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Abstract: The collection and management of learning traces, metadata about actions
that students perform while they learn, is a core topic in the domain of Learning
Analytics. In this paper, we present a simple architecture for collecting and managing
learning traces. We describe requirements, different components of the architecture, and
our experiences with the successful deployment of the architecture in two different case
studies: a blended learning university course and an enquiry based learning secondary
school course. The architecture relies on trackers, collecting agents that fetch data
from external services, for flexibility and configurability. In addition, we discuss how
our architecture meets the requirements of different learning environments, critical
reflections and remarks on future work.
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1 Introduction

This paper is situated in the domain of Learning Analytics and presents a simple

architecture that tackles the challenge of collecting and managing data from a

variety of services and feeds for applications such as Learning dashboards and

Educational Data Mining algorithms [Verbert et al., 2013].

We focus specifically on Open Learning Environments where the teacher de-

fines the learning goals and activities and the student can determine the activities

he wants to focus on, the tools or both [Nistor et al., 2014].

Personalised Learning Environments (PLEs) [Govaerts et al., 2011] and So-

cial Media Supported Learning Environments [Zhang et al., 2015; Behringer and

Sassenberg, 2015] are typical examples that enable this educational approach.

Tracking data from such environments is not easy. We quote one of the char-

acteristics of the PLEs:
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From the perspective of the PLE, connection is far more critical than

compliance, and it is far better to offer a wide range of services, requiring

support for a range of standardisation from formal standards through

to fully proprietary (yet publicly available) APIs, than to restrict the

connections possible to users [Wilson et al., 2007].

The first challenge of this wide range of services, standards, specifications

and APIs is that connecting these components is often complex. In addition,

tracking and following learner actions across the boundaries of these components

is complicated.

This paper presents our work on the development of open learning architec-

tures with simplicity and flexibility as main requirements. These characteristics

enable the architecture to be adaptable to new requirements in dynamic envi-

ronments.

In order to illustrate how the architecture meets such requirements, this

paper describes the deployment of the architecture in two different case studies:

a blended learning university course and an enquiry based secondary school

course.

This paper presents our work on the development of open learning archi-

tectures with simplicity and flexibility as main requirements. Section 2 presents

relevant work in the learning analytics field on collecting and modelling learn-

ing traces, with special attention to open learning architectures. We present the

main requirements and our architecture in Section 3. Sections 4 and 5 present

two case studies where our architecture is deployed to collect learning traces, and

to visualise these traces in dashboards. The paper ends with a discussion on how

our architecture meets the requirements of our case studies and the limitations

of this proposal.

2 Background and Related Work

When tracking learning activities, the granularity of the events to capture must

be considered. Different approaches have been proposed to model this behavioural

information [Wolpers et al., 2007]: a first approach focuses on low-level events

such as keystrokes, mouse gestures, clicks, etc. A second approach focuses on

higher-level events such as learning activities of the student. An example is

reading a resource or answering a question. Current standardisation initiatives

like IMS Caliper [Sakurai, 2014] and xAPI [del Blanco et al., 2013] focus on such

high level activities.

This section compares the following relevant specifications in the field : a)

xAPI [del Blanco et al., 2013], b) CAM [Niemann et al., 2013], c) ActivityS-

trea.ms [Vozniuk et al., 2013], d) IMS Caliper [Sakurai, 2014], f) NSDL paradata

[Niemann et al., 2013] and g) Organic.Edunet format [Niemann et al., 2013].
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Table 1: Comparison between seven relevant specifications in the field of tracking

learning activity

Core of the Educational Service

specification information definition

NSDL Paradata Object No No

Organic.Edunet Object No No

format

xAPI Event Yes Yes

IMS Caliper Event Yes Yes

CAM Event No Yes

Activity Stea.ms Event No Yes

• Core of the specification: NSDL Paradata and Organic.Edunet focus on

the object capturing aggregated usage data about a resource (e.g. down-

loads, favourites, ratings [Niemann et al., 2013]). On the other hand, other

specifications are event-centred. These specifications share a group of com-

mon fields [Niemann et al., 2013; del Blanco et al., 2013; Sakurai, 2014]: a)

User, b) Verb, c) Object, d) Timestamp and e) Context. User represents who

performs the action. Verb is the kind of action that the user performs, such

as commenting on a blog post. Object is the artefact that receives the ac-

tion. Timestamp is the exact moment that the action is performed. Finally,

Context represents additional information that can be captured, such as the

course, the kind of device and browser.

