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Abstract: The vast amount of information that recommenders manage these days has
reached a point where scalability has become a critical factor. In this work, we propose
a scalable architecture designed for computing Collaborative Filtering recommenda-
tions in a Big Data scenario. In order to build a highly scalable and fault-tolerant
platform, we employ fully distributed systems without any single point of failure. We
study the use of data replication and data distribution technologies. Additionally, we
consider different caching techniques. Taking into account these requirements, we pro-
pose particular technologies for each component of the platform. Next, we evaluate
the response times of storing, generating and serving recommendations using MySQL
Cluster and Cassandra showing that the latter technology is much more adequate for
that purpose. Finally, we conduct a simulation for evaluating the impact of a memory
caching system.
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1 Introduction

It has been reported that, in 2013, the web traffic generated by search engines

dropped 6% meanwhile that originated in the social networks increased more

than 100% [Wong 2014]. This change in the users’ behaviour is an indicator of the

importance of recommender systems. Users are expecting more suggestions from

the systems instead of explicitly formalize their information needs in the form of a

query. The traditional use of the WorldWideWeb used to consist in browsing and

manually searching. In contrast, nowadays the so called Web 2.0 offers the users

a lot of content recommendations: contact suggestions, personalised timelines,

automatic tagging, etc. Thus, the importance of recommender systems is growing

in order to attend users’ demands.
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Recommender systems [Ricci et al. 2011] aim to predict items that may be

of interest to users. In this way, there is no need of an explicit request for in-

formation: the system learns about users and generates personalised suggestions

for them. Unfortunately, diversity of scenarios and domains makes the task of

finding relevant items a non easy one. Different approaches have been proposed

for this task. Traditionally, recommender systems are classified [Ricci et al. 2011]

in Content-Based methods [Resnick and Varian 1997] which exploit the similar-

ity of candidate items with the ones already assessed by the user, Collaborative

Filtering [Schafer et al. 2007] techniques which exploit the information about

the preferences of similar users to the subject of recommendation and, finally,

hybridisations of both families.

In this work, although it is not devoted to the discussion of recommenda-

tion algorithms, we will focus on Collaborative Filtering (CF) methods. CF is a

popular approach in multiple recommendation scenarios. The rationale behind

this fact is that CF exploits the preference patterns existing in any community

(regardless of the type of items) offering personalised recommendations. Com-

monly, the users’ preferences are explicitly elicited in the form of ratings. In other

cases, those preferences are obtained from implicit feedback such as clicks. All

this information (either ratings or clicks) has to be efficiently stored in real-time.

Additionally, it has to be easily accessed by recommendation algorithms during

their executions.

There exist several application domains for recommendation where the num-

ber of users, items and rating increased dramatically turning the recommenda-

tion problem into a big data challenge (e.g., music, web-pages, videos, friends

or tweets recommendations). Nevertheless, the amount of scenarios reaching big

data scales is increasing day after day.

In this large-scale context, the architecture of a recommender system is be-

coming critical to its success. In this paper, extending the analysis presented

in [Valcarce et al. 2014], we describe a complete recommender platform capable

of generating recommendations in a big data landscape. This new analysis also

covers the study of the effects of the caching technique in the platform. Addi-

tionally, we update the technology elections made in [Valcarce et al. 2014]. In

particular, we replace the distributed caching system since the reason for choos-

ing Memcached over Redis is no longer valid. Furthermore, we discuss in more

detail different NoSQL solutions.

We can distinguish three main components in our proposed architecture: a

web front-end which consists in a web application, a recommendation engine that

uses MapReduce [Dean and Ghemawat 2008] and a hybrid persistence layer. We

propose specific technologies for storing, processing and serving web-scale in-

formation. To this end, we evaluate different families of storage technologies

(relational databases, NoSQL systems [Sadalage and Fowler 2012] and inverted
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indices) showing that a mixed solution fits our persistence needs. In particu-

lar, we perform a series of experiments to study the efficiency of a distributed

relational solution and a NoSQL column-store, under realistic circumstances.

