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Abstract: Nowadays, Internet is the main source to get information from blogs, en-
cyclopedias, discussion forums, source code repositories, and more resources which are
available just one click away. The temptation to re-use these materials is very high.
Even source codes are easily available through a simple search on the Web. There is a
need of detecting potential instances of source code re-use. Source code re-use detec-
tion has usually been approached comparing source codes in their compiled version.
When dealing with cross-language source code re-use, traditional approaches can deal
only with the programming languages supported by the compiler. We assume that a
source code is a piece of text ,with its syntax and structure, so we aim at applying
models for free text re-use detection to source code. In this paper we compare a Latent
Semantic Analysis (LSA) approach with previously used text re-use detection models
for measuring cross-language similarity in source code. The LSA-based approach shows
slightly better results than the other models, being able to distinguish between re-used
and related source codes with a high performance.
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1 Introduction

Text re-use1 is an increasing problem in environments such as academia.

Around 80% of high school students admit to have re-used contents at least

once [Chapman and Lupton(2004)]. Source code re-use detection is important for

academia and software companies. A student —or professional programmer—

can retrieve a piece of source code from the Web and use it as her own without

acknowledging the source. In an academic survey [Cosma and Joy(2008)], the

1 We refer to re-use as hypernym of plagiarism, when we have evidence that a piece
of content has been borrowed from a different document but there is no information
about the author’s consent.
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majority of respondents agreed that, when re-use is permitted, students should

adequately acknowledge the parts of the source code written by others; other-

wise these actions could be interpreted as plagiarism. A programmer could even

translate a piece of code into another programming language which, in the ab-

sence of proper credit or the consent of the original coder, might be considered

as cross-language source code plagiarism. Moreover, detecting re-use is impor-

tant for software companies in need of preserving the intellectual property of

their programs.2 Both scenarios are related to international programming com-

petitions supported by software companies; e.g., the ACM-ICPC competition for

college students3 and Google’s Code Jam4. Indeed, we have detected instances

of source code re-use in Google Code Jam in the past [Flores et al.(2015)].

Manual retrieval of re-used documents from large collections is a difficult task;

manual retrieval from the Web is unfeasible. Automatic re-use detection systems

can easily retrieve re-used candidates on the fly. Over the last few years, re-use

detection has caused a great interest promoting international tracks [Potthast

et al.(2010)] for text re-use and for source code re-use.5

In this paper we compare the performance of a latent-semantic-based

approach against other text re-use models that had been employed previ-

ously within the context of cross-language source code re-use detection [Flores

et al.(2014a)]. We process source codes as simple texts and apply effective tech-

niques of free text re-use detection [Clough(2000)]. Source code re-use has been

explored in a cross-language perspective in just a few research works [Flores

et al.(2014a), Arwin and Tahaghoghi(2006), Flores et al.(2011)]. We looked for

instances of cross-language source code re-use on the most used programming

languages nowadays: C, Java, and Python.6

The rest of the paper is organized as follows. In [Section 2] we overview

different approaches to detect source code re-use. In [Section 3], we describe the

used corpora, built out of the Rosettacode-source-code repository. [Section 4]

describes the LSA-based model and the other five models we compare in this

work. In [Section 5], we discuss the experiments we carried out and the obtained

results. Finally, in [Section 6] we draw conclusions and propose future work.

2 Related Work

Text re-use detection has been explored from different perspectives [Potthast

et al.(2011), Stamatatos(2011), Brin et al.(1995)]. Monolingual analysis has been

tackled with a wide range of approaches from n-grams [Barrón-Cedeño and

2 http://www.out-law.com/page-4613
3 http://icpc.baylor.edu/
4 https://code.google.com/codejam
5 http://pan.webis.de/ and http://www.dsic.upv.es/grupos/nle/soco/
6 http://spectrum.ieee.org/computing/software/top-10-programming-languages
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Table 1: Concepts of comparability and parallelism in natural and programming

language texts.

