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Abstract: Model transformation is an interesting task, which could take advantage
of several modelling languages, and meanwhile should respect all the safety require-
ments. The presented work studies the translation from a valid design solution to a
valid implementation, which is a mapping method from coloured Petri nets to abstract
B machines. Both modelling languages are well known formal methods in the con-
text of safety requirement engineering. The Petri nets are widely accepted by French
railway engineers because of a fine graphic representation and their dynamic analysis
properties. The B machine offers verified software development based on B language,
which has already been applied in some safety-critical systems. The proposed model
translation technique will help to bridge the gap between these two formal methods.
This paper shows the systematic process of the translation, which is also illustrated by
several case studies. The limitations and future efforts are discussed at the end of the
paper.
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1 Introduction

The aim of this paper is to describe a process of designing and assessment.

On the one hand a fine behavioural specification has to be able to be assessed

by experts. On the other hand, the implementation result should respect some

common industrial constraints. To save efforts and reduce errors, this paper

presents a transformation method from the coloured Petri nets to abstract B

machines. This method could assist people in quickly shifting from a valid design
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solution to a valid input of B development process in the design phase. In this

paper we mainly focus on the transformation process and do not deal with the

refinement of B machine.

In the French railway field, the Petri nets and the B machine are two indus-

try recognized tools. For instance, the French national railway company (SNCF)

is interested in Petri nets and their high-level extensions. They are used as for-

mal tools both in scientific research and practice applications: in the high-level

systems, coloured Petri nets are used to assess the performance of European rail-

way signalling systems and the French signalling system [Lalouette et al. 2010,

Buchheit et al. 2011]. In the low level systems, Petri nets have been used to

develop a new-type railway interlocking control system by M. Antoni [Antoni

2009; 2012], an expert engineer of SNCF. The reason that experienced engineers

prefer to use the Petri nets and other high-level extensions is the power of their

languages, which have the ability to express a complex system with a compact

size. In addition, as graphic languages, the Petri nets have the same advantage

as UML, that is having an easy understanding formalism for communicating.

Therefore, many practical systems and valid solutions are specified with Petri

nets and other high-level Petri nets.

Nevertheless, for urban railway systems, which are more independent and

closed systems, the B method has been accepted and has been applied in some

key components. Some early success stories are: SAET-METEOR [Behm et al.

1999], a driverless train automation and operation system in metro Line 14 in

Paris in 1998; Roissy VAL, a section automatic pilot system for light driverless

shuttle for Paris-Roissy airport in 2006, and now is operating in Taipei, Toulouse,

Rennes and Turin [Erbin and Soulas 2003]. A recent application is the COPPI-

LOT system [Patin et al. 2006, Lecomte 2008], which is a metro platform screen

door controlling system of the ClearSy company. It has been installed in the

Paris metro and the Sao Paulo metro. The safety and robustness of B language

developed systems convince people of the reliability of the B method, because

the final implementation code generated from abstract B machine is considered,

and proved to be, safe. So, in the French railway context, B proved model is

accepted as a strong safety proof [Boulanger 2013a;b].

Actually, besides the above-mentioned advantages, both languages have some

deficiencies in the industrial practices. For large scale, complex systems, the high-

level Petri nets could provide a good formal framework and present a concise

model [Sun et al. 2014]. So, there are already many valid solutions modelled

by Petri nets. However, the assessment processes will probably encounter the

“State explosion” problem. Furthermore, there is a big gap between Petri net

models and the final implementations, because there are rarely any commercial

tools that can formally assess this process. In contrast, the B method is well

suited for formal assessment in the development of implementable codes. But its
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language demands a lot of pre-training for set theory and first order logic, which

greatly increases the research and development costs. Besides, its notations and

its commercial tools are not user friendly. So, it has only been implemented in

the vital safety-critical applications.

This technique mismatch leads to the following question. Let us assume in

the design phase, a model has been validated by industry experts, using dedi-

cated industrial tools such as Petri nets.The problem is how to prove it formally

with respect to the specifications and automatically generate the implementable

codes. To be more precise, the problem to be solved is the translation from the

coloured Petri net formalism into the abstract B machine formalism. The moti-

vations of such a transformation are the followings: from the engineering point

of view, two formal methods have some advantages and disadvantages, and we

consider them as complementary in the French railway context. This proposi-

tion leads us to take advantage of both methods using the techniques of model

driven engineering. So, an interesting solution should be a model transformation:

from CPN models to the abstract B machines. Such a transformation can build

a bridge between critical tasks, from a strong requirement analysis towards a

valid implementation on a real system. Last but not least, if we want to validate

safety at a system level, this transformation is a strong contribution in order to

integrate information from different parts.

Some similar works of this approach contribute efforts from different per-

spectives. The work in [Korečko et al. 2007, Korečko and Sobota 2014] presents a

mapping method of low level Petri nets (the Petri nets with undistinguishable to-

kens) to abstract B machines and to Event B machines. A similar work [Attiogbe

2009] presents an encoding of PT nets to the Event-B language. The work of [Bon

2000, Bon and Dutilleul 2013] successfully translates a non-hierarchical CP-net

with numerical colour sets to B machines with Atelier B syntax. Nevertheless,

the practical experience shows this work generates a lot of unproven POs using

automatic prover in Atelier B. In this paper, our research is an improvement

of the work from [Bon and Dutilleul 2013]. We continue to use their basic data

structure definitions. Based on this, we introduce a more explicit framework of

the translation, simplify the operations for multi-set structures, make the trans-

lation compatible with non-numeric types of colour sets. Then, we reform the

mechanism of multi-set specification, in order to ensure the target B machines

can be automatically proved by Atelier B without using the interactive prover.

The rest of the paper is organized as follows: sections 2 and 3 provide some

necessary formal definitions about coloured Petri nets and B language. Note

that the main contribution of these two sections is to present the transformation

from coloured Petri nets to B machines. Consequently, the presentations of the

two formal methods are efficient rather than exhaustive. Section 4 presents the

mapping methodology from non-hierarchical coloured Petri nets to abstract B
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machines. In the conclusion, we discuss the limitations of the current method

and propose some further ideas for research.

