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Pontifı́cia Universidad Católica de Valparaı́so, Chile

hector.allende@ucv.cl)
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Abstract: When distributed data sources have different contexts the problem of Distributed Re-
gression becomes severe. It is the underlying law of probability that constitutes the context of a
source. A new Distributed Regression System is presented, which makes use of a discrete rep-
resentation of the probability density functions (pdfs). Neighborhoods of similar datasets are
detected by comparing their approximated pdfs. This information supports an ensemble-based
approach, and the improvement of a second level unit, as it is the case in stacked generaliza-
tion. Two synthetic and six real data sets are used to compare the proposed method with other
state-of-the-art models. The obtained results are positive for most datasets.
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1 Introduction

Due to the rapid growth of the amount of data that is being stored, automatic learn-

ing has become increasingly important over the years. The total amount of information

available on the Internet has had an exponential growth in the last years. By 2005, the

total size was around 600 terabytes [D-lib]. Nowadays, the total amount of data stored

is almost incalculable (a rough estimation indicates an amount of data in the order of

zettabytes). The rapid growth of the data available, presents new oportunities for appli-

cations of Machine Learning and Automatic Data Analysis. Since human reasoning is

not able to handle large data sets, the need of automatic data analyzers is a necessity.

Due to this reason, challenges related with the scalability and efficiency of the learning

algorithms have become of central importance. Classic machine learning algorithms,
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usually work with monolithic data sets, this means that the entire data set is loaded into

main memory. When the amount of data is very large, this is unfeasible, because the

algorithm will not be able to train on the whole data set, or it will be impractical due

to computational or memory restrictions. Also, it should be noted, that if the amount

of information that is distributed or the number of distributed sources is too large, this

could lead to problems related to Big Data. To handle this type of problems, Paral-

lel and Distributed approaches are having a lot of attention from the Machine Learning

community. Distributed Machine Learning (DML) is often mentioned with Parallel Ma-

chine Learning (PML) in literature. While both attempt to improve the performance of

traditional Data Mining systems, they assume different system architectures and take

different approaches. In DML, computers and data are distributed and communicate

through message passing. In PML, a parallel system is assumed with processors shar-

ing memory and/or storage. Computers in a DML system may be viewed as processors

sharing nothing. This difference in architecture greatly influences algorithm design, cost

model, and performance measure in Distributed and Parallel Machine Learning.

Since it was proposed, the field of Distributed Machine Learning (DML) has been

very active and is enjoying a growing amount of attention. There are many real world

applications where the data is distributed naturally. In most cases, the amount of data

distributed is so large, that is unfeasible to trasmit it to a centralized node (avoiding the

creation of a Big Data problem), so there is no alternative other than to treat the problem

with a Distributed Learning approach.

Most of the current DML techniques treat the distributed data sets as a single virtual

table and assume that there is a global model which could be generated if the data were

combined or centralized, completly neglecting the different semantic contexts that this

distributed data sets may have [Wirth et al., 2001, Jung, 2012]. If we see this as a sta-

tistical learning problem, we deal with samples of data that follow different underlying

laws of probability. Loosely speaking Machine Learning models try to find a function

which relates a given output y with an input vector x. The classic Machine Learning ap-

proach is related with the estimation of the joint probability distribution H(X,Y). The

joint probability distribution can be decomposed in the conditional probability distribu-

tion and the marginal one (H(X,Y) = F(Y/X)G(X)). In this paper, context is defined as

the joint probability distribution that governs each data source.

The next section will present a brief view of the state of the art related to this

work. In section 3 we disclose the proposed algorithm which will be able to address the

problem addressed above. In [Allende-Cid et al., 2014b] a preliminary version was pre-

sented. In section 4 we show some experimental results with synthetic and real datasets.

The last section is devoted to discuss the results and to make some conclusions.