Additionally, we analyse the impact of a distributed memory caching system by

simulating a real environment.

2 Recommender System Architecture for Big Data

The development of a general recommender architecture capable of processing

large-scale data is currently a challenge [Cortizo et al. 2010]. In spite of the fact

that this problem is an important concern for the industry, it has attracted little

attention in the academia. Therefore, in this section, we describe the complete

architecture of a recommendation platform justifying the technology selection in

detail.

Our architectural proposal was designed to achieve two main goals: high

scalability and high availability at every level. In addition, the infrastructure

should be capable of storing continuous updates of the users’ ratings history

and provide high quality and fresh recommendations. We consider three different

main components: the user interaction layer, the recommendation engine and the

persistence component. Each subsystem can be either monolithic/centralised or

distributed. When we scale a recommender system out to the big data landscape,

any of those components is a potential point of failure in the architecture. Thus,

we need to choose distributed and fault-tolerant technologies to satisfy the high

availability requirement.

The overall design of the proposed recommendation platform is exhibited

in Figure 1. We can easily distinguish its main components: the web front-end

(a web application), the recommendation engine using MapReduce framework

and the data storage component. In the following sections, we describe these

subsystems justifying the choices made in each component with respect to the

desired goals.

2.1 Front-end

The user interaction layer of the proposed platform consists of a web application

where users can search and rate items. This website also offers personalised sug-

gestions to the users. In order to allow them to perform complex search queries,

we implemented faceted search. This technique gives the users the opportunity

to explore an item collection by applying several filters as a complement to the

recommendations with the aim of increasing users’ ratings since we want to op-

timise all aspects of the user experience. In fact, it has been reported [Amatriain

2012] that 25% of played films in Netflix are not based on recommendations.
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software. In this case, the trade-off between inversion and desired performance

is the key factor in the decision. We need to make sure that we employ at least

two load balancers in a failover configuration to achieve high availability. In this

way, if a balancer fails, the other will continue to provide service.

2.1.1 Caching technologies

Additionally, we decided to integrate two types of caching techniques in the

platform. The rationale behind this decision is based on the fact that each request

that hits the server involves some kind of computation and, probably, database

accesses. In high-traffic web-sites, caching is fundamental to reduce server load

and avoid repetitive database queries. In our context, the most frequent case is

when the users browse their recommendations or when they look for information

about the last popular releases. Without caching, each time a user requests this

data, the system sends a relatively expensive query to the storage component.

The first type of cache is a coarse-grained approach. The idea is to put

reverse proxies to cache entire HTTP petitions. As Disqus operation team re-

ported [Robenolt 2014], using a caching HTTP reverse proxy may greatly reduce

the number of requests processed by the web framework and, consequently, the

database. These proxies are situated between the load balancer and the web

server cluster and its aim is to cache responses to the web requests in order to

lessen web traffic to the servers. Nowadays, Varnish [see 3] and Squid [see 4] are

two strong competitors in this field. We favour Varnish over Squid because it

demonstrates better performance in benchmarks [Migliorisi 2014].

The second level of cache is used inside the web application for caching ex-

pensive tasks like the result of some database queries or the user sessions. The

success of such approach is a very well studied topic in Web Information Re-

trieval, where the so called answer caching [Baeza-Yates et al. 2007] has been

demonstrated as the most effective caching approach. We considered two tech-

nologies for this task: Memcached [see 5], a distributed memory object cache sys-

tem, and Redis [see 6], an advanced key-value store. Traditionally, Memcached

was the de facto standard for caching web applications since it is a simple and

mature technology for storing small HTML fragments. Nevertheless, Redis can

store any type of object (even collections), has tunable persistence to disk and

its size limits are higher than Memcached. In our previous work, we favour chose

Memcached over Redis because of its clustering capabilities [Valcarce et al. 2014].