2 Coloured Petri Nets

Petri nets are a mathematical modelling language and were first developed by

C.A Petri in order to describe distributed systems. Petri nets provide the founda-

tion of a straightforward graphical notion for specifications of stepwise processes,

such as selections, loops, and parallel operations. Moreover, all the executions

of Petri nets are performed by a rigorous and explicit algorithm process, which

is based on a complete mathematical theory. So, they could be used for some

formal proofs.

Coloured Petri nets (CP-nets) are high-level Petri nets, developed by Prof.

Kurt Jensen [Jensen 1987]. They are a backward compatible extension of Petri

nets which have the feature of performing a high-level programming language.

The notation of CP-net is called CPN Meta language, whose language foundation

follows the Standard ML [Milner 1997]. CPN Meta language provides basic data

types, data constructors and pre-defined functions in order to develop a compact

model with strong performance capabilities. CP-net maintains the properties of

classical Petri nets and provides a new notation of token to mark the difference

between them. Then, each token is no longer noted with indistinguishable black

dots, but with a data value which is named as the token colour. Each place in

CP-net models can be marked with different tokens, but with the same type

which is specified from programming languages. The type of each place is called

the colour set. The state of a CP-net model (marking) is composed of all the

tokens, including both their numbers and their colours. Although the CP-nets

accept some programming language, their syntax and semantics are still based

on rigorous mathematical definitions. So, CP-nets are considered as a formal

method.

The following subsection gives the necessary definitions of coloured Petri

nets. They are quoted from the book of Kurt Jensen (2009) ”Coloured Petri nets:

modelling and validation of concurrent systems”, if the readers already have a

background in coloured Petri net language, they may skip these subsections.

2.1 Non-hierarchical coloured Petri net [Jensen and Kristensen

2009]

The formal definition of a non-hierarchical and untimed CP-net is given as below.

Definition 1. A non-hierarchical coloured Petri net is a nine-tuple CPN =

(P, T,A,Σ, V, C,G,E, I), where:

(i) P is a finite set of places.
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(ii) T is a finite set of transitions, P ∩ T = φ.

(iii) A is a finite set of arcs, A ⊆ P × T ∪ T × P .

(iv) Σ is a finite set of colour sets, Σ �= φ .

(v) V is a finite set typed variables, Type[v] ∈ Σ for all variables v ∈ V .

(vi) C is the colour set function, C : P → Σ

(vii) G is the guard function, G : T → EXPRv and for ∀t ∈ T that

Type[G(t)] = Bool ∧ Type[V ar(G(t))] ⊆ Σ.

(viii) E is the arc expression function, E : A → EXPRv and for ∀a ∈ A

that Type[E(a)] = C(p)MS ∧ Type[V ar(E(t))] ⊆ Σ.

(ix) I is the initialisation function, I : P → EXPRφ and for ∀p ∈ P that

Type[I(p)] = C(p)MS.

To formally define the behaviour of CP-nets, some semantic concepts and

notations should be introduced.

Definition 2. For a CP-net, the following concepts exists:

(i) A marking M is a mapping from places into multi-set of tokens, for

∀p ∈ P : M(p) ∈ C(p)MS,

(ii) The initial marking M0 is defined as ∀p ∈ P : M0(p) = I(p)〈〉.
(iii) The variables of a transition t is denoted as V ar(t) ⊆ V and V ar(t) =

{v | v ∈ V ar(G(t)) ∨ ∃a ∈ A : v ∈ V ar(E(a))}.
(iv) A binding of a transition t is a function b that maps each variable v ∈

V ar(t) into a value b(v) ∈ Type[v]. The set of all bindings for t is denoted

by B(t).

(v) A binding element is a couple (t, b) where t ∈ T and b ∈ B(t). The set

of all binding elements in a CP-net is denoted as BE.

(vi) An arc expression is E(p, t) or E(t, p) denote the arc expression on the

input or output arc from p to t. In an enabled binding element (t, b), the

multi-set of tokens removed from an input place p when t occurs in a

binding b is given by E(p, t)〈b〉, and E(t, p)〈b〉 is the multi-set of tokens

added to an output place p.

The behaviours of a CP-net are the transfer of tokens, which are based on

the enabling rules of the binding elements, there are represented as following.
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Definition 3. In the marking M , a binding element (t, b) ∈ BE is called en-

abled if and only if the following two conditions are satisfied:

(i) G(t)〈b〉 = ture

(ii) ∀p ∈ P : E(p, t)〈b〉 ≤ M(p).

After firing the enabled transition t, the new marking of the system is:

(iii) ∀p ∈ P : M ′(p) = (M(p)−−E(p, t)〈b〉) + +E(t, p)〈b〉.
The operator “++” takes two multi-sets as arguments and returns the union

(the sum). In the same way, the operator “−−” the subtraction of two multi-sets.

colset BOOL = bool;
colset SmallInt= int with 1..3;
colset LiftDoor = product SmallInt * BOOL;
var a:SmallInt;
var b:BOOL;

Figure 1: CP-net of an Elevator

To better illustrate the definitions, a small example will be introduced. This

is a toy model of an elevator door control system. There is a lift car that can move

upwards or downwards between three floors. Tokens in “Door Open” and “Door

Close” places represent lift doors of different floors. The token in the form of

(a,b) indicates the lift door on the ath floor is open/closed (b=true/b=false). For

(1,false)
(2,true)
(3,false)

(1,true)
(2,false)
(3,false)

(1,false)
(2,false)
(3,true)

Up

Down

Up

Down

Figure 2: System state of Fig. 1
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example, the token (1,true) means the lift door on first floor is open. Its system

states can be found in Fig. 2, where each state is represented by the status of all

the tokens. The arcs between different states are the fired transitions.

3 B-Method

The B machine is a model-oriented method, developed by Prof. Jean-Raymond

Abrial [Abrial 1996]. It is a well-defined software development method based on

B, and it has robust, commercially available tool support for the whole develop-

ment process, such as Atelier B [see 1].