2 State of the Art

In the field of Distributed Machine Learning (DML), in the last decade, a large

amount of work has been reported. A large fraction of DML algorithms focus
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on combining predictive models. This approach has emerged from empirical ex-

perimentation due to a requirement for higher prediction accuracy. Recently, sev-

eral researchers treat distributed learning systems as a centralized ensemble-based

method [Chawla et al., 2004, Lattner et al., 2010, Lazarevic and Obradovic, 2001,

Tsoumakas et al., 2002, Jung, 2013]. Several learning algorithms are applied at each lo-

cal site, using separate training data to mine local knowledge. A new data point is then

classified/predicted from the predictions of all local sites using ensemble methods such

as stacking, boosting, majority voting, simple average, or winner-takes-all methods. In

general, DML approaches apply ensemble methods to minimize the communication

costs and to increase the performance of the system predictions.

There are well known approaches for distributed classification problems

(see e.g. [Caragea et al., 2001, Moretti et al., 2008, Park and Kargupta, 2002,

Rodriguez et al., 2011, Jung, 2014]. It is not straightforward to adapt these ap-

proaches to the regression task. Both problems are related, but the strategies to solve

them are different. Another drawback of these methods, is that they assume that the

underlying laws of probability of the distributed sources are the same. This is an

assumption that is inherited from the ensemble-based approaches in classic machine

learning. When a dataset is resampled, it is assumed that the resampled data follows

the same underlying law of probability as the original set. In real-world distributed

problems, it is impossible to assure that, because the real underlying law of probability

is unknown.

Another challeging task is the one of Distributed Data Clustering. The authors of

the work [Balcan et al., 2013] present a distributed K-means and K-median approach

in topologies of general communication. In [Eyal et al., 2011] the authors present a

generic distributed data clustering algorithm applied to sensor networks. Other dis-

tributed clustering works that can be found recently in the literature address the

problem of large-scale data sets and evolving data streams [Forman and Zhang, 2000,

Hefeeda et al., 2012, Ienco et al., 2013]. There are also distributed approaches to other

tasks or problems, e.g. Genetic Algorithms [Lopez et al., 2011] and Mining Association

Rules [Lin et al., 2013].

In this work, the task that will be addressed is the regression task. Loosely speaking

the task of regression can be presented as the task of finding the relationship between

input and output variables, where the outputs are real-valued. This can be used for pre-

dicting an expected value by presenting to the model an unknown input. Works related

with the regression task in Distributed Machine Learning are scarce. The majority of

algorithms deal with the classification problem. In this work the task of regression will

be addressed.

In [Xing et al., 2003, Xing et al., 2005] the authors propose a series of algorithms

based on, what the authors call, a meta-learning approach to deal with the regres-

sion problem addressing the context heterogeneity case. The authors propose a meta-

learning-based hierarchical model that is able to be successfully used in distributed
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scenarios with context heterogeneity. The definition of context in this work is, however,

the variance that the distributed sources have in their outputs, thus neglecting the con-

text change in the input space. The authors claim that this change of context between

distributed sites follows a Gaussian distribution.

In [Allende-Cid et al., 2013], an ensemble approach based on building neighbor-

hoods of similar datasets is presented. To build the neighborhoods, it is assumed that

the datasets follow a known underlying law of probability (which is possible when

working with synthetic examples), and using the Hypothesis Test based on divergence

measures, they form the corresponding neighborhoods. In this work it is necessary to

assume a known underlying law of probability, i.e. multivariate normal distribution, in

order to perform the Hypothesis tests [Pardo, 2005, Salicru et al., 1994]. The algorithm

in [Allende-Cid et al., 2013] can be summarized as follows: At first, local models are

trained with the available distributed data sets. In each distributed node, a local algo-

rithm is trained with its corresponding data. After that, assuming that the underlying

laws of probability of each distributed data sets are known (multivariate gaussian distri-

butions), the mean and variance-covariance matrices (parameters of the underlying law

of probability) are shared across all distributed nodes. With this information, in each

distributed node i, an Hypothesis Test is performed with the parameters of node i and

the parameters all other nodes j = 1, . . . , k, where j , i and k is the total number of

distributed data sets. After performing all Hypothesis Tests, the neighborhood for node

i is built if there was no evidence to reject H0 (that the parameters of both underlying

laws of probability were the same). Also all the local models are shared across the sites.