Natural language text Source code

Comparable documents
Documents that describe
the same topic in
different languages

Source codes that solve
the same problem in different
programming languages

Parallel documents
Documents that are
translation of each other

Source codes that are
considered (near-)translations

Rosso(2009), Stamatatos(2009)] or fingerprinting [Brin et al.(1995)] up to more

semantic approaches [Soleman(2014)].

Cross-language text analysis has been mostly tackled with four differ-

ent models: (i) dictionary-based [Gupta et al.(2012)], built on top of vector

space models; (ii) syntax-based, these models are able to capture syntacti-

cal similarities and similar vocabulary between languages [Mcnamee and May-

field(2004)]; (iii) comparable corpora [Potthast et al.(2008)]; and (iv) parallel

corpora [Dumais et al.(1997), Littman et al.(1998), Ceska(2009), Barrón-Cedeño

et al.(2008)]. The last two kinds of models require to be trained on aligned cor-

pora in the two languages. Comparable approaches need documents on approxi-

mately the same topic in the two languages. Parallel approaches need documents

that are translations of each other in order to infer a relation between the words

in the two languages. An overview can be found in [Potthast et al.(2011)].

Regarding natural language text, comparable documents are those covering

the same topic and written in different languages [Potthast et al.(2008)]. Parallel

documents are two documents which are a translation of each other [Steinberger

et al.(2006)]. Similar definitions are possible for programming languages. We

consider that two codes are comparable if they solve the same problem but

have been independently written in different programming languages. Compa-

rability does not imply re-use. We consider two codes are parallel if they are

(near-)translations of each other. That is, parallelism does imply re-use. [Tab. 1]

compares the concepts of comparable and parallel documents in both natural

and programming language texts. This conceptual parallelism opens the door to

borrow models originally intended to uncover re-use in natural language text to

uncover re-use in source code.

Most of the work carried out in source code re-use detection in-

tended to approach monolingual. Automatic source code re-use detection has

been approached from two main perspectives: attribute counting and struc-

ture [Clough(2000)]. Attribute counting uses different characteristics of the

code, such as the number of identifiers [Halstead(1972)], the average nesting

depth [McCabe(1976)], or the number of calls to a given function [Selby(1989)].
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Structure-based approaches have been more widely explored because they can

detect cases of re-use even after the source code has been altered [Whale(1990)].

In the structure-based approaches, the detection process is carried out in three

steps: (i) pre-process the code by removing comments, spaces, and punctuation

marks; (ii) represent the source code using its structure; and (iii) compare the

structural representations of two codes and estimate their similarity. In order to

represent a program structure, in [Whale(1990)], the author proposed to use the

bifurcation statements of the source code as the comparison unit and the kind of

bifurcations to determine their similarity. This work inspired other approaches

—such as YAP3 [Wise(1992)] and JPlag [Prechelt et al.(2002)]—, which also use

efficient string-matching algorithms to find similar code fragments.

Other proposals use the output of a compiler to represent the structure of

the source code. In [Chilowicz et al.(2009)], the authors compare the syntax tree

generated during the compiler parsing process. The syntax tree is converted into

a fingerprint for locating similar fragments. Another compiler-based proposal

is based on the comparison of the program dependencies graph [Krinke(2001)].

This approach is powerful against changes in the structure of the source code

(code refactoring). It consists of using the dependency graph created by the

compiler and then looking for isomorphic sub-graphs between the dependency

graphs that represent the source codes. This approach is not suitable for near

real-time applications because the search of isomorphic sub-graphs is NP-hard.

These proposals are compiler-dependent. As a result, they can be used only on

codes developed within programming frameworks, such as the GNU Compiler

Collection (GCC) or Microsoft Visual Studio7.

An approach that requires less resources (i.e. it does not need a compiler) is

based on the Winnowing algorithm [Marinescu et al.(2013)]. Initially, it selects

the reserved words, delimiters, and operators of the programming languages.

The resulting fragments of source codes are represented with hashes. Although

this model is efficient, it is sensitive to modifications: a change of a character in

a string changes the hash value completely, causing possible re-use cases to go

undetected.

