 4(a) will be 
achieved. Since the height of the tree is 7 and the	݁ܿෞܿ  of all vertices is smaller or 
equal to 7, all vertices can be pruned and the diameter of the graph will be 7. By using 
this procedure, we can find the diameter of this graph with only 2 BFSes. 

4.2 Implementation 

We check 4 aforementioned cases for all vertices in our implementation. To check 
cases 2.3.1 and 2.3.2, we have to determine the highest and the second highest height 
of sub-tree of all vertices located in	ݎ௫ . To this end, we consider a special data 
structure for the BFS tree. For each vertex in the tree, we use the following attributes: 

 ܲܽݐ݊݁ݎ: Pointer to the father. 
 ܰܥ݂ܱݎܾ݁݉ݑℎ݈݅݀݊݁ݎ: number of children. 
 ܪܵݐݏݎ݅ܨ: height of the highest sub-tree. 
 ܵ݁ܿܪܵ݀݊: height of the second highest sub-tree. 
 ܥℎ݁ܿ݇݁݀ܿ݊ܽݎܤℎ: Number of checked branches of each vertex which is 

initially 0. 
 ݐ݊݁ݎܽܲ݀݊ܽݎܩ: Ancestor of each vertex in the first level of	ܶ. Each vertex 

inherits this value from its father. 
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The values of	ܲܽݐ݊݁ݎܽ݀݊ܽݎܩ ,ݐ݊݁ݎ and ܰܥ݂ܱݎܾ݁݉ݑℎ݈݅݀݊݁ݎ of all vertices 
will be computed after each BFS. Also, the vertex in the first level of T, which its 
sub-tree is the highest one among the others will be specified as	ݒ . Then, we have 
to find ܪܵݐݏݎ݅ܨ and ܵ݁ܿܪܵ݀݊ of all vertices in	ݎ௫ . For this purpose, we introduce 
the ݁݁ݎܶ݃݊݅ݐݑܾ݅ݎݐݐܣ algorithm. This algorithm starts from the leaves of ݎ௫  and 
moves upward to the root, and checks every branch of all middle vertices only once. 
The input of this algorithm is the BFS tree and the leaves of the sub-tree which its 
vertices’	ݐ݊݁ݎܽ݀݊ܽݎܩ is 	ݒ  (located in ݎ௫). The output of this algorithm is an ݁݁ݎݐ݀݁ݐݑܾ݅ݎݐݐܣ, which values of ܵݐݏݎ݅ܨℎ and ܵ݁ܿܪܵ݀݊ of all vertices of ݎ௫ are 
specified. 