Nowadays, this reason is no longer valid since Redis 3.0 provides out-of-the-box

[3] http://www.varnish-cache.org
[4] http://www.squid-cache.org
[5] http://memcached.org
[6] http://redis.io

1814 Valcarce D., Parapar J., Barreiro A.: A Distributed Recommendation ...



clustering features: data is automatically split among multiple nodes and failures

on a subset of nodes do not compromise the availability of the system.

2.2 Storage Component

Django framework is designed for building database-driven web applications and

it provides support for several database technologies. A recommendation plat-

form needs to store different types of information. First, we need to manage large

amounts of users’ ratings (which are read by the recommendation algorithm) and

their recommendations (which are computed in a batch process). Second, we also

store information about all the items. Finally, we have to deal with web appli-

cation data such as user profiles or sessions. To address the storage problem, we

studied three different paradigms: relational databases and NoSQL systems and

information retrieval structures.

2.2.1 Relational Databases

At the first look, Relational Database Management Systems (RDBMS) can be

the ideal solution for storing data needed by the web application or even the in-

formation about items. In contrast, there may be serious performance issues if we

want to manage large-scale data such as the users’ ratings and recommendations.

Officially, Django supports natively four RDBMS: SQLite, PostgreSQL, Oracle

and MySQL. The analysis of each solution is described in the next paragraphs.

SQLite [see 7] was rejected considering it is designed for light databases and

embedded systems.

PostgreSQL [see 8] is an object-relational database system. There exists some

tools like pgpool-II [see 9] that add support to data replication (which give

us fault-tolerance and read scaling), however it does not provide transparent

sharding across nodes in a cluster, i.e., the capability of distributing horizontal

partitions (collections of rows of the same table) between different machines.

In this big data environment, write scaling is also crucial and it is achieved

with sharding. Postgres-XC [see 10] is designed to provide a transparent write-

scalable cluster solution. Nevertheless, either replication or distribution has to

be selected in the table creation process. We excluded PostgreSQL considering

we are looking for a system able to handle these two features at the same time.

Oracle RDBMS [see 11] is also a object-relational DBMS like PostgreSQL.

It offers an option called Oracle RAC (Real Application Clusters) for support-

[7] http://sqlite.org
[8] http://www.postgresql.org
[9] http://www.pgpool.net
[10] http://postgres-xc.sourceforge.net
[11] http://oracle.com/database
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ing clustering and high availability. In contrast to Postgres-XC where a shared-

nothing approach is followed, Oracle RAC is based on a shared-everything archi-

tecture. Therefore, all database instances need access to the same shared storage

instead of using their own private disk. This architecture involves a significant

investment in Storage Area Networks (SAN). To avoid that this part becomes a

single point of failure in the cluster, expensive replication infrastructure should

be used. Furthermore, the use of a SAN instead of a DAS (Direct-Attached Stor-

age) is not generally recommended for big data analytics [Bai and Wu 2011].

Finally, we analyse MySQL Cluster [see 12]. This product is based on a

shared-nothing clustering architecture and it claims to be an ACID (Atomicity,

Consistency, Isolation and Durability) compliant system with no single point of

failure. It provides read and write scalability due to its replication and auto-

sharding features. Even though MySQL Cluster uses an in-memory storage by

default, it can be configured to also store non-indexed columns in disk using

main memory as a cache. This configuration offers good performance meanwhile

huge amounts of information can be managed. Based on these features, we chose

MySQL Cluster as the storage system for the relational data (such as item

details and web framework data). In Section 3, we evaluate the suitability of

this solution for storing ratings and recommendations.

