
A Steady-state Evolutionary Algorithm for Building
Collaborative Learning Teams in Educational

Environments Considering the Understanding Levels and
Interest Levels of the Students

Virginia Yannibelli
(ISISTAN (CONICET-UNCPBA), Campus Universitario, Tandil, Argentina

virginia.yannibelli@isistan.unicen.edu.ar)

Marcelo Armentano
(ISISTAN (CONICET-UNCPBA), Campus Universitario, Tandil, Argentina

marcelo.armentano@isistan.unicen.edu.ar)

Franco Berdun
(ISISTAN (CONICET-UNCPBA), Campus Universitario, Tandil, Argentina

franco.berdun@isistan.unicen.edu.ar)

Analía Amandi
(ISISTAN (CONICET-UNCPBA), Campus Universitario, Tandil, Argentina

analia.amandi@isistan.unicen.edu.ar)

Abstract: Collaborative learning team building is a fundamental, difficult and time-consuming
task in educational environments. In this paper, we address a collaborative learning team
building problem that considers two valuable grouping criteria usually considered by teachers.
One of these criteria considers the understanding levels of the students with respect of the
topics of a given course, and is based on building well-balanced teams in terms of the
understanding levels of their members. The other criterion considers the interest levels of the
students with respect of the topics of a given course, and is based on building well-balanced
teams in terms of the interest levels of their members. The problem addressed has been
recognised as an NP-Hard optimization problem. To solve the problem, we propose a steady-
state evolutionary algorithm. This algorithm aims to organize the students taking a given course
into teams in such a way that the two grouping criteria of the problem are optimized. The
performance of the algorithm is evaluated on nine problem instances with different levels of
complexity, and is compared with that of the only algorithm previously proposed for solving
the addressed problem. The obtained results show that the steady-state evolutionary algorithm
significantly outperforms the previous algorithm.

Keywords: Collaborative Learning, Collaborative Learning Team Building, Understanding
Levels, Interest Levels, Evolutionary Algorithms, Steady-State Evolutionary Algorithms
Categories: G.1.6, I.2.8, J.4, K.3, K.3.1, L.3, L.3.6, L.6.2

1 Introduction

Collaborative learning is an instructional approach usually used in educational
environments in order to supplement and enrich the individual learning of the students

Journal of Universal Computer Science, vol. 22, no. 10 (2016), 1298-1318
submitted: 23/12/15, accepted: 30/9/16, appeared: 1/10/16 © J.UCS

[Barkley et al., 2005; Michaelsen et al., 2004]. This approach requires organizing the
students into collaborative learning teams. Then, the students of each collaborative
learning team must work together to achieve shared learning goals. The collaborative
learning teams must be built in such a way that the students can acquire new
knowledge and skills through the interaction with their peers, improving their
individual learning. Thus, the building of collaborative learning teams from the
students is a fundamental task in collaborative learning.

To build collaborative learning teams from the students, teachers must utilize
some grouping criterion (i.e., criterion to form collaborative learning teams). The
grouping criterion is really important because of the way in which a team is made up
affects the learning level and the social behavior of the students belonging to the team
as well as the performance of the team [Barkley et al., 2005; Michaelsen et al., 2004].
Besides, the way in which the grouping criterion is applied (i.e., either manually or
automatically) is important since many known grouping criteria require a
considerable amount of knowledge, time and effort to be manually applied [Cruz and
Isotani, 2014]. In these cases, it is possible to considerably reduce the workload of
teachers and optimize the collaborative learning team building through automation.

Different works in the literature have described and addressed the problem of
building collaborative learning teams automatically from the students [Alberola et al.,
2016; Cruz and Isotani, 2014]. These works significantly differ in relation to several
aspects including the students’ characteristics analyzed, the grouping criteria
considered, and the algorithms utilized. In this respect, to the best of our knowledge,
only few works have considered grouping criteria that both are usually considered in
real-world classrooms by teachers and have been successfully evaluated in different
kinds of educational environments

In [Lin et al., 2010], the authors describe the problem of building collaborative
learning teams automatically from the students taking a given course. As part of the
problem, the authors consider two grouping criteria that must be simultaneously
satisfied. One of these criteria considers the understanding levels of the students in
respect of each of the topics of the course, and is based on building well-balanced
teams regarding the understanding levels of their members in respect of each topic.
The other criterion considers the interest levels of the students in respect of each of
the topics of the course, and is based on building well-balanced teams regarding the
interest levels of their members in respect of each topic. These two grouping criteria
are usually considered by teachers in real-world classrooms [Saleh and Kim, 2009].
Moreover, different works in the literature [Michaelsen et al., 2004; Yang, 2006;
Saleh and Kim, 2009; Nielsen et al., 2009] indicate that collaborative learning team
building based on these two criteria leads to good discussions and interactions during
the learning process, improves the social behavior of the students, enhances the
learning process of the students, and impacts positively on the learning level of the
students as well as on the performance of the teams. Thus, it is considered that the
collaborative learning team building problem described in [Lin et al., 2010] is really
valuable in the context of collaborative learning.

The collaborative learning team building problem described in [Lin et al., 2010]
is an NP-Hard optimization problem. Because of this, as reported in [Lin et al., 2010],
exhaustive search algorithms only can solve small instances of the problem in a
reasonable period of time. Thus, heuristic search algorithms are required to solve the

1299Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

problem. In this respect, only one heuristic search algorithm has been proposed in the
literature to solve the problem. We refer to the particle swarm optimization algorithm
proposed in [Lin et al., 2010].

In this paper, we address the collaborative learning team building problem
described in [Lin et al., 2010] with the aim of proposing a better heuristic search
algorithm to solve it. In this regard, we propose a steady-state evolutionary algorithm.
Given a course that aims to teach a number of topics, and a number of students taking
the course who must be organized into a given number of collaborative learning
teams, the algorithm explores different solutions to organize the students into
collaborative learning teams, with the aim of finding the solutions that optimize the
two grouping criteria considered as part of the problem. The explored solutions are
evaluated with respect of the two grouping criteria. To perform that evaluation, the
algorithm is based on knowledge of the understanding levels and interest levels of the
students with respect of each of the topics of the course.

We propose a steady-state evolutionary algorithm because of the following
reasons. Evolutionary algorithms have been proved to be effective and efficient in the
resolution of a wide variety of NP-Hard optimization problems [Eiben and Smith,
2015; Deb, 2009] and, in particular, in the resolution of collaborative learning team
building problems [Cruz and Isotani, 2014]. Besides, evolutionary algorithms have
been shown to be more effective than other heuristic search algorithms (e.g., particle
swarm optimization algorithms) in the resolution of different NP-Hard optimization
problems [Saishanmuga Raja and Rajagopalan, 2014; Kachitvichyanukul, 2012].
Thus, we consider that the proposed steady-state evolutionary algorithm could
outperform the heuristic search algorithm previously proposed in the literature for
solving the addressed problem.