Then, a second stage learner is trained, where the inputs of this learner are the outputs

of all local models. The final output of the model is the ensemble of all second stage

models, that belong to the same neighborhood, where the new data inputs are registered.

For a more complete review on the state of the art of Distributed Machine Learning

Algorithms, please refer to [Peteiro-Barral and Guijarro-Berdinas, 2013].

3 A New Distributed Regression System

To avoid working under the assumption of a known underlying law of probability, we

can use a discrete representation of the probability density functions (pdfs). For this

we can use n-dimensional histograms. A histogram H(x) of a set [x
1
, x

2
] represents the

frequency of each value. If the dataset is one-dimensional, the histogram is represented

by a vector. The length of the vector depends in the number of bins used to represent

the histogram. If the dataset is 2-dimensional, the histogram is represented by a matrix.

For n-dimensional cases the data structure used to represent is a n-rank tensor. There

is a computational cost related in the choice of the number of bins to construct the

histogram. The length of the vector that represents the histogram is nd, where n is the

number of bins and d the dimension of the input vector x. There is a trade-off between

the performance of the algorithm and the computational cost, as it will be seen in the

Experiments section.

845Allende-Cid H., Allende H., Monge R., Moraga C.: Discrete Neighborhood ...



Before building histogram representations for all distributed datasets, the minimum

and maximum per input dimension must be shared across all data sets. This is neces-

sary, because we need to build histograms that are comparable with each other. To make

them comparable we need bins with the same limits. This information shared across the

system, does not contradict the restriction of sharing raw data, because it only shares

the minimum and maximum global values of the examples of each distributed source.

With this data, we obtain the global minimum and maximum values of all distributed

sources, using this information to build histograms for all distributed sources, with the

same bin limits. The idea is to use histograms to build a vector of size r, that represents

the dissimilarity between 2 datasets, using r distance measures. We define a number of

different distance/similarity measures, using preferable distances from different fami-

lies [Cha, 2007]. If the underlying laws of probability of 2 data sets are identical the

distance vector will be (0,0,. . . , 0). If there are k distributed data sources, distances vec-

tors {di1, . . . , dik} will be generated for node i. Applying a clustering algorithm to all

distance vectors, we can define a neighborhood for node i, by taking into account all

distance vectors that belong to the same cluster of dii. E.g. if the distance vector di1 and

di3 of a total of k = 5 distributed nodes belong to the same cluster as dii, then the nodes

1 and 3 belong to the neighborhood of i. In this work the clustering algorithm used

is the Hierarchical Clustering algorithm. Preliminary results regarding histogram rep-

resentation were presented in [Allende-Cid et al., 2014]. The main difference between

this approach and the one presented in [Allende-Cid et al., 2014] is that the second level

models, in this proposal are trained only with the outputs of the local models, that be-

long to the same neighborhood. In the previous work, the second level models were

trained with all the outputs of the local models, whether they belonged to the neighbor-

hood or not.

In the next subsection we present the proposed algorithm.

3.1 Learning

In this subsection we present the pseudo-code of the proposal and explain each phase

in detail.

1. Phase 1 - Local Learning. Suppose that there are k distributed data sets. At each

node Ni, where i = 1, . . . k, we use an available learning algorithm to train a local

predictive model Li from data source Di of that node. The choice of the learning

algorithm is not restricted to any particular kind. The local training data consists in

n dimensional input vectors ((xi1, xi2, . . . , xin)) and a response variables yi.

2. Phase 2 - Model and information transmission. Each node Ni, where i = 1, . . . , k

receives the minimum and maximum of each attribute of the other nodes. With this

information each distributed node Ni creates an n-dimensional histogram. The his-

tograms are then shared across the distributed nodes. After that, in each distributed
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Algorithm 1 Proposed Algorithm (Training batchwise)

1: k = number of sites

2: Define the number of bins of the histogram and assign it to an auxiliary variable

nubs.

3: Data sets consist of d dimensional vectors (x1, x2, x3, . . . , xd) and continuos re-

sponse variable yi.

4: // PHASE 1

5: for i ∈ 1, . . . , k do

6: Read (in parallel) the data of the prevailing batch.