• Educational information: Specifications such as xAPI and IMS Caliper

consider specific educational information such as the score and the result

of the course [del Blanco et al., 2013; Sakurai, 2014]. Other specifications

such as NSDL Paradata, Oganic.Edunet, Activity Strea.ms and CAM do not

explicitly consider this specific information [Niemann et al., 2013; Vozniuk

et al., 2013].

• Service definition: Specifications such as xAPI, IMS Caliper and CAM

do not only define the data schema, the specifications also describe which

services apply to the Learning Record Store (LRS) [del Blanco et al., 2013;

Sakurai, 2014; Niemann et al., 2013]. The LRS is responsible of storing,

managing and exposing the learning activity. The description of such services

helps to standardise the exchange of information. Other specifications such

as Activity Strea.ms, NSDL Paradata and Oganic.Edunet focus only on the

data schema definition.

xAPI is our preferred specification because of the following reasons:

978 Santos J.L., Verbert K., Klerkx J., Charleer S., Duval E., Ternier S. ...



• xAPI is event-centred. Event-centred specifications cover a larger range of

actions, as the field verb can define arbitrary actions [del Blanco et al., 2013],

while the object-centred specifications focus on social actions such as rating

and downloads.

• xAPI provides a service definition in addition to a data model. Such a def-

inition facilitates extensibility and interoperability of learning analytics ar-

chitectures.

• xAPI has many adopters [Corbi and Burgos, 2014] and is also supported

by commercial Learning Record Store services such as Cloud Scorm and

Learning Locker [Megliola et al., 2014]. This is clearly an advantage of xAPI

compared with other specifications, as we want our architecture to be com-

patible with existing and successful architectures.

3 The Architecture

This section describes the different components of our architecture. Section 3.1

starts with the definition of main requirements that were considered when de-

signing the architecture. Section 3.2 describes in detail services and components.

3.1 Design Requirements

The architecture meets two basic requirements: 1) simplicity and 2) flexibility.

Fowler [2001] defines both concepts as:

• Simplicity is about keeping things as simple as possible: ”you shouldn’t add

any code today which will only be used by feature that is needed tomorrow”.

This means that integrating features that will make sense in the future makes

no sense adding an unnecessary complexity in the code. Keeping the amount

of features an application offers to strict minimum is beneficial to its sim-

plicity.

• Flexibility in the design enables software to be easily adapted as requirements

change.

The architecture has been deployed in different open environments that inte-

grate a variety of services. Therefore, the architecture must be easily adaptable

to new requirements from data providers and consumers.

Other requirements were also taken into account when designing the archi-

tecture:

• Extensibility is defined as the ability to add functionality to a system and

to support easy integration of new software components, diverse software

packages, etc [Bass et al., 2006].
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• Performance relates to timing. Events like interrupts, messages, requests

from users, or the passage of time occur and the system should react to

these [Bass et al., 2006].

• Scalability refers to the ability of the architecture to grow proportionally to

the number of users interacting with the system and the hardware required

to support such interactions [Fielding, 2000].

• Functionality is defined as the ability of the system to do the work for which

it was intended [Bass et al., 2006].

• Configurability refers to post-deployment modification of components, or

configuration of components, so that they are capable of using a new service

or data element type [Fielding, 2000].

• Maintainability is about frequency of new releases and how expensive the

process of adapting these new releases for the end user becomes [Offutt,

2002].

• Privacy is about a system regulating the process of how personal digital

information is being observed by the self or distributed to other observers

[Pardo and Siemens, 2014].

Section 6 and 7 discuss the suitability and limitations of the architecture to

meet our design requirements.