The remainder of the paper is organized as follows. In Section 2, we present a
brief review of published works that address the problem of building collaborative
learning teams automatically. In Section 3, we describe the collaborative learning
team building problem addressed in this paper. In Section 4, we present the steady-
state evolutionary algorithm proposed to solve the addressed problem. In Section 5,
we present the computational experiments developed to evaluate the performance of
the steady-state evolutionary algorithm, and an analysis of the results obtained.
Finally, in Section 6, we present the conclusions of the present work.

2 Related Works

In the literature, different works have described and addressed the problem of
building collaborative learning teams automatically [Cruz and Isotani, 2014]. These
works significantly differ regarding several aspects including the students’
characteristics analyzed, the grouping criteria considered, and the algorithms and
measures used. In this section, we review related works reported in the literature,
focusing the attention on analyzing the aspects above-mentioned.

Some works in the literature propose approaches for collaborative learning team
building considering grouping criteria based on the learning styles, the team roles, or
the thinking styles of the students. In [Christodoulopoulos and Papanikolaou, 2007], a
web-based tool is presented which considers the following students’ characteristics:
the dimensions of the Felder-Silverman learning style model, the dimensions of the

1300 Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

Honey-Mumford learning style model, and the knowledge level for the current lesson.
This tool provides both a Fuzzy C-Means algorithm for building intra-homogeneous
teams regarding each of the students’ characteristics, and a standard random selection
algorithm for building intra-heterogeneous teams regarding each of the students’
characteristics. The tool allows the teacher to select the algorithm to be used for
building the teams, as well as the students’ characteristics to be considered. The
teacher can select only up to three students’ characteristics.

Alberola et al. (2016) propose a tool based on the Belbin’s team role model. This
tool aims to build well-balanced teams in respect of the team roles of their student
members. In this case, the collaborative learning team building problem is modeled as
a coalition structure generation problem and is solved by means a linear programming
method. This method uses a measure to estimate the balance level of the possible
teams. Although this measure considers the main balance condition defined by Belbin
(i.e., one student per role), the measure does not consider all the unbalance conditions
defined by Belbin (i.e., missing roles are not considered). The team roles of each
student are estimated only from the feedback given by the other students, by using
Bayesian learning. Although this is meant to avoid the drawbacks inherent to the use
of the Team Role Self-Perception Inventory, the estimation of the students’ roles
could be negatively affected by biased feedback.

In [Yannibelli and Amandi, 2012a, 2012b, 2013], the authors present different
hybrid evolutionary algorithms that consider the Belbin’s team role model. These
algorithms have the aim of building well-balanced teams in respect of the team roles
of their student members. In this sense, the algorithms use a measure to estimate the
balance level of the possible teams. In contrast with the work presented in [Alberola
et al., 2016], this measure considers all the balance conditions and the unbalance
conditions defined by Belbin.

Ounnas et al. (2009) propose a framework that uses an ontology to describe some
student’s characteristics including Honey-Mumford learning styles and Belbin’s team
roles. The framework provides a list with only a few grouping criteria. Each criterion
refers to one student’s characteristic described in the ontology (e.g., learning style),
and indicates a constraint about such characteristic which should be satisfied (e.g.,
homogeneity or heterogeneity). In this framework, the collaborative learning team
building problem is modeled as a constraint satisfaction problem, and is solved by a
DLV constraint satisfaction solver. The weak constraints of the problem refer to the
grouping criteria selected by the teacher from the provided list, and the optimization
objective of the problem is to find the set of teams that minimizes the number of
violated weak constraints.

Wang et al. (2007) present a collaborative learning team building system that
considers the thinking styles of the students, according to the Sternberg’s thinking
styles model. The thinking styles of the students are collected via a thinking style
questionnaire. The system uses a non-elitist genetic algorithm with the aim of
building intra-heterogeneous and inter-homogeneous teams regarding the thinking
styles of their student members. However, this genetic algorithm analyzes the
heterogeneity of the possible teams only in respect of a few thinking styles of the
Sternberg’s thinking styles model.

In the above-mentioned works, the authors consider grouping criteria based on
the Honey-Mumford or Felder-Silverman learning styles, the Belbin’s team roles, or

1301Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

the Sternberg’s thinking styles of the students. However, such grouping criteria are
not usually considered in real-world classrooms by teachers [Alberola et al., 2016].

A number of works in the literature propose approaches for collaborative learning
team building considering grouping criteria designed for specific courses. In [Graf
and Bekele, 2006], the authors propose an ant colony optimization algorithm that
considers six students’ characteristics (i.e., group work attitude, interest for the
subject, achievement motivation, self-confidence, shyness, fluency in the language of
instruction, and level of performance in the subject). This algorithm aims to build
intra-heterogeneous teams regarding the characteristics of their student members. In
this sense, a measure is proposed to estimate the heterogeneity level of the possible
teams. However, this measure does not analyze the heterogeneity of the teams in
respect of each one of the considered characteristics, showing significant limitations
for estimating the heterogeneity level of the teams.

Meyer (2009) presents a web-based tool that considers the preferences of the
students in respect of the projects of the course. Each student is asked provide
preference levels for the projects of the course. In this tool, the collaborative learning
team building problem is modeled as a constraint satisfaction problem and is solved
by a linear programming solver. The optimization objective of this problem implies
building intra-homogeneous collaborative learning teams with respect to the student
preferences, maximizing the student satisfaction regarding the satisfied preferences.

Zhamri Che Ani et al. (2010) propose a non-elitist genetic algorithm for building
teams in the context of software programming university courses. This algorithm
considers the programming skills of the students, and aims to build heterogeneous
teams in respect of the programming skills of their student members.

Only a few works in the literature propose approaches for collaborative learning
team building considering an unlimited number of students’ characteristics. Moreno et
al. (2012) propose a non-elitist genetic algorithm that considers an arbitrary number
of students’ characteristics. The algorithm aims to build inter-homogeneous and intra-
heterogeneous collaborative learning teams in respect of the students’ characteristics.
In this regard, the algorithm uses a generic measure to estimate the homogeneity level
of the possible sets of collaborative learning teams. However, this measure has
significant limitations for developing correctly such estimations. These limitations are
mainly because of the additive nature of the measure.