2.2.2 NoSQL Databases

Nowadays, there exist multiple NoSQL solutions [Cattell 2011]. These systems

do not use tabular relations like RDBMS and they claim being more scalable and

flexible. There are different approaches for classifying NoSQL datastores, but it

is common to distinguish four categories: key-value, column-oriented, document-

oriented and graph databases [Sadalage and Fowler 2012]. RDBMS fulfil ACID

properties whereas many NoSQL solutions follow the BASE consistency model

(Basically Available, Soft state, Eventual consistency). In our case, the relaxation

of the ACID constraints is not a problem. The recommendation process can

be done without a few ratings, the suggestions will be only slightly modified.

Moreover, since the recommendations will be computed periodically, the BASE

model guarantee that eventually all the users will have fresh recommendations.

Key-value stores are the simplest NoSQL databases and, thus, very fast.

These databases only allow to get, set and delete a value by key. Its simplicity

provides a high scalability making them suitable for caching purposes. In fact,

Redis and Memcached are key-value databases. Nevertheless, these technologies

are not suitable for storing ratings and recommendations since they are identified

by a composite key (user and item), but we also want to make queries using only

the user as a key.

[12] http://www.mysql.com
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Document-oriented databases (such as MongoDB or CouchDB) stores docu-

ments in the form of XML, JSON, BSON... These hierarchical data structures

need not to have the same structure and may contain complex collections such

as sets or lists. These databases are able to store ratings and recommendations.

However, since ratings and recommendations have the same simple structure,

the use of document-based datastores is not ideal: we are not using many of the

features that document-oriented databases offer and there exist other NoSQL

solutions with better performance.

Graph databases (such as Neo4j) store relationships between entities as first-

class citizens. They can be used for efficiently store many different types of

relationships. In addition, they also provide ACID transactions. In our case,

we have ratings and recommendations between users and items. With only two

types of relationships, the use of a graph-based database is probably not the

most adequate.

Finally, column-oriented databases (also known as extensible record stores)

provide high scalability and are well-suited for storing users’ ratings and recom-

mendations. These databases store data in rows (in our case, a row is a user).

Each row contains a variable number of columns which represent an item and

its rating or recommendation score.

As will be described in Section 2.3, we decided to use Hadoop MapReduce

framework in order to make personalised recommendations. Because of that, we

studied two column stores generally used with Hadoop: Cassandra and HBase.

The CAP theorem [Gilbert and Lynch 2002] says that a distributed system

can only guarantee two of the following three properties: Consistency (all nodes

see the same data at the same time), Availability (every petition receives a

response indicating if it succeeded or failed) and Partition tolerance (the system

can operate in spite of arbitrary partitioning produced by network failures).

Cassandra focuses on delivering availability and partition tolerance while HBase

sacrifices availability.

Apache Cassandra [see 13] is a highly scalable, eventually consistent and

distributed DBMS. Eventual consistency guarantees that, if no new updates

are made to an object, eventually all accesses to that object will return the

last updated value. Cassandra is fault-tolerant thanks to replication, allows to

add new nodes meanwhile keeping a linear read and write scalability (thanks

to transparent partitioning and distribution) and there exists no single point of

failure because of its distribute design. Roughly speaking, it can be said that

Cassandra takes from Google Bigtable [Chang et al. 2008] its data model and

from Amazon Dynamo [DeCandia et al. 2007] its distributed architecture.

Apache HBase [see 14] is also a distributed and linear scalable DBMS that

[13] http://cassandra.apache.org
[14] http://hbase.apache.org
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uses Hadoop distributed storage file system (HDFS). It is inspired in Google

Bigtable and it is designed for hosting billions of large rows on commodity hard-

ware. Contrary to Cassandra where strong consistency is optional, in HBase it

is guaranteed using logging and locking.

In spite of the fact that they have similar features, we chose Cassandra over

HBase based on their performance and availability. Rabl et al. [Rabl et al. 2012]

showed that Cassandra clearly outperforms HBase in almost all examined scenar-

ios. We can afford a reduced loss of consistency in our recommendation platform,

considering users do not usually modify their ratings, in exchange for higher ef-

ficiency and availability. Moreover, only in a scenario where recommendations

are calculated in real-time, eventual consistency could be a problem.