3.2 Architecture components

This section describes the communication and components of the architecture

presented in Figure 1. The first section describes the different components and

the specific services that the LRS exposes. Section 3.2.2 describes how the ar-

chitecture uses xAPI and simplifies the data schema and section 3.2.3 describes

the logic of the trackers.

This section focuses on how to collect and push the data in the LRS. Through-

out the presentation of the scenarios in Section 4 and 5 is described which com-

ponents consume the data from the LRS.

3.2.1 Architecture Components

The central component of our architecture is the Learning Record Store (LRS)

(label 1 in Figure 1). The LRS is the glue between activity producers and con-

sumers.

Activity producers and consumers push data in and pull data out of the LRS

by using two simple REST services, described in Table 2. The push service (label
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Figure 1: Different components of the architecture

Table 2: REST methods

N M Path Query Params Produces

1 POST /event Parameters described

in Table 3 encoded in

JSON

LRS generated identifier of

the event or error if the mes-

sage was not properly format-

ted

2 GET /events All parameters specified

in Table 3 included in

the url

Events containing the fields

described in Table 3 codified

in a JSON Array

2 in Figure 1 and first row Table 2) requires an event encoded in JSON format

following the simplified xAPI specification. The pull service (label 3 in Figure

1 and second row Table 2) makes it possible to retrieve data based on filters

specified on the main fields of events.

3.2.2 The simplified xAPI specification

Table 3 describes the simplified xAPI specification. The main field names in

Table 3 contain identifiers. Those fields are mainly used for filtering, to retrieve

either all actions by a specific user or all instance of a specific kind of action.

The original JSON field contains the event in its original format. The purpose

of this field is to retain all the original information, so as to avoid information

loss when mapping other specifications to xAPI.
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Table 3: Specification definition

Field name Type Description

Actor String An identifier of the user who performs the action

Verb String An identifier of the action that the user performs

Starttime Date Date when the action starts

Object String Identifier of the object/outcome resulted from the ac-

tion.

Target String Target contains the identifier of the target of the ac-

tion (Eg: John saved a movie to his wishlist, the target

of the activity is “wishlist”)

Context String Context contains the identifier of the course

Original

JSON
Text Open field but should contain JSON.

3.2.3 The process from the data producers to the LRS.

The data consumption process is simple. Activity consumers gather the data

with the GET method described in Table 2.

Collecting the data is a more complex process in open learning environments.

The tracking process is different depending on the mechanisms provided by each

service. We usually have two possibilities: the so-called wrappers [Scheffel et al.,

2010] and collecting agents [Butoianu et al., 2010].

Whilst the wrappers are plug-ins installed in the data producers, trackers

are independent components that synchronise the data among components. The

implementation of the former is dependent of the plugin architecture and the lat-

ter has a more generalisable implementation consuming the data from standard

REST services.

This paper summarises the tracker implementation in seven steps. Courses

and users are the core of this process. The seven steps are the following:

1. fetch information about the services (i.e. data producers) related to the

course. For example, if the students use blogs in the course, the tracker

requests what blog platforms and the urls of the blogs,

2. iterate over these different services,

3. fetch the user data (the result is usually an array of user actions), item iterate

over this array of user actions,

4. transform every user action to simplified xAPI,

5. enrich this data with some specific information such as the course identifier,
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6. push the event to the LRS.

Trackers are scheduled tasks that iterate over these seven steps. These steps

are adapted to different requirements. For example, step 1 can get this informa-

tion from different services. The case study described in section 4 contains the

services related to the course in a simple Google spreadsheet, as an LMS is not

used in the course. However, the other case study is the LMS that exposes this

information. The LMS and the Google spreadsheet expose the information in

different formats. The same occurs when trackers fetch the user data from the

data producers. For example, the Wordpress API does not use the same data

specification than the Twitter API.

This means that a new tracker is deployed when a new data producer, which

exposes the user data with its proprietary specification, is integrated in the ar-

chitecture. This keeps the trackers independent from the different data producer

requirements. If a data producer changes requirements, the other trackers keep

working without interruption.