Isotani et al. (2009) propose a collaborative learning team building method driven
by learning theories, although these authors mention that the use of learning theories
to support collaborative learning is open for criticism. In this case, learning theories
are considered as guidelines to support collaborative learning team building as well as
collaborative learning activity design. To facilitate the use of such theories by the
method, an ontology is proposed that represents knowledge extracted from existing
learning theories. Specifically, this ontology represents concepts, and relations among
concepts, that are considered relevant to support collaborative learning team building
and collaborative learning activity design (e.g, individual learning goal, group
learning goal, role, learning strategy, interaction pattern, and students’ stage of
knowledge/skill). The ontology is used by the method to both collaborative learning
team building and collaborative learning activity design. The method only has been
partially evaluated on one small case study.

1302 Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

In [Lin et al., 2010], a collaborative learning team building problem is modeled
mathematically, which considers two grouping criteria that must be simultaneously
optimized. One of these criteria considers the understanding levels of the students in
respect of each of the topics of the course, and is based on building well-balanced
teams regarding the understanding levels of their members in respect of each topic.
The other criterion considers the interest levels of the students in respect of each of
the topics of the course, and is based on building well-balanced teams regarding the
interest levels of their members in respect of each topic. These two grouping criteria
are usually considered by teachers in real-world classrooms [Saleh and Kim, 2009].
Besides, different works in the literature [Michaelsen et al., 2004; Yang, 2006; Saleh
and Kim, 2009; Nielsen et al., 2009] indicate that collaborative learning team building
based on these two grouping criteria leads to good discussions and interactions during
the learning process, improves the social behavior of the students, enhances the
learning process of the students, and impacts positively on the learning level of the
students as well as on the performance of the teams. However, the manual building of
collaborative learning teams considering simultaneously these two criteria is a really
complex, costly, and time-consuming task for teachers. For these reasons, it is really
valuable to propose an effective and efficient algorithm for automatically solving the
problem modeled in [Lin et al., 2010], with the aim of assisting teachers in building
collaborative learning teams based on the two mentioned criteria.

3 Problem Description

In this paper, we address the collaborative learning team building problem presented
in [Lin et al., 2010]. A description of this problem is presented below.

Suppose that a course aims to teach k topics, and n students taken the course. The
teacher of the course must organize the n students into g teams. Each team must be
made up of a number of member students, and each student can only belong to one
team. Regarding team size, students must be organized in such a way that the teams
have a similar number of students each. Specifically, the difference between the size
of a team and the size of the other teams must not exceed one. The values of the terms
k, n and g are known.

As regards the students, it is considered that they have different understanding
levels and different interest levels in relation to each of the k topics. The
understanding level of a student s in relation to a topic l is notated as Usl, and the
interest level of a student s in relation to a topic l is notated as Lsl, considering 1 ≤ s ≤
n and 1 ≤ l ≤ k. The mentioned terms Usl and Lsl take a real value over the range [0, 1].
The values of the terms Usl and Lsl inherent to each student are known. As described
in [Lin et al., 2010], the values of the terms Usl inherent to each student can be
obtained through a pre-test specially designed to cover the k topics. In addition, the
values of the terms Lsl inherent to each student can be obtained by analyzing available
information about the participation of the students in already developed learning
activities (e.g., accessed learning material, topics discussed, and answers to interest
questionnaires about the topics).

As part of the problem, teams must be made up in such a way that two grouping
criteria are reached. One of these grouping criteria is to minimize the difference in
understanding level for each topic among the teams. This criterion aims to build well-

1303Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

balanced teams regarding the understanding levels of their student members in respect
of each topic. The other grouping criterion is to minimize the difference in interest
level for each topic among the teams. This criterion aims to build well-balanced teams
regarding the interest levels of their student members in respect of each topic. These
grouping criteria require analyzing the understanding levels and the interest levels of
the formed teams in relation to each topic. In this respect, the understanding level of a
team with respect of a given topic depends on the understanding levels of the students
belonging to the team with respect of the topic. The interest level of a team with
respect of a given topic depends on the interest levels of the students belonging to the
team with respect of the topic.

The grouping criteria considered as part of the problem are modeled by Equations
(1), (2), (3) and (4).

Equation (1) minimizes the difference in understanding level for each topic
among the g teams defined from the n students, and minimizes the difference in
interest level for each topic among the g teams defined from the n students. In other
words, the objective of this equation is to find a solution (i.e., a set of g teams) that
minimizes the difference in understanding level for each topic among the g teams and
minimizes the difference in interest level for each topic among the g teams. This is the
optimal solution to the addressed problem. In Equation (1), set C contains all the sets
of g teams that may be defined from the n students. The term G represents a set of g
teams belonging to C. The term Z(G) represents the difference in understanding level
and interest level for the k topics among the g teams belonging to set G. Equation (1)
uses Equations (2), (3) and (4) to establish the mentioned difference among the g
teams belonging to set G. The term Z(G) takes a real value over the range [0, 3]. In
the case of a G set of g teams with no difference in understanding level and interest
level for the k topics, the value of the term Z(G) is equal to 0, considering 0 as the best
possible value for Z(G).

Equation (2) establishes the average maximal difference in understanding level
for the k topics among the g teams belonging to set G. To establish this average
maximal difference, the equation analyzes the maximal difference in understanding
level for each topic among the g teams belonging to set G. In this equation, the term
wl represents the weight assigned to the topic l and takes a real value over the range
[0, 1]. The term Uxjl represents the understanding level of the student x of the team j
with respect of the topic l, and takes a real value over the range [0, 1]. The term c
represents the maximal size of the g teams belonging to set G. Note that the term f(G)
takes a real value over the range [0, 1].

Equation (3) establishes the maximal difference in understanding level for the k
topics among the g teams belonging to set G. To determine this maximal difference,
the equation analyzes the maximal difference in understanding level for each topic
among the g teams belonging to set G. Note that the term C1(G) takes a real value
over the range [0, 1]. As mentioned in [Lin et al., 2010], Equation (3) complements
Equation (2) in some particular situations. In this respect, when there is a slight
difference in understanding level for most of the k topics among the g teams, and
there is a significant difference in understanding level for a few of the k topics among
the g teams, then the value of f(G) in Equation (2) remains small. This is because of
Equation (2) averages the differences in understanding level for all the k topics among
the g teams. Thus, the value of f(G) in Equation (2) hides the more significant

1304 Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

difference in understanding level for the k topics among the g teams. As a result, the
mentioned difference can not be appropriately minimized when only Equation (2) is
used in the explained situations. To avoid this happen, Equation (2) is used together
with Equation (3). Equation (3) establishes the more significant difference in
understanding level for the k topics between the g teams. As a result, the mentioned
difference can be minimized.

Equation (4) establishes the maximal gap in interest level for the g teams
belonging to set G with respect of the k topics. To establish this maximal gap, the
equation analyzes the gap in interest level for the g teams with respect of each topic.
In this equation, the term Lxjl represents the interest level of the student x of the team j
with respect of the topic l, and takes a real value over the range [0, 1]. Note that the
term C2(G) takes a real value over the range [0, 1].