Another effective approach that does not require any information of the pro-

gramming language is based on Latent Semantic Analysis (LSA) [Cosma and

Joy(2012)]. The pre-processing consists of removing tokens solely composed of

numeric characters, syntactical tokens (e.g., semicolons, colons), tokens occur-

ring in less than two files, and one-character tokens. Then, LSA is applied using

term-frequency for weighting and the cosine measure to compute the similarity,

after a reduction of the representation vectors to 30 dimensions. In [Cosma and

Joy(2012)], the authors compared this model with the well-known JPlag string-

matching model. They also measured the correlation between the LSA results

7 https://gcc.gnu.org/ and https://www.visualstudio.com/
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and human judgements. The LSA-based model achieved slightly better perfor-

mance than JPlag in different scenarios and it showed a high correlation with

human judgement.

To the best of our knowledge, only [Arwin and Tahaghoghi(2006)] has tackled

the problem of cross-language source code re-use detection. This is an interest-

ing compiler-dependent approach in which programs in different languages are

compiled to generate a common intermediate code representation (e.g., with

the GCC), which is directly comparable. Obviously, this approach is strongly

compiler-dependent and could be limited to short amounts of programming lan-

guages.

3 Corpora

We extracted our corpus from the Rosettacode repository. Rosettacode8 is a web-

site that presents solutions to the same task in as many different programming

languages as possible. In a snapshot of Feb. 27, 2012, there were 600 solved tasks

of solutions written in C, 598 in Python, 448 in Java, 403 in C#, and 370 in

C++. We took implementations in the three most used languages: C, Java, and

Python. As many solutions have more than one implementation, we consider all

the possible combinations of the same solution to build a comparable corpus.

Our procedure to construct parallel instances from the original Rosetta codes

is as follows. We translate all the comparable source codes written in C into Java

using C++ to Java Converter9. The translated Java code was then translated

into Python with java2python10 . After translation, comments introduced by the

translators were removed. Note that java2python generates a syntactically (al-

most) equal to the original Java source code, whereas C++ to Java Converter

is able to rephrase and refactor source code if necessary. This implies differences

in code lengths between translations. 11

[Tab. 2] shows the amount of comparable and parallel source code pairs be-

tween the different programming languages. We divide the documents into train-

ing and test collections: 70% is used to train the respective retrieval model and

30% for test.

4 Models

In this paper we compare six models in the problem of cross-language source

code re-use detection. Three models require external resources: Cross-Language

8 http://rosettacode.org/
9 http://www.tangiblesoftwaresolutions.com/Product\_Details/CPlusPlus\
_to\_Java\_Converter\_Details.html

10 https://github.com/natural/java2python
11 The resulting corpus is freely available for research purposes at http://users.dsic.

upv.es/grupos/nle/?file=kop4.php.
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Table 2: Number of comparable and parallel source code pairs per each pair of

programming languages in the corpus.

C-Java Java-Python C-Python Size (MB)

Comparable 959 1588 1408 3.54

Parallel 335 335 335 2.12

Latent Semantic Analysis (CL-LSA), Cross-Language Explicit Semantic Anal-

ysis (CL-ESA) and Cross-Language Alignment-based Similarity Analysis (CL-

ASA). Three other models require no resources at all: Cross-Language Character

3-grams (CL-C3G), Pseudo-cognates (COG), and Word Count Ratio (WCR).

All the models but CL-LSA have been applied to this task before [Flores

et al.(2014a)]. CL-LSA is reported to achieve a high retrieval quality [Dumais

et al.(1997)]. CL-ESA has shown good performance when looking for compa-

rable documents and CL-ASA has shown accurate results when looking for

parallel documents scenario [Potthast et al.(2011)]. CL-C3G, COG and WCR,

have shown to be worth considering to assess similarities within comparable

corpora [Barrón-Cedeño et al.(2014)]. Following, we present our adaptations of

these models to the source code scenario.