 
Algorithm1: AttributingTree 
  1:  Input : ܶ	,  ݒ	ݐݎ	ℎݐ݅ݓ	݁݁ݎݐ	ݏ݂ܾ	ܽ
,	ݏ݁ݒܽ݁ܮ               :2   ௫ݎ	݂	ݏ݁ݒܽ݁ܮ  
  3:  Output : ܶ	,   ݁݁ݎܶ	݀݁ݐݑܾ݅ݎݐݐܣ
  4:  foreach ݊݁݀ in ܶ do 
.݁݀݊          :5   	ℎܿ݊ܽݎܤℎ݁ܿ݇݁݀ܥ ← 	0;    
.݁݀݊          :6   	ܪܵݐݏݎ݅ܨ ← .݁݀݊     ;0	 	ܪܵ݀݊ܿ݁ܵ ← 	0; 
  7:  end for 
  8:  foreach ݊݁݀ in ݏ݁ݒܽ݁ܮ do 
.݁ݑ݁ݑܳ          :9     ;(݁݀݊)݀݀ܣ
10:  end for 
11:  while ! .݁ݑ݁ݑܳ  do ()ݕݐ݉ܧݏܫ
	݁݀݊          :12 ← .݁ݑ݁ݑܳ	  ;()݁ݒܴ݉݁
	݁ܿ݊ܽݐݏ݅݀          :13 ← .݁݀݊	  ;ܪܵݐݏݎ݅ܨ
	݁݀݊          :14 ← .݁݀݊	  ;ݐ݊݁ݎܽܲ
݁ܿ݊ܽݐݏ݅݀          :15 + +; 
16:          while ݊݁݀. 	݊݁ݎℎ݈݅݀ܥ݂ܱݎܾ݁݉ݑܰ = 	1 and ݊݁݀	! = ݒ  do 
.݁݀݊                  :17 	ܪܵݏݐݎ݅ܨ ←  ;݁ܿ݊ܽݐݏ݅݀	
	݁݀݊                  :18 ← .݁݀݊	  ;ݐ݊݁ݎܽ
݁ܿ݊ܽݐݏ݅݀                  :19 + +; 
20:          end while 
21:          if ݊݁݀	! = 	 ݒ  then 
22:                  if ݊݁݀. 	ܪܵݐݏݎ݅ܨ <=  then ݁ܿ݊ܽݐݏ݅݀
.݁݀݊                          :23 	ܪܵ݀݊ܿ݁ܵ ← .݁݀݊	  ;ܪܵݐݏݎ݅ܨ
.݁݀݊                          :24 	ܪܵݐݏݎ݅ܨ ←  ;݁ܿ݊ܽݐݏ݅݀	
25:                  else if	݊݁݀. 	ܪܵ݀݊ܿ݁ܵ <  then ݁ܿ݊ܽݐݏ݅݀	
.݁݀݊                          :26 	ܪܵ݀݊ܿ݁ܵ ←  ݁ܿ݊ܽݐݏ݅݀	
27:                  end if 
.݁݀݊                  :28 	ℎܿ݊ܽݎܤℎ݁ܿ݇݁݀ܥ + +; 
29:                  if ݊݁݀. 	ℎܿ݊ܽݎܤℎ݁ܿ݇݁݀ܥ = .݁݀݊	  then ݊݁ݎℎ݈݅݀ܥ݂ܱݎܾ݁݉ݑܰ
.݁ݑ݁ݑܳ                          :30  ;(݁݀݊)݀݀ܽ
31:                  end if 
32:         end if 
33:  end while 
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The complexity of this algorithm in the worst case (the root has only one child) is ܱ(݊). After running this algorithm, we can calculate ݁ܿෞܿ  of all vertices based on the ݁݁ݎݐ݀݁ݐݑܾ݅ݎݐݐܣ. 
We introduce the ݀݊ݑܤݎܷ݁ܿܿܧ݀݊݅ܨ algorithm to find ݁ܿෞܿ  of all vertices in 

the BFS tree. This algorithm checks 4 cases are introduced above to find	݁ܿෞܿ . The 
input of this algorithm is the ݁݁ݎݐ݀݁ݐݑܾ݅ݎݐݐܣ along with	ݒ,	ݒ,	ℎ௧ଵ,	ℎ௧ଶ, and	ݒ௫, the 
vertex we want to find its ݁ܿෞܿ . The algorithm returns ܦܯ௫ as ݁ܿෞܿ  of	ݒ௫. 

If ݒ௫ does not belong to	ݎ௫ , the value of ܦܯ௫ will be simply calculated by 
Equation 1(lines 8-9). Otherwise, cases 2.1, 2.2, 2.3.1 and 2.3.2 will be checked. 
Cases 2.1 and 2.2 are checked in line 11. Then, cases 2.3.1 and 2.3.2 are checked for 
each vertex with more than one child as moving upward to the root. This operation 
continues until it reaches the root. Finally, the ݁ܿෞܿ  for the given vertex can 
be specified. The complexity of the algorithm for each vertex at level ℎ of ݎ௫ is ܱ(ℎ) and for all vertices that are not located in	ݎ௫ , is	ܱ	(1). The complexity of this 
algorithm in the worst case is ܱ	(݊݀) where d is the height of the tree. 

We can prune vertices that cannot affect the diameter by calculating ݁ܿෞܿ  of 
vertices in the BFS tree. To this end, an algorithm called ݅ݎ݁ݐ݁݉ܽ݅ܦ has been 
introduced. The input of this algorithm is a graph. It returns the diameter. 