For a more detailed discussion of Equations (1), (2), (3) and (4), readers are
referred to the work [Lin et al., 2010], which has introduced these equations.

        GCGCGfGZmin

CG
21 


 (1)

 
   

ck

UwminUwmax

Gf

k

l

c

x
xjll

gj

c

x
xjll

gj 
 




 





































1 1

1
1

1

(2)

 
   

c

UwminUwmaxmax

GC

c

x
xjll

gj

c

x
xjll

gjkl 












































1

1
1

11

1

(3)

 








































 
 

 g

L,min

maxGC

g

j

c

x
xjl

kl

1 1

1
2

1

1

(4)

4 A Steady-State Evolutionary Algorithm

To solve the addressed problem, we propose a steady-state evolutionary algorithm.
The steady-state evolutionary algorithms are population-based stochastic search and
optimization algorithms inspired by the theory of evolution of species proposed by
Darwin in 1859 [Eiben and Smith, 2015; Deb, 2009]. These algorithms search the
solution space of a given problem in order to find the optimal solutions, applying the
Darwinian principles of selection, crossover and mutation.

1305Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

4.1 General Behavior of the Steady-State Evolutionary Algorithm

The general behavior of the steady-state evolutionary algorithm proposed here is
shown in Fig. 1 and is described as follows. Given a course that aims to teach k
topics, and given the n students taking the course who shall be organized into g
collaborative learning teams, the evolutionary algorithm starts from an initial
population of feasible solutions. Each solution of this initial population encodes a
feasible set of g teams which may be defined from the n students taking the course.
Then, each solution of the population is decoded (i.e., the set of g teams inherent to
the solution is built), and evaluated with respect of the two grouping criteria of the
problem by a fitness function. As mentioned in Section 3, one of these grouping
criteria is to minimize the difference in understanding level for the k topics among the
g teams, and the other grouping criterion is to minimize the difference in interest level
for the k topics among the g teams. Therefore, considering a given solution, the fitness
function evaluates the understanding levels and the interest levels of the g teams
represented by the solution in relation to each of the k topics. To perform that
evaluation, the function is based on knowledge of the understanding levels and
interest levels of the n students with respect of the k topics of the course.

Steady-state evolutionary algorithm

inputs: population_size, number_generations, Pc, Pm
outputs: best solution from the last generation or population

procedure:
 1: population = generate_initial_population(population_size);
 2: generation = 1;
 3: while (generation ≤ number_generations) do
 4: mating_pool = parent_selection_process(population);
 5: offprings = crossover_process(mating_pool, Pc);
 6: mutation_process(offsprings, Pm);
 7: population = steady_state_survival_selection(population,offprings);
 8: generation = generation + 1;
 9: end while
10: solution = best_solution_from(population);
11: return solution;

Figure 1: Description of the steady-state evolutionary algorithm.

After the solutions of the population are evaluated, a parent selection process is
used in order to determine which solutions of the population will compose the mating
pool. In this respect, the solutions with the best fitness values will have more chances
of being selected. After the mating pool is composed, the solutions in the mating pool
are paired, and a crossover process is applied to each pair of solutions with a
probability Pc in order to generate new feasible ones. Then, a mutation process is
applied to each solution generated by the crossover process with a probability Pm. The
mutation process is applied in order to introduce diversity in the solutions generated

1306 Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

by the crossover process. Finally, a fitness-based survival selection process for
steady-state evolutionary algorithms is used. This process is used in order to
determine which solutions from the solutions in the population and the solutions
generated from the mating pool will compose the new population.

This process is repeated until a predetermined number of generations is reached.
After this happens, the algorithm provides the solution with the best fitness value
within the last population or generation as a solution to the addressed problem.

4.2 Components of the Steady-State Evolutionary Algorithm

In the next sections, the main components of the steady-state evolutionary algorithm
are described. These components are the encoding and decoding of solutions, the
fitness function, and the parent selection, crossover, mutation and survival selection
processes.

4.2.1 Encoding and Decoding of Solutions

In the population of the steady-state evolutionary algorithm, each solution represents
a feasible set of g teams which may be defined from the n students taking the course.
To encode the solutions of the population, we used the encoding described in
[Yannibelli and Amandi, 2012a, 2012b]. By using this encoding, each solution is
encoded as a list with as many positions as students taking the course (i.e., a list with
a length equal to n). Each position on this list contains a different student (i.e.,
repeated students are not admitted on the list). Besides, each student may be in any
position on the list. Thus, the list is a permutation of the n students.

In order to build a set of g teams from the above-described list, we used the
decoding process proposed in [Yannibelli and Amandi, 2012a, 2012b]. This process
builds a set of g teams from the list taking into account the two restrictions considered
as part of the addressed problem. The first restriction is that each student may belong
to only one team. The second restriction is that the difference between the size of a
team and the size of the rest of the teams must not exceed one. The decoding process
works as follows.

In the decoding process, the size of the teams depends on the relationship
between the values n and g. Thus, the process starts by calculating the value of the
term z = (n/g). When z is an integer, then the list is divided into g equal segments,
each of which has a size equal to z and represents to a different team. Thus, g teams
with the same size are built.

When z is not an integer (i.e., z is a real number), g teams with the same size can
not be built. Besides, the process considers that the difference between the sizes of
any two teams must not exceed one. Thus, the process builds g teams which do not
have the same size, but which respect the restriction mentioned above. Specifically,
the process divides the list into g segments: the first g1 segments have a size equal to
((integer part of z) + 1) and the remaining segments have a size equal to (integer part
of z), considering g1 = (n – ((integer part of z) × g)). Each segment represents to a
different team. Thus, the process builds g1 teams with a size equal to ((integer part of
z) + 1) and (g – g1) teams with a size equal to (integer part of z).

In relation to the behavior of the above-described decoding process, note that
when this process is applied, only one set of g teams can be built from a given

1307Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

encoded solution, but different encoded solutions could be transformed in the same
set of g teams.

In relation to the generation of the encoded solutions of the initial population, we
used the random-based generation process described in [Yannibelli and Amandi,
2012a, 2012b]. By using this process, a diverse initial population is obtained. This is
meant to avoid the early stagnation of the search developed by the steady-state
evolutionary algorithm.

4.2.2 Fitness Function

This function is used by the steady-state evolutionary algorithm to determine the
fitness values of the encoded solutions. The fitness value of an encoded solution
represents the quality of the related set of g teams with respect of the two grouping
criteria of the addressed problem. As was mentioned in Section 3, one of these
grouping criteria is to minimize the difference in understanding level for the k topics
among the g teams, and the other grouping criterion is to minimize the difference in
interest level for the k topics among the g teams. Thus, the fitness function evaluates a
given encoded solution in relation to each one of the two mentioned grouping criteria
and then defines a scalar fitness value for the solution based on the results obtained by
the evaluations.