In our case studies, the trackers are deployed in the cloud (i.e. Google App

Engine) instead of dedicated servers to reduce maintainability and to increase

availability of the services. Google App Engine is a Platform as a Service (PaaS),

a framework that developers can build upon to develop applications. A cloud

based service starts the tracker on regular intervals.

The architecture workflow is extended with real case studies in the following

sections.

4 Blended learning university courses

Blended learning courses are an excellent setup for tracking learning activity as

students interact with each other using digital means, which means that their

‘digital exhaust’ can be analysed [Park and Jo, 2015]. Similarly, when they inter-

act in face-to-face settings, their interactions can be captured with microphones,

cameras, etc. [Schneider et al., 2015], though we did not deploy such sensors in

our experiments.

4.1 Course approach

Figure 2 describes the flow of information in these courses. We illustrate the

information flow through a typical interaction scenario.

In these courses, students work in groups of 3 or 4. They learn to brainstorm,

design, implement and evaluate tools, following a user centred rapid prototyp-

ing approach from paper prototype to fully working digital prototypes. Students

evaluate every iteration with representative users to detect usability problems
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Figure 2: Course architecture - method numbers correspond to the N column in

table 2
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early on and address them in subsequent iterations. In these courses, a Commu-

nity of Practice approach is adopted in which students collaborate in an open

and transparent way [Duval et al., 2014].

The main hub of the course is a wiki (Figure 2a-1) that is mainly maintained

by the students themselves. They report progress on group blogs (Figure 2a-2

as an example of blog post) and comment on the blogs of other groups, as does

the teaching staff (Figure 2a-3 as an example of blog comments). Twitter is used

to share short status messages about work on the assignment, share interesting

resources and ask questions to the teaching staff. Students include in the tweet

the hashtag of the course, like for instance ‘#chikul13’. Examples are shown in

Figure 2a-4.

As a simple approach to manage identities of the groups and individuals

involved over the different components, the twitter and blog handles are stored

in a Google Spreadsheet, in order to enable tracking of the activity.

4.2 Tracking blogging activity

First, we track the blog activity. Figure 2b-1,2,3 summarises the steps. Figure 2b-

1 illustrates the tracker fetching the blog urls of the students out of the Google

spreadsheet. The tracker then fetches the posts (Figure 2b-2) and comments

(Figure 2b-3) from each blog individually.

These steps are extended in Figure 3. In our case study, students use two

different blogging platforms: Medium and Wordpress. While the former only

exposes blog posts via RSS feeds, the latter exposes blog posts and comments

through an API in addition to the usual RSS feed. The data provided by the

API is richer than the information provided by the RSS feed.

Table 4: Actual mapping examples

Actor Verb Starttime Object Target Context

Blog

post

robindecroon post 2012-07-22

14:56:20

http://goo.gl

/VaLfGb

- thesis12

Blog

com-

ment

svencharleer comment2013-11-13

14:44:33

http://goo.gl

/Xcqh3u

- mume13

Tweetjlsantoso tweet 2013-05-09

09:44:01

http://goo.gl

/QnpKOx

DVargemidis chikul13

AR

Learn

google 10593

91395511084

73521

response2014-01-23

10:56:20

http://goo.gl

/Dkm9lg

- 26368
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Figure 3: Sequence diagram of the blog tracker (Medium & Wordpress).

Students report the urls of their blogs and their user names through a Google

Spreadsheet. Thus, the first action that the tracker performs in Figure 3 is gath-

ering the information regarding the services used in the course (step 1 of the

seven steps described in section 3.2.3) - in this case, the blog urls. If the blog is

hosted on Wordpress (step 2), we access the REST API of WordPress (step 3).

If the blog is hosted on Medium (step 2), the tracker accesses the RSS feed (step

3) since it does not provide a REST API. The tracker iterates over the fetched

data (step 4), transforms it to xAPI (step 5), add the identifier of the course to

the event (step 6) and pushes it to the learning record store (step 7 - service 1

in Table 2). Then the tracker proceeds with processing blog comments. We only

fetch comments from Wordpress, as Medium does not expose the comments.