 Algorithm2:	FindEccUpperBound			1:		Input	:	ܶ	, ,	ݒ															:2			ݒ	ݐݎ	ℎݐ݅ݓ	݁݁ݎݐ	݀݁ݐݑܾ݅ݎݐݐܣ	݊ܽ ,	ℎ௧ଵ															3:			௫ݎ	݂	ݐݎ ℎ݁݅݃ℎݐ	݂	ݐℎ݁	݁݁ݎݐ				4:															ℎ௧ଶ	, ,	௫ݒ															:5			݁݁ݎݐ	ℎ݁ݐ	݂	ݐℎ݁݅݃ℎ	݀݊ܿ݁ݏ 	݁ݐݏ		:7			ܶ	݅݊	௫ݒ	݁݀݊	݂	݁ܿ݊ܽݐݏ݅ܦ	݉ݑ݉݅ݔܽܯ,	௫ܦܯ	:	Output		:6			݁ܿ݊ܽݐݏ݅݀	݉ݑ݉݅ݔܽ݉	ݏ’ݐ݅	݁ݐݑ݉ܿ	ݐ	ݐ݊ܽݓ	݁ݓ	ݐℎܽݐ	݁݀݊ ← ௫ܦܯ					;0	 	← 	0; 	݁ܿ݊ܽݐݏ݅݀					 ← 	0;			8:		if	ݒ௫. !	ݐ݊݁ݎܽܲ݀݊ܽݎܩ = 	 ,ݒ)݀	return										9:			then	ݒ (௫ݒ 	+ 	ℎ௧ଵ	;	10:		else	11:										ݔܦܯ	 = .௫ݒ)ݔܽ݉	 ,ܪܵݐݏݎ݅ܨ ,ݒ)݀ (௫ݒ 	+ 	ℎ௧ଶ);	12:										݀݅݁ܿ݊ܽݐݏ	 = 	 .௫ݒ .௫ݒ	while										:13	;ܪܵݐݏݎ݅ܨ !	ݐ݊݁ݎܽܲ = 	 ௫ݒ																		:14	do	ݒ 	= 	 .௫ݒ ݁ݐݏ																		:15	;ݐ݊݁ݎܽܲ + +; 	݁ܿ݊ܽݐݏ݅݀					 + +;	16:																		If	(ݒ௫. 	ܪܵݐݏݎ݅ܨ > ௫ܦܯ																										:17	then	(݁ܿ݊ܽݐݏ݅݀	 	= ,	௫ܦܯ)ݔܽ݉	 .௫ݒ 	ܪܵݐݏݎ݅ܨ + 	݁ܿ݊ܽݐݏ݅݀																										:18	;(݁ݐݏ	 = .௫ݒ	 ௫ܦܯ																										:20		else																		:19	;ܪܵݐݏݎ݅ܨ 	= ,	௫ܦܯ)ݔܽ݉	 .௫ݒ 	ܪܵ݀݊ܿ݁ܵ + 	௫ܦܯ	Retrun		24:	if	end		23:	while	end										22:		if	end																		:21	;(݁ݐݏ
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This algorithm creates a set ܸᇱ, which is initially equal to	ܸ. At each step, it 
performs BFS by calling the ܵܨܤ݁ݐݑ݉ܥ function from a vertex, which is selected 
by the ܰ݁݁݀ܰݐݔ function. If the height of the resulting BFS tree became larger than 
the current diameter, the diameter should be updated. Then, it calls the ݁݁ݎݐ݃݊݅ݐݑܾ݅ݎݐݐܣfunction on the BFS tree to produce the	݁݁ݎݐ݀݁ݐݑܾ݅ݎݐݐܣ. Then, it 
finds ݁ܿෞܿ  for all vertices in ܸᇱ by calling the ݀݊ݑܤݎܷ݁ܿܿܧ݀݊݅ܨ function. The 
algorithm compares ݁ܿෞܿ  of all vertices with the current diameter and prunes vertices 
that their	݁ܿෞܿ  are smaller than or equal to the current diameter. The algorithm 
completes when ܸᇱ becomes empty. Otherwise, it selects another vertex to perform 
BFS. 

4.3 Complexity 

Performing BFS on a graph is the most time consuming part of this algorithm. BFS 
takes ܱ(݉)	time to complete. For each BFS, we should run ݁݁ݎܶ݃݊݅ݐݑܾ݅ݎݐݐܣ that 
takes	ܱ	(݊) time in the worst case scenario. To calculate ݁ܿෞܿ  of each vertex, we have 
to run	݀݊ݑܤݎܷ݁ܿܿܧ݀݊݅ܨ that takes	ܱ	(݊݀) time in the worst case for all vertices. 
As a result, the complexity of each BFS is ܱ	൫݉	 + 	݊	 + 	݊݀൯. 