7: Train each model Li with corresponding data set Di. (It can be performed in

parallel)

8: // PHASE 2

9: for i ∈ 1, . . . , k do

10: Send (in parallel) from each node Di the model parameters to all other nodes

D j, where j , i. Each node Di receives the model parameters from the other

models and the global minimum and maximum values of each variable.

11: Create the histogram for each data set Di, where i = 1, . . . , k with nubs bins and

broadcast them to all other data sources. Each node Di receives the histograms

of the other nodes.

12: With the histograms use a hierarchical clustering algorithm to build the neigh-

borhood binary vectors.

13: // PHASE 3

14: In each distributed site Di, with i = 1, . . . , k train a second level model Gi based

on Stacked Generalization, using only the output of the Local models trained in the

sites that belong to the Neighborhood of i.

15: Using the neighborhoods calculate the weight vector to multiply each Gi output by

the corresponding weight.

16: // OUTPUT

17: Calculate the mean of all Gi models that received the output of the local models

that belong to the neighborhood i multiplied by a corresponding weight.

node, the distance vector is calculated, with respect to all other nodes. Also the

parameters of all the local models are shared across the distributed nodes, so each

node has a copy of the rest of the local models. With a clustering algorithm, we gen-

erate the neighborhoods of distributed nodes. The result is a binary vector hi with k

binary variables, which indicates the nodes which follow the same underlying law

of probability of Di. In other terms we will refer to this vector as the Neighbor-

hood vector. E.g. If there are 5 distributed nodes D1,D2,D3, D4 and D5, and we are

checking if node D1 has the same distribution as the rest, and only the variables

h1(1), h1(2) and h1(4) are equal to 1, then this means that the data contained in the
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nodes N2 and N4 follow the same distribution as in node N1.

3. Phase 3 - Generation of second level learners. Since every node Ni has a copy of the

other local models, each local model Ll, l = 1, . . . , k, contained in node Ni is trained

with the local data from that node (Dl). Each of the local models j that belong to

the neighborhood of node Ni outputs a response variable ŷi j with the local data Di,

where j = 1, . . . , k. Each local node Ni applies then a stacked learning algorithm

Gi (second level model) which is trained with the outputs of local models (ŷi j), that

belong to the neighborhood of Ni and the real response variable yi, obtained from

the training data of the node Di. This is inspired in the Stacking model of Wolpert

[Wolpert, 1992].

(x, y) (x, y) (x, y) (x, y) (x, y) (x, y)

x = {x1, x2, . . . , xn}

N1 N2 N3 N4 N5 N6

({ŷ1, ŷ3, ŷ4, ŷ6}, y)

Si

ŷ
Si

Sunda , Februar  15, 15

Figure 1: Example of a Stacking model S i trained in Node i. The dotted nodes do not

belong to the Neighborhood of Node i. The outputs of the local models in Node 1, 3, 4

and 6 (nodes that belong to the same neighborhood) are used as inputs for the Stacking

model. Only these models are used to build the second level learner in Phase 3. ŷS i
is

the estimation of y, that the S i stacking model predicts.

3.2 Predicting

1. Final output of the proposed model. The output of our model is the following:

Whenever a new example arrives at a node Ni, we compute all the outputs of the

local models that are stored in this node. We have an apriori information of which

of the other nodes have data following a close underlying law of probability of the

current node, which is reflected in the neighborhood vector mentioned above (h j,

where j = 1, . . . , k). Then the output of the local models in this node are transmitted
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to only the other nodes which have a non-zero label in this vector. The final output

of the model is the weighted sum of all the Gi model outputs that received the

output of the local models of their corresponding neighborhoods hi. The weights

are calculated with the following equation: w′
j
=

w j
∑

w j
, where w j = 1 − |d̂i j|

2. E.g.

in the example presented in Fig. 1 the final output of the model is the weighted

average of models G1, G3 and Gk, because only the variables h2(1), h3(3) and h3(k)

are distinct from zero.