2.2.3 Search Engines

As well as storing ratings and making recommendations, our platform is de-

signed to be able to process complex search queries, specifically faceted search.

We propose the use of search engines because the previously described database

systems (either relational and NoSQL ones) are not well-suited for this task.

Apache Lucene [see 15] is probably the most famous information retrieval soft-

ware library and it supports full text indexing and searching features. Below,

two popular search engines built on top of Lucene are described.

On the one hand, Apache Solr [see 16] is a mature and fast search engine.

It includes distribution and fault tolerance features as sharding and replication

under the name of Solr Cloud. On the other hand, Elasticsearch [see 17] is a

modern distributed real-time search and analytics engine. Both of them support

faceted search and therefore are valid alternatives to address our needs. We chose

Apache Solr because its mature and consolidated nature.

2.3 Recommendation Engine

Now we describe the core of the proposed recommendation platform: processing

data for producing recommendations. One of the most successful approaches to

face this problem at big data scale is MapReduce [Dean and Ghemawat 2008], a

functional programming model designed to treat large datasets in a distributed

platform. We propose the use of Apache Hadoop [see 18], an open source im-

plementation of MapReduce model, together with Apache Mahout [see 19], a

machine learning library that contains different distributed algorithms built on

top of Hadoop.

[15] http://lucene.apache.org
[16] http://lucene.apache.org/solr
[17] http://www.elasticsearch.org
[18] http://hadoop.apache.org
[19] http://mahout.apache.org
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Hadoop is designed for doing batch calculations; hence, recommendations

are precalculated and stored. In order to provide fresh recommendations, we

suggest pipelining MapReduce jobs as the Youtube recommendation system does

[Davidson et al. 2010]. A recommendation pipeline consists in launching new

recommendation processes before the actual MapReduce job has finished. In

this way, the suggestions are updated more frequently and provide a fresher

appearance to the user.

At the time of writing this paper, Mahout implements two distributed Col-

laborative Filtering algorithms: Item-Based and Matrix Factorization with Al-

ternating Least Squares. In Section 3.2 we examine the performance of the first

method using MySQL Cluster and Cassandra as data sources. Due to our desire

of benchmarking different data storage technologies, we decided to use the first

algorithm, the least computationally expensive technique, because it gives us the

opportunity of focusing on data consumption costs.

3 Storage Component Evaluation

Since our aim is to find the most suitable database for storing ratings and rec-

ommendations, here we do not focus on evaluating recommendations quality.

Instead, in this benchmarking effort, we studied two different approaches to ad-

dress the big data challenge: MySQL Cluster, a clustered RDBMS solution, and

Cassandra, a fully distributed NoSQL DBMS. Although Cassandra and MySQL

have been compared, to the best of our knowledge, this is the first rigorous

experimental study of Cassandra and MySQL Cluster performance under this

scenario.

Both data storing technologies have demonstrated linear scalability adding

new nodes [Rabl et al. 2012, Oracle 2012]. However, it should also be noted that

MySQL Cluster, in contrast to Cassandra, does not provide any load balancer

policy. In our tests, we implemented a round-robin policy to face this issue.

The cluster used for the benchmarks consists of four nodes with two In-

tel Xeon E5504 CPUs, 16 GB of RAM and two 1 TB disks connected with

a Gigabit Ethernet switch. The tests we performed include concurrent rating

insertion, recommendation generation and concurrent recommendation serving.

Each database is configured to work with a replication factor of two.

We used the dataset that was made available for the Netflix Prize [see 20].

This huge collection includes 100,480,507 ratings that 480,189 users gave to

17,770 films. Nevertheless, the proposed system is independent of the dataset.

Any type of collection with ratings between users and items is susceptible of being

used in our platform. The rationale behind the decision of choosing this particu-

lar dataset is its large dimensions. Below, we introduce the applied methodology.