The first and second row in table 4 present the mapping of a blog post and

a comment example respectively: 1) The username is the user handle; 2) The

verb is ‘posted’ or ‘commented’; 3) The start time is the date when the blog post

comment was done; 4) the object is the url of the blog post or comment; and 5)

The context is the course identifier.
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4.3 Tracking tweeting activity

A similar process is used to fetch data from Twitter: the tracker calls the search

API (Figure 2b-6) to collect all the tweets containing the hashtag of the course:

‘#chikul13’. As the search API does not index all the tweets, the tracker also

queries all the user timelines of the students to be sure that we do not lose any

tweet from them (Figure 2b-5). Of course, we filter out only the tweets related

to the course, based on the hashtag. The search API is also used to fetch tweets

from external participants that comment on the course progress. These specific

details illustrate the importance of implementing the trackers in specific ways

for specific components.

Figure 4: Snapshot of a simplified twitter event. The bold text indicates how the

field was mapped.

The third row in table 4 presents a tweet example: 1) The username is the

twitter handle, 2) The verb is ‘tweet’, 3) The start time is the date when the

message was tweeted, 4) the object is the url of the tweet, 5) The target is the

user who was mentioned in the tweet and 6) The context is the course hashtag.

Figure 4 shows a twitter JSON example and the mapping of the actual at-
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tributes into the main fields of the xAPI specification. A tweet has more than

50 attributes.

This means that choosing the right identifier is not straightforward some-

times. The user identifier is the twitter handle in the tweet example. However,

twitter also exposes the system identifier, an alphanumeric value. Both, the twit-

ter handle and the system identifier are unique. We choose the twitter handle

because, as described before, the users have to provide their own identifiers.

Therefore, they probably know their own twitter handles better than their sys-

tem identifiers.

The complete JSON described in Figure 4 is stored in the original JSON

field. The original JSON field ensures completeness of data for future research

purposes. This data can also be consumed by additional services that require

the information encoded in the original source.

4.4 The activity consumers

Students reflect on their activity with two different applications: a learning dash-

board [Santos et al., 2013a] (Figure 2a-5) and a badge dashboard (Figure 2a-6)

[Santos et al., 2013b].

The Learning Dashboard and the badge awarding system fetch information

regarding groups and individuals from the Google Spreadsheet (Figure 2b-7).

Based on that information, the dashboard and the badge awarding system query

the LRS using the corresponding filters (Figure 2b-8 and 5b-7 - GET service

in Table 2). The badge awarding system evaluates the rules and pushes the

awarding of badges as an event if the student meets the requirements of the

rules (Figure 2b-10 - POST service in Table 2). The badge dashboard obtains all

badge events (Figure 2b-11) in order to display them. The result is illustrated

by Figure 2a-6).

5 weSPOT Integration Example

In order to illustrate the versatility of our architecture, this section explains

how we have deployed it in a very different context: a high school inquiry based

course, as part of the weSPOT project. weSPOT aims at propagating scientific

enquiry as the approach for science learning and teaching in combination with

today’s curricula and teaching practices [Mikroyannidis et al., 2013].

5.1 Course approach

As an example, a teacher may want to raise the inquiry skills of her students on

the domain of ‘Energy Efficient Buildings’. Thus, she creates an inquiry called

‘Batteries discovery’ in the Enquiry Workflow Engine (Figure 5a-1). The goal
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of the inquiry is to raise the awareness on how many batteries there are in a

building and on how these batteries are used.

Six phases of learning activities are often discerned in an EBL process model:

problem identification, operationalisation, data collection, data analysis, inter-

pretation and communication [Mikroyannidis et al., 2013]. These phases link to

the different tabs in the Inquiry Workflow (see Figure 5a-1). In every phase, there

are several recommended widgets that are deployed by default (e.g.: a widget to

create hypotheses in the first phase - Figure5a-2).

The third phase called ‘Collect the data’ contains a widget that the teacher

can use to create collection tasks for documents such as text, pictures and videos.