L
1
,
.
.
.
,
L
k

Nk

Gk

ŷk

hk

L
1
,
.
.
.
,
L
k

N2

G2

ŷ2

h2

L
1
,
.
.
.
,
L
k

N4

G4

ŷ4

h4

L
1
,
.
.
.
,
L
k

N1

G1

ŷ1

h1

L
1
,
.
.
.
,
L
k

N3

G3

ŷ3

h3

New Data Examples

...

...

w1
wk

Output
h4 = [1, 0, 0, 1, . . . , 1]

w4

O =

∑

j where hj !=0

wj ŷj

Wedne da , Februar  26, 14

Figure 2: Architecture of the proposed system

4 Experimentation

In this section we present the results obtained by our proposal with 2 synthetic data sets

and 6 real world data sets in terms of Mean-squared error (MSE). The functions used

in the synthetic experiments were:

y = 0.01x1 + 0.02x2
2 + 0.9x3

3 + ǫ (1)

and

y = 0.6x1 + 0.3x2 + ǫ (2)

where ǫ ∼ N(0, 1) and x ∼ N(µ, Σ). For both synthetic experiments we tested a

specific scenario: Data coming from multivariate normal distributions with different

covariance matrix Σ and mean vectors µ. The number of distributed sources gener-

ated were 10, 12, 14, 16, 18 and 20. Half of the distributed sources were generated

from a x ∼ N(µ1, Σ1) and the other half from x ∼ N(µ2, Σ2). In the first scenario, as

stated previously half of the distributed sources were generated from a N(µ1, Σ1) where
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µ1 = (0, 0, . . . , 0) and Σ1 = [1, 0, . . . , 0; 0, 1, . . . , 0; . . . ; 0, 0, . . . , 1] and the other with

µ2 = (i, i, . . . , i) and Σ2 = [i2, 0, . . . , 0; 0, i2, . . . , 0; . . . ; 0, 0, . . . , i2] where i = (1, 2, 3, 4).

Variable i represents the 4 different set of parameters with which the proposal was val-

idated. With this different values of i we present 4 different cases. The total number of

examples for each experiment were 10000. For further details on this synthetic experi-

ments and preliminary results using histograms to build neighborhoods, please refer to

[Allende-Cid et al., 2014].

The Communities and Crime, Parkinson and Bike Sharing and Wine Quality data

sets can be obtained from [UCI]. The Communities and Crime dataset consists in 1994

examples and 128 attributes. The data was split in 32 datasets. The Parkinson dataset

consists in 5875 examples and 26 attributes. It was split in 42 datasets, according to

the patients ID. The Bike Sharing dataset consiste in 17389 examples and has 16 at-

tributes. It was split in 12 datasets, according to the month of the year. The Wine

dataset consists in 1599 examples of red wine and 4898 examples of white wine.

The number of attributes is 11. The latter one was split in 10, 20 and 30 datasets,

where half of the datasets are generated from the red wine examples and the other

half from the white wine examples. The Wind dataset consists in 29050 examples and

was distributed in 54 sources. For further details of the Wind dataset, please refer to

[Allende-Cid et al., 2013b]. The Ailerons dataset consists in 13740 examples and 40

attributes. The data set was split in 4, 8 and 12 sources.

To compare our proposal we tested 4 different algorithms:

– Reference model that has access to all data. (Global)

– Local models (used only in the synthetic experiments)

– Model presented in [Xing et al., 2005]

– Model presented in [Allende-Cid et al., 2013]

– Proposal.

The performance measure is the mean value of the MSE obtained in each distributed

source. This means that in each distributed source 80% of the data was set for training

purposes and the other 20% for testing purposes. In each node the MSE was obtained

with the testing data. The final performance measure is the mean of the MSE results

obtained in each node. The local and the second level models were feedforward artificial

neural networks. The optimum number of neurons of the hidden layer was searched

from 2 to 10 neurons. The clustering algorithm used in this experimentation to create

the neighborhoods was the Hierarchical Clustering. The distance metrics used were the

Euclidean, Sorensen, Intersection and Kullback-Leibler distances.

In Table 1 we observe the results for Experiment 1. The last two columns show the

results of the Proposal with different number of bins used to construct the histogram.