[20] http://www.netflixprize.com
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Figure 2: Cassandra vs MySQL Cluster per insertion time when using 8, 16, 32

or 64 concurrent petitions and moving the number of ratings from 10 to 100

million users ratings. Times (in milliseconds) were obtained in a cluster of four

nodes

3.1 Rating Insertion

We measured writing times of inserting film ratings from the Netflix dataset

using different number of concurrent connections.

The results of inserting all Netflix dataset ratings, illustrated in Figure 2,

show that Cassandra outperforms MySQL Cluster in every scenario. In addition,

it should be noted that the operation times hardly increase with the number of

inserted ratings although a warm-up overhead can be observed at the start.

3.2 Recommendation Generation

Using the data inserted in the previous experiment, we configure Mahout’s item-

based CF algorithm to fetch and store data from/to MySQL Cluster and Cas-

sandra. We measure the overall time of making recommendations for the whole

Netflix dataset (recomendations for 480,189 users) averaged by three executions.
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The recommendation algorithm worked well in conjunction with Cassandra.

However, we were not able to store data directly into MySQL Cluster because

Hadoop outputs all recommendations in bulk using DBOutputFormat class. This

leads to massive transactions causing database crashes. This event does not

happen with Cassandra because CqlOutputFormat inserts recommendations as

soon as they are generated. To overcome this problem in MySQL Cluster, we

wrote recommendations into HDFS (Hadoop Distributed File System) and then

used Sqoop [see 21] to export the data from HDFS to MySQL.

The results of the tests are 68.85 minutes using Cassandra (8.6 ms per user

in average) and 274.73 minutes using MySQL (34.3 ms per user in average,

being the use of Sqoop the crucial factor in the differences). Recommendation

generation is not on demand, we conceive the recommendation generation as an

off-line process, however, when fresh recommendations are needed frequently in

the domain of application, the recommendation algorithm can be pipelined in

order to provide a high updating rate, i.e., starting different recommendation

generation processes in parallel when a given amount of change is detected in

the rating information.

3.3 Recommendation Serving

Lastly, we focus on providing users with recommendations. In this test, we anal-

ysed the read times of querying the top items for a user. In order to be able to

serve recommendations in real-time, we need to retrieve the first top suggestions

efficiently. Depending on the underlying technology, this is achieved by different

manners. In the case of MySQL Cluster, we had to create a B-tree index on

user and score columns in addition to the primary key index on user and item

columns. Since MySQL Cluster maintains all indexed columns in distributed

memory, this action worsens the scalability of this technology. In contrast, in

Cassandra, when we create the table, we can specify the clustering order of the

columns. In this way, all recommendations are stored sorted and they can be

retrieved efficiently.

Our experiment consists in querying the top 10 recommended items for 25

million users. Considering that Netflix dataset has about half a million users,

many queries will be repetitive. In this test, we want to test the reading perfor-

mance of the database, thus, the described caches in Section 2.1 are not used.

We study serving times under different number of concurrent queries. The re-

sults illustrated in Figure 3 show that Cassandra consistently improves MySQL

Cluster in every scenario.

[21] http://sqoop.apache.org
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Figure 3: Cassandra vs MySQL Cluster serving time per user recommendation

when using 8, 16, 32 or 64 concurrent requests. Times (in milliseconds) were

obtained in a cluster of four nodes

3.4 Final choice

In view of the results, we chose Cassandra over MySQL Cluster. We justify this

decision in the following paragraphs.

Firstly, a potential MySQL Cluster drawback is the fact that it needs to

store indexed columns in main memory which compromises its scalability if the

data stored in a node exceed its main memory. For instance, our first attempt

to compare MySQL and Cassandra involved using the Bigflix dataset [Schelter

et al. 2013], with 25 million users and 5 billion ratings, but given the MySQL

memory limitation using 4 nodes and replication factor 2, the Bigflix collection

could not be fitted in this cluster using MySQL. Although MySQL could still be

valid in a lot of cases, its choice could compromise the use of this architecture

at big data scale.