4.1 Cross-Language Latent Semantic Analysis (CL-LSA)

Most IR models rely on exact matches between query and document words. As a

result, the lack of common words between query and document causes these mod-

els to fail. The main reason is that standard models (e.g., Boolean model) process

each word as an independent dimension when in fact they are not independent.

LSA allows to model the relations between words of the same document and

improves the retrieval process [Deerwester et al.(1990)]. Dumais [Dumais(1995)]

describes experiments on TREC benchmarks giving evidence that, at least in

some cases, LSA can produce better precision and recall than standard vector-

space retrieval.

Following the principle that similar words appear in similar contexts, LSA

examines the similarity between the “contexts” in which a word appears and

creates a new vector space with less dimensions. LSA uses Singular Value De-

composition (SVD) to discover the most important relations between terms from

a collection of documents. These automatically-estimated relations are specific

to the domain of the collection.

The SVD technique is similar to the eigenvalue decomposition of a matrix

(eigenvector) and to factorial analysis [Cullum and Willoughby(2002)]. It starts

constructing a term matrix from the collection as in the Boolean or vector space
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model [Baeza-Yates and Ribeiro-Neto(2011)]. This matrix is decomposed in a set

of k orthogonal factors calculated by lineal approximation. This approximation

“discovers” the latent structure in the matrix from the term frequency of each

document. As a result, SVD returns a set of vectors that represent the situation

of each term and document in a reduced vector space of k dimensions.

LSA represents the terms as continuous values on each orthogonal dimen-

sion. When two terms appear in two similar contexts, these terms will have

similar vectors in the LSA-reduced matrix. The model solves partially the weak-

ness of assuming independence between terms. Further mathematical descrip-

tions and examples of the LSA and SVD principles are included in [Deerwester

et al.(1990)].

LSA can be adapted to cross-language IR by concatenating each pair of par-

allel documents for training [Landauer and Littman(1990)]. This set is analyzed

using LSA and a new reduced k-dimensional vector space is computed. As the

training documents contain terms in both languages, the relations are calcu-

lated between terms in both languages. Using these cross-language relations, a

translation of the query is not necessary; terms in both languages will have a

similar representation in the reduced k-dimensional vector space. This allows

language independent searches on the basis of previously-computed relations

between terms in different languages.

LSA has been applied in monolingual source code re-use detection al-

ready [Cosma and Joy(2012)]. The authors consider the source code as a piece

of text in order to create a term representation. Their overall results suggest

that integrating LSA with the tools Sherlock and JPlag improves the overall

detection performance.

To the best of our knowledge, this is the first attempt to apply LSA for

cross-language source code re-use. As in texts, the model can be adapted by

concatenating parallel source codes for training. Equivalent terms between pro-

gramming languages will achieve a high similarity value.

4.2 Cross-Language Explicit Semantic Analysis (CL-ESA)

This model was originally proposed to compute the similarity between texts

across languages using a comparable corpus (e.g., from Wikipedia). In the cross-

language source code re-use detection scenario, a source code d (d′) written in

the programming language L (L′) is compared against each source code from

a comparable collection {C,C′}, written in language L (L′). We consider that

two programs xi ∈ C, x′
i ∈ C′ are comparable if they solve the same problem.

Two source codes in different languages can be compared against the comparable

collection to generate the corresponding representation vectors:

−→
d = {sim(d, x)∀x ∈ C/C ∈ L} (1)
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Table 3: Estimated length factors for each language pair measured in tokens. A

value of μ > 1 implies that, on average, len(d) < len(d′) for d and its translation

d′ in terms of the number of reserved words.