Therefore, she creates two data collection tasks: collect videos and pictures of

batteries in the building. This widget connects to an external system, the mobile

Personal Inquiry Manager (PIM) that is based on the ARLearn architecture

[Ternier et al., 2012]. This connection enables the widget to automatically create

the tasks in ARLearn (Figure 5a-3 shows the ARLearn screen displaying the last

documents uploaded to a task). Doing so, the students are able to log on in the

mobile app and collect text, pictures and videos. The connection is bidirectional:

once the documents are collected, they are pushed to the Inquiry Workflow

Engine after which the collected data is immediately accessible from within the

widget.

5.2 Tracking collected data

Figure 5b-2,3,4 and 5 summarise the technical workflow of the data collection

process. 2 and 3 connect to the LMS and get data related to the courses and

data collection tasks. 4 and 5 fetch the data from the data collection tool.

These steps are extended in Figure 4. First, the tracker fetches the course

information, and all inquiries that are created (step 1 of the seven steps de-

scribed in section 3.2.3). Second, the tracker retrieves the list of associated data

collection ids to each inquiry (step 1). ARLearn is used in other contexts than

weSPOT. Therefore the tracker only accesses to the associated data collection

ids (identified as runIds) (step 2). The tracker fetches (step 3) and iterates over

the events from ARLearn (step 4). Every event is transformed to xAPI (step

5), enriched with specific inquiry information (step 6) and, finally, stored in the

LRS (step 7 - service 1 in Table 2).

Fourth row in table 4 presents a ARLearn event example: 1) The username

is the user system identifier; 2) The verb is response; 3) The start time is the

date when the user collected the sample; 4) the object is the url to the sample;

and 5) The context is the identifier of the course.
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Figure 5: analytics architecture examples - method numbers correspond to the

N column in table 2
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5.3 Pushing the data from the Enquiry Workflow Engine to the

LRS

The communication between the EnquiryWorkflow Engine and ARLearn is inde-

pendent from the learning traces data collection process. As the Enquiry Work-

flow Engine enables built-in plugins, there is a plugin that pushes the events to

the LRS. For example, when a user performs an action such as ‘Create hypoth-

esis’, the Enquiry Workflow Engine pushes this information into the Learning

Record Store (Figure 5b-1 - POST service in Table 2).

5.4 The activity consumer

A dashboard gets the complete list of inquiries from the Inquiry Workflow Engine

in which the user is enrolled (Figure 5b-6). As a next step, the dashboard queries

the LRS to fetch the events related to the list of inquiries (GET service in Table

2) (Figure 5b-7).

The final result is illustrated by Figure 5a-4 to 9. For example, Figure 5a-5

shows that the user has created one hypothesis and he has replied to a comment

of another student within the hypothesis widget (Figure 5a-6). This information

is represented with dark green circles in the dashboard (Figure 5a-5). The col-

lected data is represented with light green dots as in Figure 5a-7. These artefacts

were collected with ARLearn. The circles are clickable. If the user clicks on the

circle, the source is displayed at Figure 5a-8. The url of the object is stored in

the event metadata as explained in the examples in table 4.

6 Conclusions

As we describe in Section 3.1, simplicity and flexibility are important factors that

enable an architecture to be adaptable a new requirements from data providers

and consumers. We illustrate that the architecture meets these requirements by

describing the successful deployment in two different case studies and identi-

fying three main components that enable such flexibility and simplicity of the

architecture:

• Simple services : We implemented a very simple LRS that enables third-party

services to push and fetch user data. These services are defined in Table 2

and they rely on the simplified xAPI specification described in Table 3.

• Simple data schema: We present a simplification of xAPI. Data consumers

can still query and find all the events based on the core set of fields described

in Table 3. Moreover, we reduce the effort in the mapping process. This can

also be considered as a limitation, as we discuss in section 7.
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• Trackers : This work puts special emphasis on the description of a general-

isable implementation of trackers (Section 3.2.3) and their independency of

the data store. The trackers hold the responsibility of dealing with the con-

nection among the activity provider, the learning management system and

the data store.

The presentation of successful case studies supports the idea that the archi-

tecture meets the functionality requirement enabling the collection and the

consumption of learning traces.