The detailed behavior of the fitness function is described as follows. Considering
a given encoded solution, the function decodes the G set of g teams related to the
solution by using the decoding process described in Section 4.2.1. Then, the function
calculates the value of the term Z(G) corresponding to G (Equations (1), (2), (3) and
(4)). This value represents the difference in understanding level and interest level for
the k topics among the g teams composing the G set, and therefore, determines the
fitness level of the encoded solution. In the case of a G set of g teams with no
difference in understanding level and interest level for the k topics, the value of the
term Z(G) is equal to 0, considering 0 as the best possible fitness level.

To calculate the value of the term Z(G), the fitness function utilizes the values of
the terms Usl and Lsl inherent to G (Equations (2), (3) and (4)). As was mentioned in
Section 3, the values of the terms Usl and Lsl inherent to each student s are known. In
this respect, a knowledge base contains the values of the terms Usl and Lsl inherent to
each of the n students taking the course. Then, the fitness function queries the
knowledge base to obtain the values of the terms Usl and Lsl inherent to each student s.

4.2.3 Parent Selection Process

In the steady-state evolutionary algorithm, the parent selection process is utilized in
order to determine which solutions of the current population will compose the mating
pool. This process is very relevant because of the solutions in the mating pool, usually
called parent solutions, will be used by the crossover process to generate new
solutions, usually called offspring solutions.

To develop the parent selection, we applied the process called deterministic
tournament selection with replacement [Eiben and Smith, 2015]. This process is a
variant of the traditional tournament selection process. By using the process
deterministic tournament selection with replacement, the solutions with the best

1308 Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

fitness values within the current population will have more chances of being
incorporated in the mating pool.

The process deterministic tournament selection with replacement works as
follows. A number of t solutions are randomly selected from the current population,
where 2 ≤ t ≤ P and P is the population size. The t selected solutions compete for
being incorporated in the mating pool. The better one (i.e., the solution with the best
fitness value) is incorporated into the mating pool. Then, the t solutions are returned
to the population. The described operation is repeated until a number P of solutions is
incorporated in the mating pool.

4.2.4 Crossover Process

Once the mating pool is composed, the solutions in the mating pool are paired
considering the order in which they where incorporated in the mating pool.
Subsequently, a crossover process is applied to each of these pairs of solutions with a
probability Pc to generate new solutions. Specifically, the crossover process applied to
a pair of solutions, called parent solutions, combines the characteristics of these
solutions and generates two new solutions, called offspring solutions. Therefore, the
crossover process has the possibility of combining the best characteristics of the
parent solutions so that new, better solutions can be generated [Eiben and Smith,
2015].

In relation to the crossover process applied by the steady-state evolutionary
algorithm, we considered a feasible process for solutions encoded as permutations of
n elements. This is because of the solutions in the algorithm are encoded as
permutations of n elements (i.e., permutations of n students). Specifically, we
considered a crossover process called partially mapped crossover [Eiben and Smith,
2015]. This process is one of the most applied for permutations in the literature [Eiben
and Smith, 2015].

The partially mapped crossover process works as follows. Given two solutions
parent 1 and parent 2 (i.e., two permutations of the n students), the process creates
copies offspring 1 and offspring 2 of parent 1 and parent 2, respectively. Then, the
process defines two random crossover points c1 and c2, considering 1 < c1 < c2 < n.

To generate the first offspring from the given solutions parent 1 and parent 2, the
process modifies offspring 1 by the following procedure. For positions j = c1, …, c2,
the process observes the student on the position j of parent 2, and then searches for the
position j’ of this student in offspring 1. Then, the process exchanges the students on
the positions j and j’ of offspring 1.

To generate the second offspring from the given solutions parent 1 and parent 2,
the process modifies offspring 2 by the following procedure. For positions j = c1,…,
c2, the process observes the student on the position j of parent 1, and then searches for
the position j’ of this student in offspring 2. Then, the process exchanges the students
on the positions j and j’ of offspring 2.

The above-described procedures generate two new feasible solutions offspring 1
and offspring 2 (i.e., two new feasible permutations of the n students) from the given
solutions parent 1 and parent 2.

1309Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

4.2.5 Mutation Process

The previously described crossover process generates a new set of solutions from the
mating pool. Subsequently, a mutation process is applied to each solution of this new
set, with a probability Pm. This is meant to randomly modify one or more
characteristics of some of the solutions generated by the crossover process, and thus,
to introduce genetic diversity in these solutions [Eiben and Smith, 2015].

In relation to the mutation process applied by the steady-state evolutionary
algorithm, we considered a feasible process for solutions encoded as permutations of
n elements. This is because of the solutions in the algorithm are encoded as
permutations of n elements (i.e., permutations of n students). Specifically, we
considered a mutation process called exchange mutation [Eiben and Smith, 2015].
This process is one of the most applied for permutations in the literature [Eiben and
Smith, 2015].

The exchange mutation process works as follows. Given a solution (i.e., a
permutation of n students), the process randomly selects two positions p1 and p2 on
the solution, considering 1 ≤ p1 < p2 ≤ n. Then, the process exchanges the students on
the positions p1 and p2 of the solution. Thus, the described mutation process always
generates a new feasible solution (i.e., a new feasible permutation of the n students)
from the given solution.

4.2.6 Survival Selection Process

In the steady-state evolutionary algorithm, the survival selection process is used in
order to determine which solutions from the solutions in the current population and
the solutions generated from the mating pool will compose the new population.

To develop the survival selection, we applied a fitness-based survival selection
process for steady-state evolutionary algorithms [Eiben and Smith, 2015]. By using
this process, the best solutions found by the evolutionary algorithm are preserved.

The mentioned fitness-based survival selection process works as follows. First,
the process selects the best (P - ) solutions from the current population, where P is
the population size, and  is a parameter that takes an integer value over the range [1,
P - 1]. Then, the process selects the best  solutions from the solutions generated from
the mating pool by the crossover and mutation processes. Finally, the process uses the
P selected solutions to compose the new population.

5 Computational Experiments to Evaluate the Steady-State
Evolutionary Algorithm

In this section, we describe the computational experiments developed to evaluate the
performance of the steady-state evolutionary algorithm. After that, we present and
analyze the results obtained by the experiments. Finally, we compare the performance
of the steady-state evolutionary algorithm with that of the particle swarm optimization
algorithm presented in [Lin et al., 2010] for solving the addressed problem. To the
best of our knowledge, the algorithm presented in [Lin et al., 2010] is the only
algorithm previously proposed in the literature for solving the addressed problem.