The B language provides a high-level specification formalism called abstract

B machine. The specifications will be manipulated through a progressive devel-

opment process that evolves the abstract B machines into implementable pro-

gram codes. Each development process is called a Refinement, which “refines”

the previous specification into a more concrete one. In fact, each refinement is

a process that replaces some of the non-deterministic composition with deter-

ministic ones or programming-like forms. A refinement could be further refined

until it is deterministic enough and it is called the Implementation. The im-

plementation can be automatically transformed into the final code, such as C,

ADA or other programming languages. The consistency of all the abstract B

machines and the correctness of each development step are validated by a set of

proof obligations (POs). New POs are generated along with the refinement

processes in order to enable the B method to build error-free proven systems. In

this paper, we mainly focus on the abstract B machine, so further information

of the refinement and the B development can be found in [Abrial 1996].

The notation of the specifications in B method is known as the abstract

machine notation (AMN). Fig. 3 presents an abstract B machine notation. Nor-

mally, it could contain different clauses to describe its properties and operations.

These clauses can be classified into three categories: composition, declarative and

executive [Boulanger 2014]. In Fig. 3, each category is marked with a character

style, the compositions are normal style, the declaratives are italics style, and

the executives are bold style.

The compositions are used to define the relationships between different ab-

stract machines which belong to the same system. The possible relations are

INCLUDES, SEES, IMPORTS, EXTENDS or USES. Each clause indicates a

different visibility and access permission on the components of the other ab-

stract machines. The declarative clauses describe the static state of a given sys-

tem with a set of data statement (SETS, VARIABLES, CONSTANTS). Then

[1] Atelier B, developed by ClearSy company, is an industrial tool that allows for the
operational use of the B Method to develop defect-free proven software (formal soft-
ware)
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MACHINE M(p)
SEE N
CONSTRAINTS C
SETS St
CONSTANTS k
PROPERTIES Bh
VARIABLES v
INVARIANT I
DEFINITIONS D
INITIALISATION T
OPERATIONS

y ← op(x) =
PRE P THEN S END

...
END

Figure 3: General structure of B-machine

the consistency of these data is always validated by the clause PROPERTIES for

constants and clause INVARIANT for variables. The executive part presents the

dynamic actions of an abstract machine which includes the INITIALIZATION

and the OPERATIONS. The initialisation is the initial data assignment action.

The operations could modify the value of data in order to achieve state changes

of a system. The DEFINITIONS clause offers explicit declarations of textual

definition of a component, and may be in parameterized form. Their recalls are

directly replaced by the corresponding terms during the lexical analysis phase.

In Atelier B, definitions can also be included from external files. In an abstract B

machine, the static definitions are based on the set theory and first-order predi-

cates, while all the operations are based on the generalized substitution language

(GSL).

A subset of GSL used in the following sections is shown in Tab. 1, where x

denotes a variable, E is an expression, R is a predicate and S,S1,S2 are gener-

alized substitutions. Note that the “PRE-THEN-END” structure is only usable

if the predicate is valid, whereas the other conditional substitutions are always

performed, but their result depends on the validity of a predicate. Detail expla-

nations about GSL can be found in [Abrial 1996, Boulanger 2014].

Note that the abstract B machines are expressed in non-deterministic for-

malism. Meanwhile, they follow the rules of set language and first order logic. So,

some of the algorithms, such as loops and recursion, are forbidden in the abstract

B machines. They can only be achieved in refinement and implementation.

1661Sun P., Bon P., Collart-Dutilleul S.: A Joint Development ...



Substitution Meaning of GS

x:=E [x := E]R ⇔ substitution of all the free
occurrences of x in R by E

skip [skip]R⇔ R

S1||S2 [S1||S2]R⇔ [S1]Rs ∧ [S2]Rt

PRE E THEN S1 END If predicate E holds, do S1, otherwise do
anything

SELECT E THEN S1 END If E holds, do S1, otherwise do not execute

IFE THEN S1 ELSE
S2 END

If E holds, do S1, otherwise
do S2

VAR v IN S1 END For any values of local variables from the
list v do S1

ANY v WHERE E
THEN S1 END

For any values of variables from v that sat-
isfy E do S1, If no values satisfy E, do not
execute

Table 1: A subset of generalized substitutions [Boulanger 2014].

4 Non-hierarchical CP-net to B machine Translation

With the extensive applications of formal methods, sometimes the integration of

formal languages is unavoidable. The translation from Petri nets to B machine

seems to have been a research interest in recent years. Some similar work of

this approach can be found in [Korečko et al. 2007, Korečko and Sobota 2014,

Attiogbe 2009]. Our research is an improvement of the work from [Bon and Du-

tilleul 2013]. In this paper, we introduce an explicit and detailed transformation

framework, providing an automatically proved B machine. Let us remark that

the assessment of high-level design is a major safety element on its own. In

this case, you may not need to execute the complete B refinement processes.

Consequently, in this paper, we do not really focus on the B refinement.

The translation introduced in this section is for non-hierarchical CP-nets.

It will consist of 4 parts. First, the framework (or template) of the translation

is presented, for mapping the Petri net’s ”Place-transition” structure to the

B machine formalism. Second, the colour property of CP-nets is achieved by

introducing the multi-set mechanism, which defines the token representation

and its mathematical operators. It allows binding tokens with different colour

types to each places, and modifying the content of the tokens. Then, different

colour sets in CP-nets are mapped into abstract machine notation and user-

define declarations are discussed. Finally, two non-hierarchical CP-net models

are introduced to demonstrate the translation process.