 
Algorithm3 : iDiameter 
  1:  Input : ܽݎܩℎ	ܩ(ܸ,  (ܧ
  2:  Output : ݎ݁ݐ݁݉ܽ݅ܦ	݂	ܩ 
	ܦ  :3   ← 	0;   ܸᇱ ← 	ܸ; 
  4:  foreach ݊݁݀ in ܸᇱ do 
.݁݀݊          :5   ݁ܿෞܿ 	← +∞; 
  6:  end for 
  7:  while ܸᇱ ≠ ∅ do 
௫ݒ          :8   ←  ;(ᇱܸ)݁݀ܰݐݔ݁ܰ
  9:          ܸᇱ ← ܸᇱ −  ;{௫ݒ}
10:          {ܶ, ,ݒ ℎ௧ଵ, ℎ௧ଶ, {ݏ݁ݒ݈ܽ݁ 	← ,ܩ)ܵܨܤ݁ݐݑ݉ܥ	  ;(௫ݒ
11:          if ℎ௧ଵ >  then ܦ
	ܦ                  :12 ← 	ℎ௧ଵ; 
13:          end if 
	݁݁ݎܶ݀݁ݐݑܾ݅ݎݐݐܣ          :14 ← ,ܶ)݁݁ݎܶ݃݊݅ݐݑܾ݅ݎݐݐܣ	  ;(ݏ݁ݒ݈ܽ݁
15:          foreach node in ܸᇱ do 
ௗܦܯ                  :16 ← ,݁݁ݎܶ݀݁ݐݑܾ݅ݎݐݐܣ)݀݊ݑܤݎܷ݁ܿܿܧ݀݊݅ܨ ,ݒ ℎ௧ଵ, ℎ௧ଶ,   ;(݁݀݊
17:                  if ܦܯௗ < .݁݀݊ ݁ܿෞܿ  then 
.݁݀݊                          :18 ݁ܿෞܿ  ;ௗܦܯ ← 
19:                  end if 
20:                  if ݊݁݀. ݁ܿෞܿ ≤  then  ܦ
21:                         ܸᇱ ← ܸᇱ −  ;{݁݀݊}
22:                  end if 
23:          end for 
24:  end while 
25:  return ܦ 
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4.4 Vertex selection strategy 

To select a vertex, we can consider a variety of factors. Some of them like degree of 
vertices and their	݁ܿෞܿ  have been studied in [Takes and Kosters, 2011]. By selecting 
higher degree vertices, we probably cannot reach the diameter, but the chance of 
pruning will increase. The reason is that ݁ܿෞܿ  of vertices becomes closer to its real 
value in this case. On the other hand, choosing vertices with smaller degree causes 
larger-height BFS trees will be produced. Therefore, this may lead to reach the 
diameter faster. In this case, the chance of pruning will be less than before. Another 
factor that we have considered in this paper is selecting vertices based on their ݁ܿෞܿ . 
Like selecting vertices with higher degrees, if we select a vertex with smaller	݁ܿෞܿ , it 
usually results in more pruning, but smaller height than the diameter. In this case, we 
select vertices with larger degrees for breaking ties. In contrast, by selecting vertices 
with large	݁ܿෞܿ , we usually reach the diameter with less pruning. In this case, for 
breaking ties we select a vertex with smaller degree. 

All subsequent breaks ties by selecting random vertex. The best way, which we 
used in this paper, is to select a vertex in an interchanging manner. In other words, we 
first select a vertex to reach the diameter and then select a vertex to prune more. 
Since	݁ܿෞܿ  of all vertices is	+∞ initially, we select a vertex with the largest degree. 

5 Experimental results 

We performed experiments on a number of existing real world graphs. Our method is 
implemented using JAVA and all experiments are tested on a standalone machine 
with 3.1 GHz CPU and 8GB of RAM. 
 

# Name #Nodes #Edges #D #CC Type 

1 ca-GrQc 5,242 14,496 17 355 
Collaboration 
networks 

2 p2p-Gnutella08 6,301 20,777 9 2 
peer-to-peer 
networks 

3 Wiki-Vote 7,115 103,689 7 24 
Wikipedia 
networks 

4 p2p-Gnutella09 8,114 26,013 10 6 
peer-to-peer 
networks 

5 p2p-Gnutella06 8,717 31,525 10 1 
peer-to-peer 
networks 

6 bcsstk33 8,728 291,583 25 1 
Meshes & 
electronic circuits 

7 p2p-Gnutella05 8,846 31,839 9 3 
peer-to-peer 
networks 

8 ca-HepTh 9,877 25,998 18 429 
Collaboration 
networks 

Table 1: Test graphs 
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# Name #Nodes #Edges #D #CC Type 