We used 20 and 30 bins to show the influence of this parameter in the proposal, denoted
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Case # Global [Xing et al., 2005] Local Prop-20 Prop-30

1 10 24.05 ± 12.71 19.33 ± 3.879 7.177 ± 2.477 2.221 ± 0.809 1.272 ± 0.041

1 12 37.22 ± 10.44 15.72 ± 1.247 5.644 ± 0.998 3.660 ± 1.258 1.594 ± 0.116

1 14 28.34 ± 8.873 22.21 ± 5.491 9.060 ± 3.499 2.603 ± 1.267 1.347 ± 0.082

1 16 25.36 ± 6.989 17.56 ± 3.275 6.774 ± 1.623 5.502 ± 1.568 1.571 ± 0.347

1 18 20.80 ± 10.31 21.96 ± 2.769 7.469 ± 1.487 1.829 ± 0.567 1.245 ± 0.119

1 20 23.26 ± 10.42 15.83 ± 0.354 4.593 ± 0.396 2.482 ± 1.117 1.526 ± 0.103

2 10 5.981 ± 1.120 217.0 ± 10.85 8.634 ± 1.749 4.022 ± 1.116 2.572 ± 0.325

2 12 17.25 ± 7.261 229.3 ± 8.127 12.96 ± 3.573 5.305 ± 1.771 2.375 ± 0.505

2 14 16.72 ± 5.629 214.4 ± 14.64 51.40 ± 28.36 16.12 ± 9.816 2.519 ± 0.348

2 16 14.36 ± 4.620 232.0 ± 10.94 13.81 ± 4.876 8.328 ± 3.561 2.599 ± 0.272

2 18 10.21 ± 3.698 233.8 ± 16.72 13.19 ± 3.243 3.225 ± 1.269 2.000 ± 0.235

2 20 8.914 ± 0.404 194.5 ± 6.934 7.508 ± 0.613 3.209 ± 1.310 1.994 ± 0.203

3 10 30.16 ± 5.380 1634 ± 58.73 24.92 ± 5.107 6.551 ± 1.525 5.32 ± 0.951

3 12 26.92 ± 6.849 1552 ± 50.36 21.47 ± 3.928 5.516 ± 0.545 4.35 ± 4.321

3 14 35.33 ± 14.25 1551 ± 46.52 33.41 ± 6.082 3.918 ± 0.349 4.915 ± 0.496

3 16 25.53 ± 5.473 1613 ± 75.13 42.03 ± 15.24 4.939 ± 0.439 3.502 ± 4.152

3 18 24.83 ± 5.231 1599 ± 51.20 20.46 ± 4.113 4.963 ± 0.332 3.383 ± 2.459

3 20 36.11 ± 9.980 1565 ± 84.05 32.86 ± 8.577 3.745 ± 0.994 5.912 ± 2.492

4 10 41.08 ± 13.04 7274 ± 143.2 36.95 ± 4.930 12.69 ± 4.559 18.68 ± 10.70

4 12 73.43 ± 21.18 7198 ± 219.0 72.67 ± 14.85 12.72 ± 2.298 14.01 ± 10.34

4 14 36.10 ± 7.335 7214 ± 99.15 30.65 ± 5.767 11.19 ± 2.583 10.43 ± 5.944

4 16 27.04 ± 11.56 7402 ± 231.6 46.24 ± 8.907 9.091 ± 1.747 11.34 ± 8.563

4 18 69.57 ± 19.21 7244 ± 163.3 63.97 ± 20.57 13.88 ± 3.322 10.37 ± 6.163

4 20 38.16 ± 9.801 7209 ± 145.5 58.61 ± 14.90 12.62 ± 3.384 7.975 ± 3.557

Table 1: Mean value and standard deviation of 20 experimental runs. Synthetic Experi-

ment 1.

by Prop-20 and Prop-30, respectively. As it can be seen in the results, in every case

the proposal, whether it is with 20 or 30 number of bins, outperforms all the other

models. The error from the model proposed in [Xing et al., 2005], as the difference

of the parameters that were used to generate the data increases, has an exponential

growth, while the performance of the proposal deteriorates in a polynomial way. It

can be seen also, that as the number of bins used to build the histogram increases, the

performance of the model also increases. Prop-30 outperforms almost in every case the

other approaches, particularly when the degree of distortion of the underlying law of

probability is low and minor differences should be noticed. Only in some experiments

the algorithm Prop-20 has a better performance. Despite that, in those cases, the error

of the Prop-30 algorithm has comparable results.
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Case # Global [Xing et al., 2005] Local Prop-20 Prop-30