1662 Sun P., Bon P., Collart-Dutilleul S.: A Joint Development ...



MACHINE M

SETS Colset1, Colset2, · · · , Colsetk−1

CONSTANTS Colsetk, Colsetk+1, · · · , Colsetl

PROPERTIES

Colsetk := EXPRk
V & Colsetk+1 := EXPRk+1

V & · · ·
& Colsetl := EXPRl

V

VARIABLES V P1, V P2, · · · , V Pm

INVARIANT

V P1 : (Colset1)MS & V P2 : (Colset2)MS & · · · & V Pm : (Colsetl)MS

INITIALISATION

V P1 := V I1 || V P2 := V I2 || · · · || V Pm := V Im

DEFINITIONS

”MultiSets.def”;

· · ·
VAR tj == EXPR

tj
V ; // For trainsition Tj

E p1 tj == EXPRVAR tj ;

E p2 tj == EXPRVAR tj ;

· · ·
E tj p1 == EXPRVAR tj ;

E tj p2 == EXPRVAR tj ;

· · ·
GRD tj == EXPRV ;

CDT tj == EXPRV ;

· · ·
OPERATIONS

OP1= SELECT CDT1 THEN ACT1 END;

OP2= SELECT CDT2 THEN ACT2 END;

· · ·
OPn= SELECT CDTn THEN ACTn END;

END

Figure 4: The framework for translation of a B machine

4.1 Framework of non-hierarchical translation

For a CP-net N = (P, T,A,Σ, V, C,G,E, I), we define that P = {p1, ..., pm},
T = {t1, ..., tn}, A = {(p, t) | p ∈ P ∧ t ∈ T } ∪ {(t, p) | t ∈ T ∧ p ∈ P},
Σ = {σ1, ..., σk−1, σk, ..., σl}, C = {c1, ..., cm}, G = {G(t) | t ∈ T } and I =

{I(p) | p ∈ P}. Let β a the mapping β : CPN → AMN , then the image of CP-

net N under β is a B machine Bm, Bm = β[N ] with the following structure.

For all the elements mentioned in Fig. 4, they have the following mapping

relationship:
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(i) ”MultiSets.def” is an external definition file, which will be introduced in

the next subsection.

For each colour set ∀k ∈ {1..l}, the mapping relations are shown below.

(ii) Colsetk = β[σk] is the colour set , where σk = C(pk) ∈ Σ, C is the colour

set function in Definition 1.

(iii) (Colsetk)MS = β[C(pk)MS ], is the multi-set of colour .

For each place related element ∀i ∈ {1..m}, the relations are shown as follows.

(iv) V Pi = β[M(pi)], is the marking of each place, where pi ∈ P , M is the

marking in Definition 2.

(v) V Pi ∈ (Colsetk)MS , where Type[V Pi] = (Colsetk)MS

(vi) V Ii = β[I(pi)〈〉] is the initial value , where Type[V Ii] = (Colsetk)MS .

(vii) The initial marking M0 is defined as M0 =
m∑
i=1

V Ii

The detail definitions are that for ∀p, t (p ∈ P, t ∈ T ), we have:

(viii) Ea is the arc expression, where Ep,t = β[E(p, t)] and Et,p = β[E(t, p)].

(ix) Ea =

{
EXPRt ∈ (Colsetk)MS if a ∈ A

ΦMS if a /∈ A

(x) cdt(p, t) =

{
V P ≥ Ep,t if p ∈ ∗t
true if p /∈ ∗t

(xi) act(p, t) =

{
V P := V P − −Ep,t ++Et,p if p ∈ ∗t ∪ t∗

skip if p /∈ ∗t ∪ t∗

For each transition related element ∀j ∈ {1..n} , the relations are shown

below.

(xii) OPj = β[tj ] is the transition, where tj ∈ T .

(xiii) V ARj = β[V ar(tj)] is the variables of transition tj .

(xiv) GRDj = β[G(tj)] is the guard function.

(xv) CDTj is the condition of each operation, CDTj = (V ARj ∈ Colsetk) ∧
cdt(p1, tj) ∧ cdt(p2, tj) ∧ · · · ∧ cdt(pm, tj) ∧ β[G(tj)].

(xvi) ACTj = act(p1, tj) ∧ act(p2, tj) ∧ ... ∧ act(pm, tj).
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In general, the clauses SETS, CONSTANTS and PROPERTIES define all

the new sets used in the model. Each element of VARIABLES V P in the B

machine M represents the marking M(p) of given place p in the CP-net N . The

INVARIANT clause assigns a multi-set of different colours to each place. The

INITIALISATION clause ensures each place has the same initial value as m0(p).

The DEFINITIONS clause prepares all the variables of transition, arc expression

functions and guard functions for the following operations. In OPERATIONS,

each OP represents a transition t, the predicate CDT is similar to the CP-

net enabling condition, and the ACT is the token computation formula. The

substitution SELECT in each operation is the conditional bounded choice. Its

actions can only be executed when its condition CDT is true.

4.2 Multi-set concept

One of the important features of coloured Petri nets is the different data types. A

CP-net marking corresponds to a multi-set, which contains information of token

numbers and token colours. Each behaviour of the transitions is associated to the

marking modifications. In order to integrate this mechanism into the B machine

framework, the multi-set specifications should be introduced.

In CP-net ML language, there is a predefined set of basic types named simple

colour sets. These simple colour sets can be used to compose structured colour

sets using a set of colour set constructors [Jensen and Kristensen 2009], while

in the abstract machine notation, only simple data types are predefined. The

composed ones will be presented in the next subsection. The mechanism to be

introduced must be able to cope with all types of multi-sets. However, it is both

unwise and unnecessary to pre-define all types of multi-sets in a single abstract

machine. In order to be more adaptable and flexible, we introduce a series of

parameterized definitions, which could associate the token numbers with their

colours, and allow the modification of tokens via operations. These definitions

are written in a ”MultiSets.def” file, which could be directly included in any

abstract B machine, and these definitions can help to complement the clauses

in the previous framework. Fig. 5 gives the content of the file.

The defined function MS(ss) is to give the formalism of the marking in B

machines. The function Ms Empty(ss) generates an empty token with colour

type ss for the initialization propose and further token operations. The func-

tion Ms Subset(ms1,ms2,ss) makes a comparison for multi-sets ms1 and

ms2 which is the same colour type ss, the function returns true if and only if

the number of each element in ms1 is equal to or greater than that in ms2.

The function Ms Add(ms1,ms2,ss) and Ms Less(ms1,ms2,ss) are addi-

tion and subtraction algorithms for multi-sets.