Different to other studies such as ([Ruipérez-Valiente et al., 2013], [Friedrich

et al., 2011], [Corbi and Burgos, 2014], [Hecking et al., 2014], [Leony et al., 2013])

that report on other particularities of the learning traces management using

other specifications such as ActivityStrea.ms and CAM, this study reports on

the benefits of deploying the trackers outside of the LMS.

The presentation of successful case studies supports the idea that the archi-

tecture meets the functionality requirement enabling the collection and the

consumption of learning traces.

Trackers are a key of the architecture to meet the extensibility, configura-

bility and maintainability requirements. Section 3.2.3 shows how is possible

to reuse the tracker logic and to extend the architecture to other services. Sec-

tions 4 and 5 show how trackers are independent components that consume the

necessary information from other services such as the learning management sys-

tem and a simple Google Spreadsheet. Trackers do not require a re-deployment

when the external information changes.

7 Limitations and future work

Simplicity usually comes with certain limitations. This section describes our

concerns about the limitations of our work.

Collecting data about an event in its original format ensures the complete-

ness of the data and keeps the semantics of the original specification. However,

this mapping process includes much of the detail of the original specifications in

an open JSON field. This can be addressed extending the GET service. Similarly

to other services that enable either to return the data in JSON or XML format,

this extension would return the details of the original specifications fully xAPI

encoded. This would require the implementation of a small module per spec-

ification that provides such mapping. This solution would enable to keep the

events stored in their original formats and increase the interoperability of our

architecture with other systems that make use of other xAPI fields not included

in the described data schema.

This work focuses on defining a set of simple services, but we do not dis-

cuss the software and hardware that supports the architecture. In our case, the
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architecture centralises all the traces in a central LRS. However, as we are ag-

gregating data from several systems, performance and scalability issues may

appear and management of identifiers across systems can become complicated.

This is an issue we have not addressed in this paper. It has not been a problem in

our deployments, but a larger scale roll-out of our architecture would probably

encounter this problem.

We have tackled this issue experimenting with different technologies, Java vs

JavaScript, Tomcat vs NodeJS and PostgreSQL vs NodeJS. Our final decision

is JavaScript, NodeJS and MongoDB. This solution is very similar to Learning

Locker and Go-labs [Hecking et al., 2014] that also use MongoDB. The solution

presented in this paper remains also compatible with xAPI solutions such as

Cloud Scorm and Learning Locker.

Similarly, privacy issues are out of scope for this paper. The architecture

deploys a simple authentication mechanism to ensure that the data will be exclu-

sively consumed by tools deployed and used in the scope of the courses. There-

fore, the data is not open to unknown third-party services. Aligned with Pardo

and Siemens [2014], we also highlight that privacy and authentication has many

ethical dimensions: users need to be aware what systems are doing with their

data and we need to provide mechanisms to enable them to control who does

what with which data in a usable way.

Note - The complete code of our architecture is open and freely available

NodeJS and MongoDB1. We hope that our work can be useful to researchers and

practitioners in this field to enable flexible and simple collection and manage-

ment of learning traces in open learning environments that go beyond current

practices.

Acknowledgement

The research leading to these results has received funding from the European

Community’s Seventh Framework Programme (FP7/2007-2013) under grant

agreement No 318499 - weSPOT project. Katrien Verbert is a postdoctoral fellow

of the Research Foundation Flanders (FWO).

References

[Bass et al., 2006] Bass, L., Clements, P., Kazman, R.: Software architecture in

practice; ISBN 0321154959; Addison-Wesley Professional, 2006; second edition

edition.

1 https://github.com/svencharleer/datastore

993Santos J.L., Verbert K., Klerkx J., Charleer S., Duval E., Ternier S. ...



[Behringer and Sassenberg, 2015] Behringer, N., Sassenberg, K.: “Introducing

social media for knowledge management: Determinants of employees? inten-

tions to adopt new tools”; Computers in Human Behavior; 48 (2015), 0, 290

– 296.

[Butoianu et al., 2010] Butoianu, V., Vidal, P., Verbert, K., Duval, E., Broisin,

J.: “User context and personalized learning: a federation of contextualized

attention metadata”; J. UCS; 16 (2010), 16, 2252–2271.