9 p2p-Gnutella04 10,876 39,994 10 1 
peer-to-peer 
networks 

10 CA-HepPh 12,008 118,521 13 278 
Collaboration 
networks 

11 p2p-Gnutella25 22,687 54,705 11 13 
peer-to-peer 
networks 

12 p2p-Gnutella24 26,518 65,369 11 11 
peer-to-peer 
networks 

13 Cit-HepTh 27,770 352,807 15 143 Citation networks 

14 p2p-Gnutella30 36,682 88,328 11 12 
peer-to-peer 
networks 

15 Email-Enron 36,692 183,831 13 1,065 
Communication 
networks 

16 p2p-Gnutella31 62,586 147,892 11 12 
peer-to-peer 
networks 

17 brack2 62,631 366,559 73 2 
Meshes & 
electronic circuits 

18 
soc-
Slashdot0902 

82,168 948,464 13 1 Social networks 

19 amazon0302 262,111 1,234,877 32 1 
Product co-
purchasing 
networks 

20 web-Stanford 281,903 2,312,497 753 365 Web graphs 

21 amazon0601 403,364 3,387,388 21 1 
Product co-
purchasing 
networks 

22 web-BerkStan 685,230 7,600,595 714 676 Web graphs 

23 roadNet-PA 1,087,562 1,541,898 786 206 Road networks 

24 roadNet-TX 1,379,917 1,921,660 1,054 424 Road networks 

25 cit-patents 3,774,768 16,518,948 22 3,627 Citation networks 

26 com-lj 3,997,962 34,681,189 17 1 
Networks with 
communities 

27 soc-livejournal 4,847,571 68,993,773 16 1,876 Social networks 

Table 1 (continued): Test graphs 

We select graphs from a variety of applications and sizes. Graphs which are 
experimented in this paper include social networks, communication networks, citation 
networks, collaboration networks, web graphs, p2p networks, road networks and 
signed networks. All graphs are available in ([Jure and Krevl, 2014]; [Walshaw, 
2015]) and considered undirected in this study. They are listed in Table 1 along with 
their main properties such as number of vertices, number of edges, the diameter and 
number of connected components. 
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# Name 
BFS Time (ms) 

iDiameter 
Bounding 
Diameters 

iDiameter 
Bounding 
Diameters 

1 ca-GrQc 13.9 15.3 14.1 8.7 

2 p2p-Gnutella08 204.4 1,076.9 253.5 483.8 

3 Wiki-Vote 7.6 13.8 17.8 23.0 

4 p2p-Gnutella09 49.8 290.3 237.4 338.4 

5 p2p-Gnutella06 29.3 29.9 51.1 30.8 

6 bcsstk33 3.0 229.3 208.0 760.6 

7 p2p-Gnutella05 206.6 1,076.9 390.2 1,174.2 

8 ca-HepTh 10.0 17.0 58.6 26.0 

9 p2p-Gnutella04 42.9 325.3 105.9 465.7 

10 CA-HepPh 15.0 20.0 72.0 54.9 

11 p2p-Gnutella25 89.1 758.3 443.8 2,361.7 

12 p2p-Gnutella24 10.6 9.4 68.2 43.0 

13 Cit-HepTh 6.0 6.0 337.4 91.1 

14 p2p-Gnutella30 189.3 2,290.7 5,741.6 20,800.7 

15 Email-Enron 8.0 11.0 65.5 68.9 

16 p2p-Gnutella31 671.3 7,149.8 25,166.8 108,442.6 

17 brack2 3.0 42.0 350.1 498.4 

18 soc-Slashdot0902 5.0 5.0 115.0 95.5 

19 amazon0312 11.0 21.0 1,972.4 2,888.4 

20 web-Stanford 4.8 5.6 522.3 454.2 

21 amazon0601 26.0 28.0 4,700.3 3,845.4 

22 web-BerkStan 2.0 5.0 295.7 587.5 

23 roadNet-PA 36.3 60.2 14,893.7 10,071.7 

24 roadNet-TX 44.1 75.4 20,255.4 15,484.0 

25 cit-patents 39.7 67.7 105,198.3 133,083.1 

26 com-lj 8.0 9.0 21,605.1 21,812.8 

27 soc-livejournal 6.2 7.8 20,206.2 24,011.2 

Table 2: Diameter of static graphs 

The format of the raw data set is edge file, which each line in the file represents 
an edge between two vertices. Each graph has its own properties, for example road 
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networks have large diameter while social networks follow power law and usually 
have small diameter. 