From a mathematical point of view, part of the preconditions in Ms Add and

Ms Less seems redundant, such as ms1(ee) : ran(ms1), ms2(ee) : ran(ms2),
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”MultiSets.def”

DEFINITIONS

MS(ss)==(ss<->NATURAL);

Ms Empty(ss)=={elt|elt:ss*{0}}
Ms Subset(ms1,ms2,ss)==!elt.(elt:ss=> ms1(elt)>=ms2(elt));

Ms Add(ms1,ms2,ss)==

(%ee.(ee:ss & ms1(ee):ran(ms1) & ms2(ee):ran(ms2)

& ms1(ee)>=0 & ms2(ee)>=0 | ms1(ee) + ms2(ee)));

Ms Less(ms1,ms2,ss)==

(%ee.(ee:ss & ms1(ee):ran(ms1) & ms2(ee):ran(ms2)

& ms1(ee)>=0 & ms2(ee)>=0 | ms1(ee) - ms2(ee)));

Figure 5: Specifications of multi-sets and their operations

ms1(ee) >= 0, ms2(ee) >= 0. But they are some important additional theories,

which can help the Atelier-B prover to prove the POs. Using this technique, the

multi-set mechanism can be automatically proved. It is applicable for all data

types.

AA t1 BB
BOOL BOOL

1‘true 1‘false

bb

Figure 6: Toy example of Multi-set demonstration

For a better understanding, we take an example of a simple colour set to

demonstrate the above-mentioned definitions. In Fig. 6, there is a simple tran-

sition with two places. Each place is the same colour type BOOL. The initial

marking of this CP-net is that place AA has a token 1‘true, while place BB has

a 1‘false. After firing the transition t1, AA has no token and BB’s marking is

1‘true++1‘false. In the abstract machine notation, the token representations

will be defined as follows.

(i) The variables in the B machine are also denoted with AA and BB.

(ii) Each variable has a data type, AA:MS(BOOL), BB:MS(BOOL), where

MS(BOOL)⇒ {true|− > n, false|− > n}, n ∈ NATURAL

(iii) Each variable needs initialization,

AA:=Ms Empty(BOOL)<+ true*{1} ⇒ {true|->1,false|->0},
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BB:=Ms Empty(BOOL)<+ false*{1} ⇒ {true|->0,false|->1}.
(iv) After firing transition t1,

AA= Ms Empty(BOOL) ⇒ {true|->0,false|->0},
BB= Ms Empty(BOOL)<+{true, false}*{1} ⇒ {true|->1,
false|->1}

4.3 Colour sets and CPN declarations

The set of token colours in CP-nets are specified by ML programming language.

They are classified into two categories. The basic types which are derived from

Standard ML are simple colour sets, and the others are compound colour set

using the previously declared colour sets. In this paper only non-time related

colours are involved.

In the types supported by the CPN Tools [see 2], the simple colour sets and

their corresponding data types in B language are enumerated in the following

Tab. 2. Similar data types for Integer, Boolean and Enumerated can be found

in abstract machine notation.

Colour set CPN specification B notation

Unit
comprises a single element

no direct corresponding
colset name = unit

Boolean
set of true and false

BOOL
colset name = bool

Integer
numerals without a decimal point

INTEGER
colset name = int

String
sequences of printable characters STRING

colset name = string only in operation input

Enumerated
Enumeration values

SET={E1,· · · ,En}
colset name = with id0|id1| · · · |idn

Index
sequences of values comprised of an identifier

no direct corresponding
colset name=index id with exp1..exp2

Table 2: Comparison of basic data types

For the other simple colour types, we can only have a non-direct translation.

The Unit colour sets can be represented with a set containing only one ele-

ment, such as unit={new unit}. The Index colour set is a concrete instance

of a positive integer. So, it could be denoted by a set of finite positive integers

[2] CPN Tools is a tool for editing, simulating, and analysing Coloured Petri nets. It is
originally developed by Kurt Jensen and his CPN Group at Aarhus University.
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index={int-exp1..int-exp2}, where index:NAT. The String colour sets

is the set of all text strings, while in the abstract machine notation, the concrete

type of “string” can only be used in the operation input parameters. In practi-

cal translation, we recommend using a finite enumerate set to indicate all the

necessary strings.

For the compound colour sets, CP-nets use constructors to define more com-

plex colour sets.

The Product color sets colset Name = product name1 ∗ name2 ∗ · · · ∗
namen, where n>=2. In B notation, there is the same Cartesian product ’∗’,
and definition will be Name:=name1 ∗ name2 ∗ · · · ∗ namen.

The record colour set colset Name = record id1 : name1 ∗ id2 : name2

∗ · · · ∗ idn : namen. It is a fixed-length colour set and has the same function

as Product. The only difference is that a product colour is position-dependent,

while in record colour, each component has a unique label to be identified. In

B language, the record concept is the same, and the notations are: The set

of records is SET = struct(id1:name1, · · ·, idn:namen), an extensive

record is REC = rec(id1:name1, · · ·, idn:namen), where n is an inte-

ger greater than or equal to 1. The access to a record field (quote operator) is

idi’REC.

The List colour set is a variable-length data type. The values are a sequence

whose colour must be the same type, colset name = list name0. As one of

the most flexible structures in coloured Petri nets, the list structure has many

pre-defined operations which can achieve functions such as inquiry, self-loop and

recursion. But this concrete programming language is only accepted in the Imple-

ment phase of B method. So the mapping of the lists form CP-net to B machine

is conditional, and the most suitable candidate is ”Sequence expressions”. Tab. 3

is a partial mapping of two data structures. The other list functions could only

be realized inside the operations.

Other pre-defined list functions are more programming like functions. They

cannot be written in a compact form with set theory and first order logic. In

practice, depending on the context, list functions may appear in different forms

in the operations. Sometimes the function can only be realized in the implemen-

tation phase, where recursion and loop are allowed in B machines. Here is an

example of achieving the same function inside the operation.