In addition, Netflix Engineering [Amatriain 2012] reported an insertion rate

of 4 million ratings per day (an average of 46 requests per second). Probably
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rating insertion will not be uniform, in this scenario (64 concurrent requests)

Cassandra is 4 times faster than MySQL Cluster.

Moreover, recommendation generation is a very slow process using MySQL

Cluster due to the writing performance. Finally, the difference of performance

when serving recommendations reinforces the election.

4 Cache Evaluation

The use of caches is one important part of the proposed system. Caching tech-

niques allow the systems to serve requests in large-scale scenarios. In this section,

we designed an experiment to evaluate the effect of Redis in the proposed plat-

form.

4.1 Experiment setup

To this end, we use Apache JMeter [see 22] an application for load testing func-

tional behaviour and measuring performance. In order to avoid interaction with

other uncontrolled variables such as network latency, we simulate 30 concurrent

users accessing the same machine. They arrive at a rate of one user per two

seconds plus a Poisson distributed value with λ = 1 second. In this way, we

can simulate random arrival of users with a known average rate using a Poisson

distribution.

In this simulation, we aimed to reproduce a standard user behaviour in the

web application. Thus, we designed a typical interaction based on an expert

judgement. Each user’s action requires some time from the user waiting time

which is estimated using a Normal distribution. The users’ actions as well the

waiting time are indicated below:

1. Go to the platform index page: arrival ∼ Poisson(1).

2. Log into the system: user interaction time ∼ N (3, 2).

3. Check the user’s homepage: user interaction time ∼ N (10, 6).

4. Check personal ratings: user interaction time ∼ N (10, 6).

5. Check tailored recommendations: user interaction time ∼ N (20, 10).

6. Check one random top recommendation: user interaction time ∼ N (10, 6).

7. Log out.

[22] http://jmeter.apache.org
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For these experiments, we disabled the coarse-grain cache (i.e., Varnish) be-

cause we are interesting in measuring the sole effects of the fine-grained cache.

First, we evaluated the performance of the system without employing Redis

caching system. Second, we cached every SQL request to MySQL Cluster. Fi-

nally, we cached not only database accesses but also the result of computing the

views of Django, that is to say, the pieces of HTML code that are sent to the

users.

4.2 Response time results

Figure 4 illustrates the results of the simulation. As it can be observed, the use

of Redis as a caching system improves the response time of the web applica-

tion. Improvements are noticeable either using only database caching or using

both database and views caching. In the case of visiting the homepage or log-

ging out of the system, the response times are quite similar. The reason is that

these pages are static and almost no processing is needed. Nevertheless, in these

cases, the differences in performance are very small, probably not significant. In

contrast, the action in which the user checks the recommendations is the most

benefited. This fact is mainly motivated by the popularity bias introduced by

any recommender.

The time of login may appear quite noticeable. This is because of the overhead

induced by the creation of the user’s session and its storage in the database. The

use of Redis enables to store the sessions in the cache lightening the login load.

Additionally, it can be appreciated that caching not only accesses to the

database but also the views of Django improves even more the response time of

the system.

We also experimented with other parameters obtaining the same trends as

the ones showed in Figure 4.

In the light of these results, we can affirm that the introduction of caching

techniques into the system improves the overall performance of the platform.

These results are consistent with the ones reported for Information Retrieval

tasks [Baeza-Yates et al. 2007] where caching the query results yields in an im-

proved performance since many queries that users introduce into the system are

the same. In the recommendation scenario, this phenomenon also occurs. Al-

though users receive personalised suggestions, popularity is a key factor in the

recommendation process. In addition to fashion trends, this causes that some

items are more usually requested than others: the so called long tail [Ander-

son 2006]. Consequently, caching these popular elements provide appreciable

improvements in response time.
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Figure 4: Response times of the system using 30 concurrent users on one node

without cache, caching only database accesses and caching database accesses

and views.