Parameter C→Java Java→C Java→Python Python→Java C→Python Python→C

μ 0.925 1.463 1.003 1.008 0.989 1.564

σ 0.505 3.089 0.077 0.083 0.799 2.595

−→
d′ = {sim(d′, x′)∀x′ ∈ C′/C′ ∈ L′} (2)

We compute cosine similarities over frequency-weighted character 3-grams

to produce the vector representations. Later on, the cosine similarity between

vectors
−→
d and

−→
d′ is computed to indirectly estimate the similarity between d and

d′. Although the “semantic” component of the model may not be too obvious

when CL-ESA is applied to detect cross-language source code re-use, the model

allows to detect instances in which two source codes are written in semantically

similar ways (e.g., for and while statements).

4.3 Cross-Language Alignment-Based Similarity Analysis

(CL-ASA)

CL-ASA is based on statistical machine translation principles, where a trans-

lation model and a language model (among others) are combined to generate

the most likely translation of a text [Brown et al.(1993)]. The translation model

represents the probability that the source string is the translation of the target

string, and the language model is the probability of seeing that target language

string. In CL-ASA, the language model is substituted by a length model, which

determines the likelihood of a code being a translation of one another accord-

ing to its expected length. The length model, originally proposed by [Pouliquen

et al.(2003)], is defined as:

lf(d, d′) = e
−0.5

(
len(d)/len(d′)−μ

σ

)
(3)

where μ and σ are the mean and standard deviation of the lengths ratios

between translations of source codes from language L into L′ and the len function

returns the number of reserved words in the source code. [Tab. 3] shows the

values of μ and σ that we estimated for the considered language pairs over the

parallel training collection described in [Section 3].

We use the translation model to determine if the tokens in code d are valid

translations of the tokens in code d′. This model requires a statistical bilingual

dictionary, usually estimated from a sentence-aligned parallel corpus. For source

code, we consider whole programs as parallel units, and limit the vocabulary
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to reserved words, operators, and identifiers. Identifiers are substituted by the

generic identifier “id”. To estimate the translation probabilities, we use the IBM

1 alignment model [Brown et al.(1993)].

In [Pinto et al.(2009)] we proposed an adaptation to the translation model,

originally intended to handle sentences, to estimate the similarity between entire

documents. The adapted translation model is defined as:

w(d|d′) =
∑

x∈d

∑

y∈d′
p(x, y) , (4)

where p(x, y) represents the probability of x of being a translation of y in the

bilingual dictionary. This adaptation is not a probability, as it is not ranged in

[0, 1], and larger documents produce higher similarity values.

The similarity ϕ(d, d′) between d and d′ results of the combination of this

adapted translation model and the length model:

ϕ(d, d′) = lf(d, d′) · w(d|d′) , (5)

which downgrades the negative impact of a range-less translation model.

We explored four dictionaries for the translation model: (i) a statistical dic-

tionary built from a parallel corpus using IBM model 1; (ii) the same dictionary

as built in (i) , but considering only the most likely translations of each entry

with a probability mass of 20%; (iii) same as (ii) , with a probability mass of

40%; and (iv) a dictionary generated from conversion table between the reserved

words of the programing languages, extracted from Wikipedia12. We considered

the model that uses the 40% most likely of being translation from the dictio-

nary because it achieved a slightly better performance than the other CL-ASA

variants.

4.4 Cross-Language Character 3-grams (CL-C3G)

Character n-grams have been used to calculate text similarity across languages

that regularly preserve the morphology of the words (e.g. using inflections or

derivations) [Goldsmith et al.(2001)]. Numerous programming languages with

morphological similarities exist; e.g., C and C++ or Java and C++. Similar-

ity models based on morphology rely on these similarities and the inherited

vocabulary from other languages. This similarity can be well estimated using

a Vector Space Model on short terms, such as character n-grams. Character

n-grams have shown good accuracy for monolingual and cross-language infor-

mation retrieval [Mcnamee and Mayfield(2004)]. As we showed previously, they

can achieve good results when applied to cross-language source code re-use de-

tection [Flores et al.(2011)].

12 http://en.wikipedia.org/wiki/Comparison\_of\_programming\_languages\_\
%28basic\_instructions\%29 - Accessed on 14th March 2014
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The pre-processing in this model consists of removing line feeds, tabs, and

spaces; characters are case-folded. The source code is then split into contiguous

overlapping sequences of 3 characters, which are weighted by term frequency (tf).