CPN specification B notation

ins new l x ann<--ins new(ll,xx)==

if x is not a number of list l, then x
is inserted at the end of l, otherwise
l is returned

IF xx : ran(ll)

THEN aa := ll

ELSE aa := ll<-xx

END
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colset Lst = list CS Lst:=seq(CS)

nil or []
[]

empty list

hd Lst
first(Lst)

head, the first element of the list

tl Lst
tail(Lst)

tail, the last element of the list

length Lst
size(Lst)

length of list

elt::List
elt->Lst

prepend element as head of list

rev Lst
rev(Lst)

reverse list

List.nth(Lst, nth)
Lst(nth)

nth element in list

List.take(Lst, n)
Lst/|\n

returns first n elements of list

List.drop(Lst, n)
Lst\|/n

returns what is left after dropping first n
elements of list

List.null Lst
(Lst=[])

returns true if list is empty

mem Lst elt
elt : ran(Lst)

returns true if element is in the list

contains Lst1 Lst2

ran(Lst1)<:ran(Lst2)
returns true if all elements in list 2 are el-
ements in list 1 (ignoring the multiplicity
of elements in list 2)

union Lst1 Lst2 (or Lst1ˆˆLst2)
Lst1ˆLst2

the concatenation of two lists

ins Lst elt
Lst<-elt

inserts element at the end of list

Table 3: Mapping of List data type

Besides the declaration of colour sets, the CPN Tools also allow constant

declaration and user-define function declaration. A constant declaration binds

a value to an identifier, which then works as a constant. It should be defined

in the B constant part. The functions of a B machine are directly used in the

operations. They can be accomplished by the substitution which is similar to

programming language, such as IF condition and Case condition. Some simple

parameterized function may appear in the definition as reusable modules.
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4.4 Translation Equivalence

Earlier in this section, the methodology of translation from non-hierarchical

CP-nets to B machines was defined formally, as well as the multi-set concept

and some common token colours. With the translation rules presented, we now

present a global design for proving that the model translation is equivalent, also

known as strongly consistent. To better illustrate the verification properties, we

use the example of Fig. 1 as a study case in this subsection.

4.4.1 Conformance

The basic need is to ensure that the transformed specifications are well-formed

with respect to its transformation language. In the CP-nets, the state (or the

static property) of the system is represented by the marking, which is the

mapping from places into multi-set of tokens. In the transformed specifica-

tions, the variables are used to express the system state, which is the marking,

V P == β[M(p)]. The variables obey the same invariants as the marking in

CP-nets: the colour set invariant and the initialization invariant.

Definition 4. Let a B machine Bm be the image of a CP-net N after the

translation β, where P = {p1, · · · , pm}. The state of the B machine State(Bm)

is defined as follows:

(i) State(Bm) = V P1 ∧ · · · ∧ V Pm

(ii) State0(Bm) = V I1 ∧ · · · ∧ V Im

Lemma 1. The relation of the system state before and after the translation is

shown as:
State(Bm) = V P1 ∧ · · · ∧ V Pm = β[M(pi)] ∧ · · · ∧ β[M(pm)]

= β[M ] ⇔ M

State0(Bm) = V I1 ∧ · · · ∧ V Im = β[I(pi)] ∧ · · · ∧ β[I(pm)]

= β[I] ⇔ I == M0

In the example of Fig. 1 there are such transformed specifications:

� �
VARIABLES

OpenDoor, CloseDoor
INVARIANT

OpenDoor : MS(LiftDoor) &
CloseDoor : MS(LiftDoor)

INITIALISATION
OpenDoor := Ms_Empty(LiftDoor) <+ {(1|->TRUE)|->1} ||
CloseDoor := Ms_Empty(LiftDoor) <+ {(2|->FALSE)

|->1,(3|->FALSE)|->1}
� �
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The colour set is related to different data types, and each new type (or non-

common type) is pre-defined in the declaration part of CP-nets. Such types

should also be declared in the B machines. They will be used as an important

part of invariants, because all the variables and operation must comply with

their own ”colour (data types)” .

� �
CONSTANTS

SmallInt, LiftDoor
PROPERTIES

SmallInt<<:INT & SmallInt=1..3 &
LiftDoor=(SmallInt*BOOL)

� �

In this way, all the system states have the corresponding images and their

possible invariants are held at all time.

4.4.2 Execution Semantics

The dynamic properties of the CP-nets are expressed by firing the transitions,

while such properties can only be approached by operations in B machines.

According to Definition 3, a transition is called enabled at marking M , if and

only if there are some qualified binding elements.

In order to present the enabling conditions, it is necessary to have the vari-

ables of the transition. In Definition 2, the variable is defined as t ∈ T : V ar(t) =

{v | v ∈ V ar(G(t)) ∨ ∃a ∈ A : v ∈ V ar(E(a))} In the B machine, variables of a

transition are denoted as V ARj = β[V ar(tj)]. According to B language syntax,

each variable should have its data typing in the condition CDTj of the opera-

tion tj . We denote the image of a binding b ∈ B(tj) as bβ. Then the enabled

conditions for the B machines are:

(i) β[G(t)〈b〉 = true] ⇒ β[G(t)〈b〉] = true

⇒ β[G(t)]β[〈b〉] = true ⇒ GRDj〈bβ〉 = true

(ii) ∀p ∈ P : β[E(p, t)〈b〉 ≤ M(p)] ⇒ β[E(p, t)〈b〉] ≤ β[M(p)]

⇒ Ep,t〈bβ〉 ≤ V P ⇒ Ms Subset(V Pp, Ep,t, Colsetp)〈bβ〉.

So we can claim that the enabling rules of the translation are consistent.

Lemma 2. Let a transition t be enabled by a binding element (t, b) ∈ BE.

The image of such transition is OPt = β[t], which could also be enabled by the

correspondence condition (t, bβ), as they satisfy the following conditions:

(i) β[G(t)〈b〉 = true] ⇒ GRDj〈bβ〉 = true

(ii) ∀p ∈ P : β[E(p, t)〈b〉 ≤ M(p)] ⇒ Ms Subset(V Pp, Ep,t, Colsetp)〈bβ〉.
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Here we have a demonstration of the operation OP UP, which is the image

of transition ”UP” in Fig. 1.