1310 Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

To develop the computational experiments, we designed nine data sets. Table 1
shows the main characteristics of each data set. Each data set contains a list of k topics
and a list of n students. The k topics have the same weight (i.e., the k topics have a
weight equal to 1). For each data set, we established a g number of teams to be built
from the n students. Note that the size of the g teams is equal to 6 members. In the
literature, this size is considered one of the optimal sizes for collaborative learning
teams [Barkley et al., 2005; Michaelsen et al., 2004].

Moreover, for each student of each of the nine data sets, we defined a specific
understanding level and a specific interest level with respect of each of the k topics.
The understanding levels and interest levels of the n students with respect of the k
topics take a real value on the range [0, 1], as mentioned in Section 3. Specifically, in
each data set, for each of the k topics, g students have an understanding level equal to
1 and the remaining students have an understanding level equal to 0. Moreover, in
each data set, for each of the k topics, g students have an interest level equal to 1 and
the remaining students have an interest level equal to 0.

Thus, in each data set, each of the k topics is understood by g students of the data
set, and each of the k topics is interesting for g students of the data set. In this way,
from the n students of the data set, it is possible to build at least one set of g teams
with no difference in understanding level and interest level with respect of each of the
k topics. In other words, it is possible to build at least one set of g teams in which each
of the k topics is understood by one team member and is interesting for one team
member. According to the fitness function described in Section 4.2.2, a set of g teams
with no difference in understanding level and interest level regarding each of the k
topics has a fitness level equal to 0. This fitness level is the best possible fitness level.

Based on the mentioned, we may state that there is at least one set of g teams with
the best possible fitness level for each data set. Considering that a set of g teams with
the best possible fitness level outperforms all other possible sets of g teams, such set
of g teams may be considered an optimal set of g teams. Thus, for each designed data
set, there is at least one optimal set of g teams with a fitness level equal to 0.

Data set Number of

topics (k)
Number of
participating students (n)

Number of
teams (g)

1 6 18 3
2 6 24 4
3 6 60 10
4 6 120 20
5 6 360 60
6 6 600 100
7 6 1200 200
8 6 1800 300
9 6 2400 400

Table 1: Characteristics of data sets.

The steady-state evolutionary algorithm has been run 20 times on each of the nine
data sets. As a result of each run, the steady-state evolutionary algorithm provided the
best set of g teams of the last population or generation. Then, for each of the nine data

1311Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

sets, the average fitness value of the obtained sets of g teams was calculated, and also
the average computation time of the runs was calculated.

The parameter setting used for the above-mentioned experiments is presented in
Table 2. This parameter setting was chosen based on preliminary experiments. In this
respect, various parameter settings were examined on each data set 10 times and then
the parameter setting presented in Table 2 was chosen because this setting reached the
best and most stable results.

Table 3 presents the results obtained by the steady-state evolutionary algorithm
for each of the nine data sets. The first column presents the name of each data set; the
second column presents the average fitness value of the obtained sets of g teams for
each data set; and the third column presents the average computation time of the runs
performed on each data set. The experiments were performed on a personal computer
Intel Core 2 Duo at 3.00 GHz and 4 GB RAM under Windows XP Professional
Version 2002. The algorithm has been implemented in Java programming language.

Parameter Value
Population Size 100
Number of generations 700
Parent selection process
 t (tournament size) 2
Crossover process
 Crossover Probability Pc 0.9
Mutation process
 Mutation Probability Pm 0.2
Survival selection process
  (replacement factor) 80

Table 2: Parameter setting used for the steady-state evolutionary algorithm.

Data set Fitness value Time (seconds)
1 0 0.6537
2 0 1.4741
3 0 5.922
4 0 15.802
5 0 41.8722
6 0.0402 56.7548
7 0.0601 186.9964
8 0.0902 345.453
9 0.12 516.969

Table 3: Results obtained by the steady-state evolutionary algorithm for each data set

The results in Table 3 are analyzed below considering that, as was previously
mentioned, each of the nine data sets has at least one optimal set of g teams with a
fitness level equal to 0. This fitness level is considered here as a reference level to
evaluate the effectiveness of the steady-state evolutionary algorithm on each data set.

In relation to the average fitness value obtained by the algorithm for each data set,
we may mention the following points. For each of the first five data sets, the

1312 Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

algorithm has achieved an average fitness value that is equal to 0. This means that, for
each of the first five data sets, the algorithm has achieved an optimal set of g teams in
each of the runs. For each of the last four data sets, the algorithm has achieved an
average fitness value that is lower than or equal to 0.12. This means that, for the last
four data sets, the algorithm has achieved near-optimal sets of g teams. We analyzed
the composition of the obtained sets of g teams for the last four data sets. Based on
this analysis, we may say that each one of these sets of g teams contains a very high
percentage of teams with no difference in understanding level and interest level with
respect of each topic. Based on the results above-mentioned, it is considered that the
algorithm has reached very high-quality sets of g teams for each of the nine data sets.
This suggests that the algorithm may be considered in educational environments to
build well-balanced teams regarding the understanding levels and interest levels of
their student members in respect of each topic.

In relation to the average computation time required by the algorithm for each
data set, we may mention the following points. For the first five data sets, the average
time required by the algorithm was lower than 42 seconds. For the last four data sets,
the average time required by the algorithm was higher than 56 seconds and lower than
517 seconds. The relevance of the time required by the algorithm depends on the
response time required by the educational environment. In some educational
environments (e.g., face-to-face courses), the response time is not critical [Alberola et
al., 2016]. Thus, the time required by the algorithm for the data sets corresponding to
such environments may be considered as acceptable for these environments. In some
other educational environments (e.g., on-line and on-demand courses with more than
1000 students), the response time becomes highly relevant [Moreno et al, 2012].
Thus, it would be convenient to decrease the time required by the algorithm for the
data sets corresponding to such environments, so that the algorithm can give a more
acceptable response time for these environments. In this respect, the time required by
the algorithm depends on the hardware and software configuration in which the
algorithm is run. The computational experiments presented were developed using an
average desktop computer; however, with a higher-performance computer, the time
required by the algorithm would be reduced, and the good fitness levels obtained by
the algorithm would be preserved. Besides, further research should be conducted in
order to decrease the time required by the algorithm, preserving or improving the high
fitness levels reached.

5.1 Comparison with a Competing Algorithm

In this section, we compare the performance of the steady-state evolutionary
algorithm with that of the particle swarm optimization algorithm presented in [Lin et
al., 2010] for solving the addressed problem. To the best of our knowledge, the
algorithm presented in [Lin et al., 2010] is the only algorithm previously proposed in
the literature for solving the addressed problem.