We compared ݅ݎ݁ݐ݁݉ܽ݅ܦ to the best existing algorithm, ݏݎ݁ݐ݁݉ܽ݅ܦ݃݊݅݀݊ݑܤ 
[Takes and Kosters, 2011] which is based on breadth-first search and pruning unlikely 
vertices. Because of selecting random vertices for breaking ties, there was a large 
deviation in the number of iterations required to find the diameter in some graphs. For 
example, in ܾܿ33݇ݐݏݏ, the minimum number of iterations is 8 for ݏݎ݁ݐ݁݉ܽ݅ܦ݃݊݅݀݊ݑܤ, but the average iteration of running 100 times is 230. So, we 
evaluate each algorithm up to 100 times (not less than 20 times) and report the 
average of results. The results of Table 2 show that our algorithm can find the 
diameter with less BFS than	ݎ݁ݐ݉ܽ݅ܦ݅ .ݏݎ݁ݐ݁݉ܽ݅ܦ݃݊݅݀݊ݑܤ wecan find more 
accurate ݁ܿෞܿ  for all vertices than the other algorithm. This improved accuracy 
imposes additional costs, but we claimed that by using less BFSes, this extra time is 
negligible. To affirm this claim, we report the average running time of these two 
algorithms in Table 2, which shows that our algorithm finds the diameter faster than 
the other one in almost 60 percent of tested graphs.  

 

Figure 5: Average differences of ݁ܿෞܿ  and ݁ܿܿ 

Another interesting result is the average of differences between ݁ܿෞܿ  and its actual 
value. We calculate the average of differences between ݁ܿෞܿ  and ݁ܿܿ in two algorithms 
which are reported in Figure 5. Since our method is more accurate than the state of the 
art methods, the average of differences is less than the other one in almost all tested 
graphs. For example, in graph 2 −  despite the fact that the number of ,04݈݈ܽ݁ݐݑ݊ܩ
BFSes in ݅ݎ݁ݐ݁݉ܽ݅ܦ and ݏݎ݁ݐ݁݉ܽ݅ܦ݃݊݅݀݊ݑܤ is 42 and 325, respectively, the 
average of differences between ݁ܿෞܿ  and ݁ܿܿ in our algorithm is about 2 while it is 6 in ݏݎ݁ݐ݁݉ܽ݅ܦ݃݊݅݀݊ݑܤ. This means that our algorithm can find better upper bound for 
the eccentricity of the vertices even with less BFSes. 
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6 Conclusion and future work 

In this paper, ݅ݎ݁ݐ݁݉ܽ݅ܦ is proposed in order to calculate the diameter of static 
graphs based on APSP approach. One of the fundamental problems of APSP is that it 
requires a large number of BFSes starting from different vertices. There are some 
extensions of this method using estimation of eccentricity idea to overcome this 
shortcoming. Based on this idea, BFS trees starting from vertices that their 
eccentricities are smaller than the current diameter have no effects on calculation of 
the diameter. Therefore, the more accurate estimation of eccentricity causes more 
pruning of vertices. As a result, diameter will be calculated with lesser number of 
BFSes. The main goal of the proposed method is to increase the accuracy of 
eccentricity estimations. Evaluation of the proposed method with the current well-
known algorithm showed that ݅ݎ݁ݐ݁݉ܽ݅ܦ can reduce estimation error by more than 
50% in average. These improvements result more than 80% reduction of required 
BFSes to calculate the diameter of graphs in most cases. Another contribution of this 
paper is proposing a sophisticated vertex selection strategy for determining the 
starting point of each BFS. This strategy simultaneously increases the speed of 
diameter calculation as well as the number of pruned vertices. Performance 
evaluations showed that ݅ݎ݁ݐ݁݉ܽ݅ܦ can reduce the running time more than 30% in 
average. It must be noticed that there are some cases where the amount of reductions 
are more than 70%. 

The proposed algorithm can only calculate the diameter of static graphs, but the 
real world graphs are changing rapidly over the time. As our future works, we want to 
investigate whether the proposed algorithm can be extended to dynamic graphs or not. 
Moreover, we will consider developing a distributed version of ݅ݎ݁ݐ݁݉ܽ݅ܦ to face 
with large-scale graphs. 
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