The similarity between programs is then estimated using the cosine measure.

4.5 Pseudo-Cognateness (CL-COG)

Cognates are defined as pairs of tokens of different languages which, usually share

some phonological or morphological properties [Voga and Grainger(2007)] As a

result, they are likely to be used as mutual translations [Simard et al.(1993)]. Our

cognate candidates include those tokens with at least one digit and those tokens

composed by three letters or more. Examples of pseudo-cognates are for–foreach

in languages C and C# or Integer–int in Visual Basic and C++ respectively. We

use the term pseudo-cognates because in source codes we are able to capture as

possible cognate any variable name that is not necessarily the same term derived

or inflected as in natural languages (e.g. variable and variable modified). Using

pseudo-cognates, we determine how related two pieces of source code are.

The pre-processing in this case consists of case-folding. Then, the cognate

candidates of each source code are extracted. The similarity is calculated as:

ϕ(d, d′) =
c

(m+ n)/2
, (6)

where parameters m and n are the number of cognate candidates in each

source code and c is the number of matches between the two lists of cognate

candidates so as to obtain the maximum number of pairs without using the

same token in different matches.

4.6 Word Count Ratio (WCR)

In the WCR model, tokens are extracted from the source codes and delimiters

(e.g. semicolons, brackets, etc.) are discarded. Afterwards, each source code is

represented by its length in terms of tokens. The similarity is computed as the

length ratio between the shorter and the longer source code in number of tokens:

ϕ(d, d′) =
min(len(d), len(d′))
max(len(d), len(d′))

. (7)

WCR has shown a high correlation with human judgements measuring cross-

lingual similarity in texts [Barrón-Cedeño et al.(2014)], regardless its simplicity

and non-use of external resources.
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Table 4: Area Under the Precision-Recall curve for each model and programming

language pair.

Lang. pair CL-LSA CL-C3G CL-ESA CL-ASA CL-COG WCR

C–Java 0.768 0.770 0.603 0.470 0.708 0.690

Java–Python 0.969 0.797 0.411 0.399 0.523 0.459

C–Python 0.365 0.296 0.238 0.213 0.294 0.322

5 Experiments

In our experiments we compare a LSA-based model against other IR mod-

els in the task of detecting cross-language source code re-use. In our previ-

ous work, we compared the performance of those IR models in the task of

cross-language source code retrieval; looking for parallel and comparable pro-

grams [Flores et al.(2014a)]. Now we consider a more realistic scenario. In the

Rosettacode.org repository, multiple contributors post alternative solutions to

the same algorithmic problem. They could be derived from implementations

in another programming language or be coded from scratch. Re-used programs

across languages could have a similar structure or share some methods or chunks.

The entire program could be simply translated from one language into one an-

other. We created two partitions out of the implementations of a solution in dif-

ferent programming languages available in Rosetta: re-used instances are com-

posed of parallel source code pairs; non-re-used instances include comparable

source code pairs.

5.1 Performance of the Models

The models are evaluated on the basis of Precision-Recall curves and area under

the curve (AUC ) in three programming language pairs: C–Java, Java–Python

and C–Python. [Fig. 1] shows the resulting Precision-Recall curves whereas

[Tab. 4] shows the values of AUC. CL-LSA shows a similar performance than

CL-C3G when facing the C–Java pair. The resulting AUC values are roughly

the same. In the other pairs, the CL-LSA curve is over the others most of the

times. LSA-based model outperforms CL-C3G as well facing monolingual source

code re-use [Flores et al.(2014b)]

As we observed before the rest of models perform similarly when retrieving

parallel and comparable documents in isolation [Flores et al.(2014a)]. In this

scenario CL-C3G and CL-COG achieve a good performance compared to WCR,

CL-ESA and CL-ASA’s relatively lower results.