For sake of simplicity, the algorithm presented in [Lin et al., 2010] will be
referred as algorithm SPOA. Like the steady-state evolutionary algorithm, the
algorithm SPOA is a population-based stochastic search and optimization algorithm.
However, in contrast with the steady-state evolutionary algorithm, the algorithm
SPOA is not an evolutionary algorithm. In this respect, the framework of the
algorithm SPOA corresponds to a classical particle swarm optimization framework.

1313Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

Thus, the algorithm SPOA does not include evolutionary operators such as parent
selection, crossover, mutation, and survival selection.

In order to compare the performance of the steady-state evolutionary algorithm
with that of the algorithm SPOA, the performance of the algorithm SPOA was
evaluated on the nine data sets presented in Table 1. Specifically, the algorithm SPOA
was run 20 times on each of the nine data sets presented in Table 1, considering the
parameter setting recommended in [Lin et al., 2010] for this algorithm. Then, for each
of the nine data sets, the average fitness value of the obtained sets of g teams and the
average computation time of the runs were calculated.

Table 4 presents the results obtained by the algorithm SPOA for each of the nine
data sets. Besides, this table contains the results obtained by the steady-state
evolutionary algorithm for each of the nine data sets, as were presented in Table 3.
The experiments corresponding to both algorithms were performed on a personal
computer Intel Core 2 Duo at 3.00 GHz and 4 GB RAM under Windows XP
Professional Version 2002.

Data set Algorithm SPOA Steady-state evolutionary algorithm
 Fitness value Time (seconds) Fitness value Time (seconds)
1 0.019 0.1722 0 0.6537
2 0.026 0.3738 0 1.4741
3 0.0459 3.0156 0 5.922
4 0.0391 5.3676 0 15.802
5 0.0476 9.07725 0 41.8722
6 0.081 13.419 0.0402 56.7548
7 0.108 44.15565 0.0601 186.9964
8 0.1513 80.28405 0.0902 345.453
9 0.1955 117.18105 0.12 516.969

Table 4: Results obtained by the algorithm SPOA and results obtained by the steady-
state evolutionary algorithm.

In relation to the results presented in Table 4, we may mention the following
points. The average fitness value obtained by the steady-state evolutionary algorithm
for each data set is significantly better than that obtained by the algorithm SPOA. In
particular, the steady-state evolutionary algorithm has obtained optimal fitness values
(i.e., optimal sets of g teams) in all runs developed on the first five data sets, whereas
the algorithm SPOA has not obtained optimal fitness values for these data sets (i.e.,
the algorithm SPOA has obtained average fitness values over the range [0.019, 0.05]
for the first five data sets). These results indicate that the quality of the sets of g teams
achieved by the steady-state evolutionary algorithm for the data sets is significantly
better than that of the sets of g teams achieved by the algorithm SPOA. In relation to
the time required by the algorithms, the average time required by the steady-state
evolutionary algorithm for each data set is higher than that required by the algorithm
SPOA. In this respect, as was previously mentioned, the time required by the steady-
state evolutionary algorithm is acceptable for some educational environments (e.g.,
face-to-face courses); however, it would be convenient to reduce the time required by
the steady-state evolutionary algorithm for some other educational environments (e.g.,
online courses with more than 1000 students).

1314 Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

From the analysis of the results presented in Table 4, it may be stated that the
steady-state evolutionary algorithm achieved higher-quality sets of g teams than the
algorithm SPOA for each data set. This is mainly because of, in contrast with the
algorithm SPOA, the steady-state evolutionary algorithm uses different evolutionary
processes to search the solution spaces inherent to the problem instances represented
by the data sets. Specifically, the steady-state evolutionary algorithm uses a parent
selection process, a crossover process, a mutation process and a survival selection
process. The selection processes guide the evolutionary search towards the higher-
quality regions of the solution space, selecting the sets of g teams that belong to the
higher-quality regions. The crossover process explores the regions indicated by the
selection processes, generating sets of g teams from pairs of sets of g teams selected
by the selection processes. The mutation process fine-tunes the search developed by
the crossover process on the regions indicated by the selection processes, fine-tuning
the sets of g teams obtained by the crossover process. Because of the use of these
evolutionary processes, the steady-state evolutionary algorithm can reach higher-
quality sets of g teams than the algorithm SPOA for the nine data sets.

Based on the above-mentioned, the steady-state evolutionary algorithm may be
considered in educational environments to build sets of teams much better balanced
than algorithm SPOA, regarding the understanding levels and interest levels of their
student members in respect of each topic.

6 Conclusions and Future Work

In this paper, we have addressed the collaborative learning team building problem
described in [Lin et al., 2010]. This problem considers two grouping criteria that must
be simultaneously satisfied. One of these criteria considers the understanding levels of
the students in respect of the topics of the course, and is based on building well-
balanced teams regarding the understanding levels of their members. The other
criterion considers the interest levels of the students in respect of the topics of the
course, and is based on building well-balanced teams regarding the interest levels of
their members. These two grouping criteria are usually considered by teachers in real-
world classrooms [Saleh and Kim, 2009]. Besides, these two grouping criteria have
been successfully evaluated in many different kinds of educational environments
[Michaelsen et al., 2004; Yang, 2006; Saleh and Kim, 2009; Nielsen et al., 2009].
Thus, it is considered that the collaborative learning team building problem described
in [Lin et al., 2010] is really valuable in the context of collaborative learning.

To solve the addressed problem, we have proposed a steady-state evolutionary
algorithm. This algorithm explores different sets of teams which may be defined from
the students taking the course, with the aim of finding the sets of teams that optimize
the two grouping criteria. The explored sets of teams are evaluated with respect of the
two grouping criteria. In order to perform that evaluation, the algorithm is based on
knowledge of the understanding levels and interest levels of the students with respect
of each of the topics of the course.

We have presented the computational experiments carried out to evaluate the
performance of the proposed steady-state evolutionary algorithm. In this respect, the
performance of the steady-state evolutionary algorithm was evaluated on nine data
sets corresponding to different instances of the addressed problem. These instances

1315Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

have different levels of complexity. Then, the performance of the steady-state
evolutionary algorithm was compared with that of the particle swarm optimization
algorithm proposed in [Lin et al., 2010] for solving the addressed problem. To the
best of our knowledge, the algorithm presented in [Lin et al., 2010] is the only
algorithm previously proposed in the literature for solving the addressed problem.