1 10 1.000 ± 0.003 1.002 ± 0.003 1.006 ± 0.003 0.996 ± 0.009 0.992 ± 0.007

1 12 1.003 ± 0.007 1.005 ± 0.007 1.010 ± 0.007 1.003 ± 0.008 1.010 ± 0.012

1 14 0.997 ± 0.004 1.002 ± 0.003 1.010 ± 0.004 1.001 ± 0.003 0.992 ± 0.006

1 16 1.003 ± 0.005 1.005 ± 0.006 1.013 ± 0.006 1.002 ± 0.012 0.991 ± 0.007

1 18 1.007 ± 0.005 1.009 ± 0.006 1.017 ± 0.005 0.995 ± 0.009 1.010 ± 0.004

1 20 1.000 ± 0.006 1.002 ± 0.006 1.014 ± 0.007 1.022 ± 0.009 0.985 ± 0.006

2 10 0.987 ± 0.005 1.014 ± 0.006 0.992 ± 0.006 1.015 ± 0.011 0.997 ± 0.005

2 12 0.982 ± 0.003 1.012 ± 0.004 0.993 ± 0.005 0.992 ± 0.008 0.991 ± 0.008

2 14 0.991 ± 0.002 1.024 ± 0.009 0.998 ± 0.002 1.018 ± 0.009 0.995 ± 0.006

2 16 0.978 ± 0.006 1.010 ± 0.008 0.988 ± 0.005 1.025 ± 0.009 0.994 ± 0.007

2 18 0.987 ± 0.006 1.016 ± 0.008 0.999 ± 0.006 1.003 ± 0.007 0.989 ± 0.009

2 20 0.984 ± 0.007 1.026 ± 0.012 1.003 ± 0.008 1.025 ± 0.006 0.981 ± 0.010

3 10 0.993 ± 0.005 1.129 ± 0.018 1.000 ± 0.006 1.000 ± 0.011 0.992 ± 0.006

3 12 1.008 ± 0.005 1.193 ± 0.022 1.016 ± 0.005 0.995 ± 0.006 0.997 ± 0.008

3 14 0.989 ± 0.003 1.232 ± 0.030 0.999 ± 0.004 0.996 ± 0.009 0.997 ± 0.011

3 16 0.993 ± 0.009 1.178 ± 0.028 1.001 ± 0.009 0.977 ± 0.007 0.985 ± 0.007

3 18 0.990 ± 0.004 1.165 ± 0.024 1.002 ± 0.004 1.006 ± 0.009 0.988 ± 0.005

3 20 0.994 ± 0.005 1.183 ± 0.017 1.010 ± 0.006 1.010 ± 0.005 0.991 ± 0.007

4 10 1.017 ± 0.005 1.563 ± 0.039 1.022 ± 0.004 0.983 ± 0.006 1.006 ± 0.008

4 12 1.010 ± 0.005 1.492 ± 0.040 1.015 ± 0.005 1.007 ± 0.012 0.997 ± 0.007

4 14 1.018 ± 0.006 1.558 ± 0.043 1.024 ± 0.006 0.980 ± 0.003 0.998 ± 0.008

4 16 1.011 ± 0.005 1.585 ± 0.044 1.021 ± 0.005 0.993 ± 0.009 0.989 ± 0.004

4 18 1.019 ± 0.004 1.638 ± 0.041 1.033 ± 0.004 0.983 ± 0.002 0.988 ± 0.009

4 20 1.020 ± 0.006 1.652 ± 0.055 1.033 ± 0.006 0.981 ± 0.007 0.979 ± 0.007

Table 2: Mean value and standard deviation of 20 experimental runs. Synthetic Experi-

ment 2.