� �
DEFINITIONS

"MultiSets.def";

VAR_UP == aa;
E_OpenDoor_UP== (Ms_Empty(LiftDoor) <+ {(aa|->TRUE)

|->1});
E_UP_OpenDoor== (Ms_Empty(LiftDoor) <+ {((aa+1)|->TRUE)

|->1});
E_CloseDoor_UP== (Ms_Empty(LiftDoor)<+ {((aa+1)|->FALSE

)|->1});
E_UP_CloseDoor== (Ms_Empty(LiftDoor)<+ {(aa|->FALSE)

|->1});
GRD_UP== (aa<3);
CDT_UP== (aa:SmallInt & GRD_UP &

Ms_Subset(OpenDoor, E_OpenDoor_UP, LiftDoor) &
Ms_Subset(CloseDoor,E_CloseDoor_UP,LiftDoor));

· · ·
� �

If a binding element (t, b) ∈ BE is enabled in M , it may occur, and it leads

to a new marking M ′. We say that the marking M ′ is directly reachable from

M , which is also written as M
(t,b)−−−→ M ′. The image of M ′ is:

∀p ∈ P : β[M ′(p)] = β[M(p)−−E(p, t)〈b〉++E(t, p)〈b〉]
= V Pp −−Ep,t〈bβ〉++Et,p〈bβ〉
= ACTt〈bβ〉
= Ms Add(Ms Subset(V Pp, Ep,t, Colsetp), Et,p, Colsetp)〈bβ〉

So, we can also claim the consistence of the occurrence of the translation.

Lemma 3. Let a marking M be fired by a binding element (t, b) ∈ BE, and

changed into a new marking M ′. The image B machine must also recall the

corresponding operation OPt, because M
(t,b)−−−→ M ′ ⇔ V P ′ = [ACTt〈bβ〉]V P .

The complete form of OP UP is shown as follows:

� �
OPERATIONS

Op_UP=
SELECT #(VAR_UP).(CDT_UP)
THEN ANY VAR_UP
WHERE CDT_UP
THEN
OpenDoor := Ms_Add(Ms_Less(OpenDoor,E_OpenDoor_UP,

LiftDoor),E_UP_OpenDoor,LiftDoor) ||
CloseDoor:= Ms_Add(Ms_Less(CloseDoor,E_CloseDoor_UP,

LiftDoor),E_UP_CloseDoor,LiftDoor)
END

END;
� �

1672 Sun P., Bon P., Collart-Dutilleul S.: A Joint Development ...



(a) State space of CP-net

(b) State space of B-machine

Figure 7: Demo of transition transformation

Hence, for each transition and its image operation, the enabling conditions

and occurrence rules are coherent. So the correctness of behaviour (dynamic)

properties is maintained.

4.4.3 Model Checking

The coloured Petri net and the B language are both tool-supported formal

method based on system state space. Since we have proved the static and dy-
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namic properties of the translation by theorem analysis, we can use model check-

ing as an auxiliary method of verification. Model checking has a mathematical

representation of a system, and its result consists of a systematic exhaustive ex-

ploration of the mathematical model. There is already some research using model

checking for verification of model transformations [Calegari and Szasz 2013]. Be-

cause the well known ”state explosion” limitation exists, this approach can only

be applied in a small system or used as an auxiliary method.

The comparison is shown in Fig. 7. The state space of CP-net is calculated

by the CPN Tools, and the state space of B-machine is calculated by ProB. After

initialisation, each model has 3 states , and 4 state changes. Their state space

can be considered as the same, and this result reinforces the reliability of our

translation method.

5 Demonstration for mapping non-hierarchical CP-net

This section presents two examples to illustrate the translation process of non-

hierarchical CP-net. In order to allow the readers to have a better understanding

of our method, only well-known cases are chosen in this paper, rather than some

railway based cases.

5.1 Dining philosophers problem

An example seen in Fig. 8(a) is the dining philosophers problem. In this case,

five Chinese philosophers are having dinner at a round table. There are only

one plate and five chopsticks on the table, and each chopstick is placed between

two neighbouring philosophers. To eat the dish, each philosopher has to use two

chopsticks next to him. Once a philosopher starts eating, his two neighbours

have to wait until the chopsticks are unoccupied.

This system is modelled by CP-nets shown in Fig. 8(b), which could well

express the concept of synchronization and concurrency. Philosophers are defined

as a set of PH , and the chopsticks are defined as a set of CS. The Chopsticks()

is a mapping function which indicates the relationship between the philosophers

and the chopsticks they can use.

The translation job could be roughly divided into three steps. First, the basic

framework of the B machine should be built. Each place and each transition of

the CP-net is mapped into the entries of variables and operations in the B -

machine. Then, the colour information and user-defined CPN declarations are

filled into the appropriate clauses. Finally, the detailed specifications of each arc,

guard and transition function are complemented. For a clear mind, these steps

are described separately. But in practice, they can be applied at the same time.

The corresponding B machine is shown in Listing 1. In this machine, we

named the variables and the operations in the same way as when they are in the
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Plate

Ph1

cs1

Ph2

cs2

Ph3 cs3 Ph4

cs4

Ph5

cs5

(a) Problem describesion (b) CP-net of dining philosophers

val n = 5;
colset PH = index ph with 1..n;
colset CS = index cs with 1..n;
var p: PH;
fun Chopsticks(ph(i)) =

1‘cs(i) ++ 1‘cs(if i=n then 1 else i+1);

Figure 8: Dining philosophers problem

places and transitions. The expressions starting with ”E ” are the arc expres-

sions. The source and destination of each arc are noted in an abbreviate form.

For example, the arc E T TkChs means the arc from place Think to transition

Take Chopsticks. Similarly, the arc E PdChs U means the arc from transition

Put Down Chopsticks to place Unused. The expression starting with ”CDT ” is

the enabling condition of each operation. Statements ”skip” and ”TRUE” are

omitted in the machine, because for each generalized substitution S, it holds

that S||skip = S, and for each predicate P that P ∧ TRUE = P .

In Listing 1, the symbol ”:” stands for ”belongs to”, ”<<:” is strict inclusion,

”:=” is becomes equal to, ”==” is definition, ”<+” is overload a relation, ”INT”

is the set of integer numbers. ”|->” is a maplet arrow.