[Corbi and Burgos, 2014] Corbi, A., Burgos, D.: “Review of current student-

monitoring techniques used in elearning-focused recommender systems and

learning analytics. the experience api & lime model case study”; International

Journal of Artificial Intelligence and Interactive Multimedia; 2 (2014), 7, 44–

52.

[del Blanco et al., 2013] del Blanco, A., Serrano, A., Freire, M., Martinez-Ortiz,

I., Fernandez-Manjon, B.: “E-learning standards and learning analytics. can

data collection be improved by using standard data models?”; Global Engi-

neering Education Conference (EDUCON), 2013 IEEE; 1255–1261; 2013.

[Duval et al., 2014] Duval, E., Parra, G., Santos, J. L., Agten, S., Charleer, S.,

Klerkx, J.: “Learning hci and infovis in the open”; Building Bridges: HCI,

Visualization, and Non-formal Modeling; 8–16; Springer, 2014.

[Fielding, 2000] Fielding, R. T.: Architectural styles and the design of network-

based software architectures; Ph.D. thesis; University of California (2000).

[Fowler, 2001] Fowler, M.: “Is design dead?”; SOFTWARE DEVELOPMENT-

SAN FRANCISCO-; 9 (2001), 4, 42–47.

[Friedrich et al., 2011] Friedrich, M., Wolpers, M., Shen, R., Ullrich, C., Klamma,

R., Renzel, D., Richert, A., von der Heiden, B.: “Early results of experiments

with responsive open learning environments”; J. UCS; 17 (2011), 3, 451–471.

Govaerts, S., Verbert, K., Dahrendorf, D., Ullrich, C., Schmidt, M., Werkle,

M., Chatterjee, A., Nussbaumer, A., Renzel, D., Scheffel, M., et al.: “Towards

responsive open learning environments: the role interoperability framework”;

Proceedings of EC-TEL’11; 125–138; Springer, 2011.

[Hecking et al., 2014] Hecking, T., Manske, S., Bollen, L., Govaerts, S., Vozniuk,

A., Hoppe, H.: “A flexible and extendable learning analytics infrastructure”;

E. Popescu, R. Lau, K. Pata, H. Leung, M. Laanpere, eds., Advances in Web-

Based Learning – ICWL 2014; volume 8613 of Lecture Notes in Computer

Science; 123–132; Springer International Publishing, 2014.

[Leony et al., 2013] Leony, D., Glvez, H. A. P., Muoz-Merino, P. J., Pardo, A.,

Kloos, C. D.: “A generic architecture for emotion-based recommender systems

in cloud learning environments”; Journal of Universal Computer Science; 19

(2013), 14, 2075–2092.

[Megliola et al., 2014] Megliola, M., Vito, G. D., Wild, F., Lefrere, P., Sanguini,

R.: “Creating awareness of kinaesthetic learning using the experience API:

994 Santos J.L., Verbert K., Klerkx J., Charleer S., Duval E., Ternier S. ...



current practices, emerging challenges, possible solutions”; Proceedings of the

4th Workshop on Awareness and Reflection in Technology-Enhanced Learning

In conjunction with the 9th European Conference on Technology Enhanced

Learning: Open Learning and Teaching in Educational Communities, ARTEL

at EC-TEL 2014, Graz, Austria, September 16, 2014.; 11–22; 2014.

[Mikroyannidis et al., 2013] Mikroyannidis, A., Okada, A., Scott, P., Rusman, E.,

Specht, M., Stefanov, K., Boytchev, P., Protopsaltis, A., Held, P., Hetzner, S.,

Kikis-Papadakis, K., Chaimala, F.: “wespot: A personal and social approach

to inquiry-based learning”; J. UCS; 19 (2013), 14, 2093–2111.

[Niemann et al., 2013] Niemann, K., Wolpers, M., Stoitsis, G., Chinis, G.,

Manouselis, N.: “Aggregating social and usage datasets for learning analytics:

Data-oriented challenges”; Proceedings of the Third International Conference

on Learning Analytics and Knowledge; LAK ’13; 245–249; ACM, New York,

NY, USA, 2013.
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