5 Related Work

Scalability of recommender systems is not a novel topic. In fact, it has been

counted as one of the most urgent challenges in recommendation frequently

[Cortizo et al. 2010]. This topic has been thoroughly studied by many companies,

and nonetheless it continues to be a source of research. For example, Hulu [see

23] and Netflix [see 24], two big film recommendation platforms have reported

some details about their architectures in their technical blogs. Unfortunately,

because of the strategic importance of this type of information, these blog posts

only offer a superficial overview of their platforms.

The architecture described in this paper shares some similarities with the

short description of the recommendation system implemented in Youtube [David-

son et al. 2010]. This video portal computes recommendations using pipelined

MapReduce jobs. In this way, they can simulate to provide fresh recommenda-

tions. On the other hand, they also store the user logs (ratings, clicks, plays, etc.)

as well as the computed suggestions in Bigtable [Chang et al. 2008], a column-

oriented database on which Cassandra is based. This supports the idea of the

[23] http://tech.hulu.com/blog/2011/09/19/recommendation-system
[24] http://techblog.netflix.com/2013/03/system-architectures-for.html
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convenience of using Cassandra instead of MySQL Cluster.

Other Google service, Google News, also uses Bigtable for storing the history

of the users [Das et al. 2007]. They combined three algorithms, two of them are

implemented in MapReduce. Google News recommendation architecture is based

on three types of servers. First, the MapReduce cluster computes periodically

the clustering of the users. Second, the statistics servers store user data in real-

time. Last, the news front-end generate in recommendations on demand using

the clustering previously computed in the MapReduce cluster.

The Ebay recommendation architecture [Katukuri et al. 2013] also consists

of three main components. The data store is responsible for registering the user

activity and the learned models. There is a MapReduce cluster that generates the

computationally expensive models in an offline way. Finally, there is a component

that computes personalised suggestions on demand using the data and models

from the store component.

A very different approach to recommendation is the engine built with Apache

Solr presented by Laci et al. [Lacic et al. 2010]. In contrast to our proposal

where updates are not intended to be immediately processed, they are able to

generate recommendations in real-time. This is an alternative for light and simple

recommendation algorithms which can be modelled using the basic operations

provided by Solr API. However, the major downside of this procedure is the

difficulty of implementing complex recommendation algorithms such as the ones

based on matrix factorization methods.

6 Conclusions and Future Work

In this paper, we have described a scalable architecture for big data recommen-

dation systems without any single point of failure. This system consists of three

main components: the web front-end, the data storage and the recommendation

engine. Every subsystem of each component is fully distributed and replicated

to achieve scalability and high availability.

We have studied the write scalability as well the read scalability of different

storage technologies. We have compared two storage products, MySQL Cluster

and Cassandra, for storing ratings and generating and serving recommendations,

concluding that the second one is best suited to these tasks. At the end, we

have employed a mixed solution constituted of MySQL Cluster, Cassandra and

Lucene for the different types of data. Cassandra is used for storing ratings

and recommendations, MySQL Cluster for web application data and Lucene for

storing data about the items.

Additionally, we have included two levels of caching systems. On the one

hand, we have proposed the use of a reverse proxy, a coarse-grain cache, using

Varnish. On the other hand, the second layer of cache consists of an in-memory
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key-value store, Redis. We have tested the performance gains of using Redis in

terms of response time of the web application. The results have shown important

improvements either by caching only the database accesses or by caching also

the web views.

Further research might benchmark more aspects of the architectural proposal.

It would be very interesting to analyse the combined effect of both types of

caching systems (Varnish and Redis). This study may help in determining which

parts of the web application are worth of being cached.

Another possible area for further work is to analyse the use of the stor-

age component that different recommendation algorithms make. In particular,

we would like to analyse how effective probabilistic recommendation methods

[Parapar et al. 2013, Valcarce et al. 2015] differ in the consumption of resources

from the classical, less effective, models.
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