In Table 2 we observe a similar behaviour than the one observed in the previous

synthetic experiment. Both of the proposals, with different number of bins, outperform

the other models. As was observed in the previous experiment, the best results were

obtained with Prop-30. This proposal outperforms the other approaches in almost every

experiment. Only in a few experiments the best results were obtained by Prop-20, but

the results of both proposals are comparable.

The results of our proposal with the real data sets are presented in Table 3. The Mean

and standard deviation of 20 experimental runs are presented. The number of bins used

for the proposed algorithm was 10, for all real dataset experiments. The performance

measure is the Mean-squared error. We compare the results with the models presented

in [Xing et al., 2005] and [Allende-Cid et al., 2013]. The results were favorable for our
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Dataset # Global [Xing et al., 2005] [A-Cid 2013] Proposal

Parkinson 48 0.0022 ± 0.0004 0.0025 ± 0.0002 0.0034 ± 0.0006 0.0033 ± 0.0006

Crime 32 0.0080 ± 0.0031 0.0335 ± 0.0057 0.0380 ± 0.0063 0.0363 ± 0.0056

Bike 12 1.3759 ± 2.7726 13.660 ± 16.098 59.033 ± 15.812 1.5803 ± 0.592

Wind 54 30.661 ± 5.6572 42.936 ± 2.282 65.675 ± 9.318 35.439 ± 2.574

Wine 10 0.6014 ± 0.0253 0.8278 ± 0.1707 0.6268 ± 0.0254 0.5406 ± 0.0131

Wine 20 0.6025 ± 0.0238 0.8378 ± 0.1223 0.9258 ± 0.0617 0.5293 ± 0.0165

Wine 30 0.5998 ± 0.0132 0.8375 ± 0.077 1.1530 ± 0.0751 0.5244 ± 0.0132

Ailerons* 4 0.1299 ± 0.0065 11.3587 ± 16.235 0.1298 ± 0.0059 0.1231 ± 0.0022

Ailerons* 8 0.1303 ± 0.0005 1.0893 ± 0.388 0.1311 ± 0.0005 0.1328 ± 0.0031

Ailerons* 12 0.1311 ± 0.0003 0.3916 ± 0.009 0.1340 ± 0.0032 0.1292 ± 0.0012

Table 3: Mean value and standard deviation of 20 experimental runs. The Ailerons*

results should be multiplied by 106.

proposal in the majority of the presented datasets. There were only 2 datasets (Parkinson

and Crime), where the model proposed in [Xing et al., 2005] outperformed our model.

Despite that, the difference between our proposal and [Xing et al., 2005] are in the range

of 10−3. In the rest of the presented datasets, the proposal outperformed the other ap-

proaches. As can be seen in the table, the difference was in some cases considerable. The

Parkinson dataset, has been always been treated as a monolithic dataset in many works,

so it is understandable that there is no considerable difference between the examples,

thus affecting the proposal. It also should be pointed out, that the proposal outperforms

the previous approach presented in [Allende-Cid et al., 2013] in every dataset. In the

Wine dataset we observe that the proposed model even outperforms the model that has

access to all the data. The results of the Global model, a model that uses all the data

centralized, are only reported for comparison purposes. It should be pointed out that the

Global model does not get the best results in every experiment as it should be expected.

This could be due the fact that in these cases the data on which the model is trained, has

a mixture of statistical distributions that affects the generalization of the model.

5 Conclusions and Future Work

In this proposal we present a distributed regression approach that is able to detect dif-

ferent contexts in the input space, thus improving the performance of local models in

the task of regression from distributed sources. As the results show, it is very important,

not to neglect the different contexts that are present in the distributed sources. Also it is

sometimes impractical to assume that the underlying law of probability is known, so a

discrete way of representing it is necessary. Also it is important to focus on the second

level models, that are based on stacked generalization, in order to filter the inputs they

receive (only receive the outputs of the local models, that are part of the neighborhood).
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The clustering algorithm is also crucial, so in future studies, different algorithms like

the found in [Bello-Orgaz et al., 2012] or [Menendez et al., 2014] could possibly im-

prove the results. Further studies are necessary in order to establish error bounds and to

formally prove the convergence of the algorithm.
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