Regarding the different language pairs, C–Java and Java–Python allow for

better performance. CL-LSA shows nearly-perfect results in the Java–Python
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Figure 1: Precision-recall curves for each model and programming language pair.
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pair. The reason could be in the java2python translator, which produces almost

syntactically-identical translations. Another evidence of this phenomenon is the

length factor parameters, reported in [Section 4.3]: μ is close to 1, and the stan-

dard deviation is small. That is, the translations have an almost equal number

of tokens than the original source codes. The C++ to Java Converter needs to

transform the source code into refactored source code. Even if the translator

did not recognize a certain function call, it would generate a new void function

in order to be completed by the programmer. In the C–Python scenario, this

parallel source codes are the result of two translations while the source codes of

the other programming language pairs only needed one translation process.

5.2 Similarity threshold

In this subsection, our aim is to set a similarity threshold for the best-performing

models: CL-LSA and CL-C3G (as shown in [Fig. 1]). The similarity threshold is

the lowest similarity value from which a source code pair can be considered an

instance of re-use. We estimate the similarity threshold out of the parallel and

comparable similarity distributions considering the 66% of the test partition.

We represent the similarity in steps of 0.05 and the amount of source code pairs

has been normalized. [Fig. 2] presents the distribution of re-used and non-re-

used source codes in terms of the similarity for CL-LSA, CL-C3G and CL-ASA

models. CL-ASA is added for comparison purposes.

Both CL-LSA and CL-C3G show non-completely separated distributions,

whereas CL-ASA shows highly overlapped distributions. As a result, with the

former models it is possible to discriminate whether a source code has been re-

used with certain confidence. We set the discriminative threshold as the point

where the polynomial trend lines of the distributions cross. The overlapped dis-

tributions of CL-ASA make it impossible to set a threshold.

The performance of the models after setting the threshold is measured using

Precision, Recall and F1 using the remaining 33% of the test partition. [Tab. 5]

shows the obtained results. In the C–Java scenario both models show similar

performance but in the other scenarios CL-LSA shows a higher F1 measure as

it occurred in the Precision-Recall curves. In general, both models achieve good

results with high values of precision, recall and F1. The models show the same

trend than in the Precision–Recall curves, achieving lower performance in the

pair C–Python.

6 Conclusions and Future Work

In this paper we approached the problem of cross-language source code re-use

detection. In our experiments, we considered a realistic scenario taking advan-

tage of a collection of source code pairs from Rosettacode.org: parallel pro-
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Figure 2: Similarity distributions for CL-LSA, CL-C3G and CL-ASA (added for

comparison) using C–Java test by ranges of 0.05. A polynomial trend line of

degree 6 is plotted for each distribution.
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Table 5: Evaluation of the CL-LSA and CL-C3G models after setting the appro-

priate decision threshold from the parallel and comparable distributions.

Model Pair Threshold Precision Recall F1

C–Java 0.750 0.674 0.853 0.753

CL-LSA Java–Python 0.770 0.756 1.000 0.861

C–Python 0.550 0.304 0.824 0.444

C–Java 0.370 0.630 0.773 0.694

CL-C3G Java–Python 0.410 0.526 0.882 0.659

C–Python 0.270 0.280 0.618 0.385

gram pairs were considered as positive instances of re-use, whereas comparable

pairs were considered as originals. We compared a latent semantic analysis-

based model against other well-known information retrieval models originally

intended to handle plain text, including cross-language character n-grams and

cross-language explicit semantic analysis.

The model based on latent semantic analysis performed the best in this task,

showing more accurate than the other models when classifying instances in three

programming language pairs: C–Java, C–Python, and Java–Python. The second

best model, based on character n-grams, was competitive when facing the C–

Java pair only. A deeper analysis showed that, contrary to the other models, the

similarity distributions obtained with both latent semantic analysis and charac-

ter n-grams overlap just slightly, causing the definition of good discriminative

thresholds possible.

As future work, we plan to extrapolate these estimated cross-language thresh-

olds using LSA-based and character n-gram based models in another cross-

language source code re-use scenario.
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