Based on the results obtained by the steady-state evolutionary algorithm for the
nine data sets, we may state that this algorithm has reached very high-quality sets of
teams for each of the data sets. Specifically, the algorithm has reached optimal sets of
teams (i.e., sets of teams with a fitness equal to 0) for the five less complex data sets,
and near-optimal sets of teams (i.e., sets of teams with an average fitness lower than
or equal to 0.12) for the four more complex data sets. In relation to the time required
by the algorithm, we consider that the time required by the algorithm is acceptable for
some educational environments (e.g., face-to-face courses), however it would be
convenient to decrease the time required by the algorithm for some other educational
environments (e.g., online courses with more than 1000 students). Besides, as a result
of the comparative analysis conducted, we may state that the steady-state evolutionary
algorithm achieved much higher-quality sets of teams than the particle swarm
optimization algorithm proposed in [Lin et al., 2010] for each of the nine data sets.
Thus, the steady-state evolutionary algorithm may be considered in educational
environments to build sets of teams much better balanced than particle swarm
optimization algorithm proposed in [Lin et al., 2010], regarding the understanding
levels and interest levels of their student members in respect of each topic.

In future works, we will incorporate other relevant grouping criteria into the
addressed problem and then we will adapt the fitness function of the proposed steady-
state evolutionary algorithm according to these grouping criteria. On the other hand,
in future works, we will investigate the hybridization of the steady-state evolutionary
algorithm with other search and optimization algorithms (e.g., simulated annealing
algorithms, hill-climbing algorithms, and tabu search algorithms), in order to decrease
the time required by the algorithm, and preserve or improve the high fitness levels
reached by the algorithm. Moreover, we will evaluate other crossover and mutation
processes for the encoding of solutions used in the steady-state evolutionary
algorithm. In addition, we will evaluate other survival selection processes proposed in
the literature (e.g., deterministic crowding).

References

[Alberola et al., 2016] Alberola, J., Del Val, E., Sanchez-Anguix, V., Palomares, A., Teruel, M:
“An artificial intelligence tool for heterogeneous team formation in the classroom”;
Knowledge-Based Systems, 101, 1 (2016), 1-14.

[Barkley et al., 2005] Barkley, E.F., Cross, K.P., Howell Major, C.: “Collaborative learning
techniques”; John Wiley & Sons, Inc. (2005)

[Christodoulopoulos and Papanikolaou, 2007] Christodoulopoulos, C.E., Papanikolaou, K.A.:
“A Group Formation Tool in an E-Learning Context”; Proc. 19th IEEE ICTAI 2007, IEEE
Press, New York (2007), 117–123.

1316 Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

[Cruz and Isotani, 2014] Cruz, W. M., Isotani, S.: “Group Formation Algorithms in
Collaborative Learning Contexts: A Systematic Mapping of the Literature”; Lecture Notes in
Computer Science, 8658 (2014), 199-214.

[Deb, 2009] Deb, K.: “Multi-objective optimization using evolutionary algorithms”; Wiley,
NewYork (2009)

[Eiben and Smith, 2015] Eiben, A. E., Smith, J. E.: “Introduction to evolutionary computing”
(2nd ed.); Springer, Germany (2015)

[Graf and Bekele, 2006] Graf, S., Bekele, R.: “Forming Heterogeneous Groups for Intelligent
Collaborative Learning Systems with Ant Colony Optimization”; Lecture Notes in Computer
Science, 4053 (2006), 217–226.

[Isotani et al., 2009] Isotani, S., Inaba, A., Ikeda, M., Mizoguchi, R.: “An ontology engineering
approach to the realization of theory-driven group formation”; International Journal of
Computer-Supported Collaborative Learning, 4, 4 (2009), 445–478

[Kachitvichyanukul, 2012] Kachitvichyanukul, V.: “Comparison of Three Evolutionary
Algorithms: GA, PSO, and DE”; Industrial Engineering & Management Systems, 11, 3 (2012),
215-223.

[Lin et al., 2010] Lin, Y. T., Huang, Y. M., Cheng, S. C.: “An automatic group composition
system for composing collaborative learning groups using enhanced particle swarm
optimization”; Computers and Education, 55 (2010), 1483–1493.

[Meyer, 2009] Meyer, D.: “OptAssign - A web-based tool for assigning students to groups”;
Computers and Education, 53 (2009), 1104–1119.

[Michaelsen et al., 2004] Michaelsen, L. K., Knight, A. B., Fink, L. D.: “Team-based learning:
A transformative use of small groups in college teaching”; Stylus Publishing, Sterling, VA
(2004)

[Moreno et al., 2012] Moreno, J., Ovalle, D., Vicari, R.: “A genetic algorithm approach for
group formation in collaborative learning considering multiple student characteristics”;
Computers & Education, 58, 1 (2012), 560–569

[Nielsen et al., 2009] Nielsen, T., Hvas, A. E., Kjaergaard, A.: “Student team formation based
on learning styles at university start: does it make a difference to the student ?”; Reflection
Education, 5, 2 (2009), 85–103.

[Ounnas, 2010] Ounnas, A.: “Enhancing the Automation of Forming Groups for Education
with Semantics”; University of Southampton, Southampton (2010)

[Saishanmuga Raja and Rajagopalan, 2014] Saishanmuga Raja, V., Rajagopalan, S. P.: “A
comparative analysis of optimization techniques for artificial neural network in bio medical
applications”; Journal of Computer Science, 10, 1 (2014), 106-114.

[Saleh and Kim, 2009] Saleh, I., Kim, S.: “A fuzzy system for evaluating students’ learning
achievement”; Expert Systems with Applications, 36, 3 (2009), 3243–6236.

[Wang et al., 2007] Wang, D.Y., Lin, S.S.J., Sun, C.T.: “DIANA: A computer-supported
heterogeneous grouping system for teachers to conduct successful small learning groups”;
Computers in Human Behaviors, 23, 4 (2007), 1997–2010.

[Yang, 2006] Yang, S. J. H.: “Context aware ubiquitous learning environments for peer-to-peer
collaborative learning”; Journal of Educational Technology & Society, 9, 1 (2006), 188–201.

1317Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

[Yannibelli and Amandi, 2012a] Yannibelli, V., Amandi, A.: “A deterministic crowding
evolutionary algorithm to form learning teams in a collaborative learning context”; Expert
Systems with Applications, 39, 10 (2012), 8584–8592.

[Yannibelli and Amandi, 2012b] Yannibelli, V., Amandi, A.: “A memetic algorithm for
collaborative learning team formation in the context of software engineering courses”; Lecture
Notes in Computer Science, 7547 (2012), 92–103.

[Yannibelli and Amandi, 2013] Yannibelli, V., Amandi, A.: “A hybrid algorithm combining an
evolutionary algorithm and a simulated annealing algorithm to solve a collaborative learning
team building problem”; Lecture Notes in Computer Science, 8073 (2013), 376–389.

[Zhamri Che Ani et al., 2010] Zhamri Che Ani, Azman Yasin, Mohd Zabidin Husin, Zauridah
Abdul Hamid: “A method for group formation using genetic algorithm”; International Journal
on Computer Science and Engineering, 2, 9 (2010), 3060–3064.

1318 Yannibelli V., Armentano M., Berdun F., Amandi A.: A Steady-State ...