In this machine, the user-defined function ”Chopsticks(p)” is quite different

from its original form in the CP-net, fun Chopsticks(ph(i))= 1‘cs(i) ++

1‘cs (if i=n then 1 else i+1). That is because the conditional bounded

choice ”SELECT” will use this function in the predicate. But the original func-

tion is a ”IF-THEN-ELSE-END” substitution which cannot be a predicate. So

this function should be written as a formula, which can be proved by B language.
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Listing 1: B -machine for dining philosophers
� �
MACHINE dining_philosophers
CONSTANTS val_n, PH, CS
PROPERTIES

val_n: INT & val_n = 5 &
PH<<:INT & PH= 1..val_n & CS= 1..val_n

VARIABLES
Think, Eat, Unused

INVARIANT
Think : MS(PH) & Eat : MS(PH) & Unused : MS(CS)

INITIALISATION
Think := Ms_Empty(PH) <+ PH*{1} ||
Eat := Ms_Empty(PH) ||
Unused := Ms_Empty(CS) <+ CS*{1}

DEFINITIONS
"MultiSets.def"
Chopsticks(pp)== {pp,((pp mod val_n)+1)};

VAR_TkChs== pp;
E_T_TkChs== (Ms_Empty(PH) <+ {pp|->1});
E_U_TkChs== (Ms_Empty(CS) <+ Chopsticks(pp)*{1});
E_TkChs_E== (Ms_Empty(PH) <+ {pp|->1});

CDT_TkChs== pp:PH & Ms_Subset(Think,E_T_TkChs,PH) &
Ms_Subset(Unused,E_U_TkChs,CS);

VAR_PdChs== pp;
E_E_PdChs== (Ms_Empty(PH) <+ {pp|->1});
E_PdChs_T== (Ms_Empty(PH) <+ {pp|->1});
E_PdChs_U== (Ms_Empty(CS) <+ Chopsticks(pp)*{1});

CDT_PdChs== pp:PH & Ms_Subset(Eat,E_E_PdChs,PH)

OPERATIONS
TakeChopsticks=

SELECT #(VAR_TkChs).(CDT_TkChs)
THEN ANY VAR_TkChs WHERE CDT_TkChs

THEN Think:= Ms_Less(Think,E_T_TkChs,PH) ||
Unused:= Ms_Less(Unused,E_U_TkChs,CS) ||
Eat:= Ms_Add(Eat,E_TkChs_E,PH) END

END;

PutDownChopsticks=
SELECT #(VAR_PdChs).(CDT_PdChs)
THEN ANY VAR_PdChs WHERE CDT_PdChs

THEN Think:=Ms_Add(Think,E_PdChs_T,PH) ||
Unused:=Ms_Add(Unused,E_PdChs_U,CS) ||
Eat:=Ms_Less(Eat,E_E_PdChs,PH) END

END
END
� �

The state of the dining philosophers machine is shown in Tab. 4. It has

9 proof obligations, and could be automatically proved (PRa) by Atelier-B

Ver.4.1.0.
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AutoProved

nPO nPRi nPRa nUn %Pr

Initialisation 3 0 3 0 100

Take Chopsticks 3 0 3 0 100

Put Down Chopsticks 3 0 3 0 100

dining philosophers 9 0 9 0 100

Table 4: Component status for dining philosophers

colset INT = int;
colset DATA = string;
colset INTxDATA = product INT*DATA;
colset E = with e;
var n,k: INT;
var p,str: DATA;
var stop: ”s ”;
colset BOOL = bool;
var OK: BOOL;

Figure 9: CP-net of simple protocol

5.2 Simple protocol

In the previous example, all the arc inscriptions are quite simple, and only sim-

ple colour sets are involved. So the following example will demonstrate with

compound colour sets and conditional arc inscriptions.

The example in Fig. 9 describes a simple protocol by which a sender can

transfer a number of packets to a receiver. At most two packets could be sent at

once. The communication process may lose packets, and different packets may

overtake each other. Hence, it may be necessary to retransmit packets and to
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ignore doublets and packets that are out of order.

The string colour set in the B machine becomes an enumerate set with all

necessary strings and the combined string result could be a string sequence. The

declarative part of the B machine is shown in Listing 2.

Listing 2: B -machine declarative part of simple protocol
� �
MACHINE SimpleProtocol
SETS DATA={Modellin, g_and_An, alysi, s__}; EV={ee}
CONSTANTS

INTxDATA,val_stop,DataLst
PROPERTIES

INTxDATA = INTEGER*DATA & val_stop = s__ & DataLst =
seq(DATA)

VARIABLES
Send, Limit, Received, NextSend, NextRec, AA, BB, CC,

DD
INVARIANT

Send: MS(INTxDATA) & Limit: MS(EV) & Received: MS(
DataLst) &

NextSend: MS(INTEGER) & NextRec: MS(INTEGER) &
AA: MS(INTxDATA) & BB: MS(INTxDATA) &
CC: MS(INTEGER) & DD: MS(INTEGER)

INITIALISATION
Send := Ms_Empty(INTxDATA) <+ {(1|->Modellin)|->1,(2|->

g_and_An)|->1,(3|->alysi)|->1,(4|->s__)|->1} ||
Limit := Ms_Empty(EV) <+ {ee|->2} ||
Received := Ms_Empty(DataLst) <+ {[]|->1} ||
NextSend := Ms_Empty(INTEGER) <+ {1|->1} ||
NextRec := Ms_Empty(INTEGER) <+ {1|->1} ||
AA := Ms_Empty(INTxDATA) ||
BB := Ms_Empty(INTxDATA) ||
CC := Ms_Empty(INTEGER) ||
DD := Ms_Empty(INTEGER)

� �

(a) Original transition (b) New transition

Figure 10: Demo of transition transformation
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There are five transitions in the model. The transitions TransmitPacket,

TransmitAcknow and ReceivePacket have conditional output arcs. In our frame-

work the arcs are defined in the Definition clause of the machine, but the con-

ditional expressions cannot be applied in Definitions. So a transformation of

transition is needed to generate a new formalism, which has the same function

but simpler arcs.

The transformation ensures consistency of original transition but has a dif-

ferent notation. All the arc inscriptions will be concentrated inside the transition

function, and maintain conciseness of all the arc expressions. A transformation

demo of transition ReceivePacket is shown in Fig. 10.

After transforming the three transitions into the simple form, we can continue

to translate the CP-net, and some of the operations are shown in Listing 3, where

TrPck is short for ”TransmitPacket”, RcPck is short for ”ReceivePacket”. The

state of this machine is shown in Tab. 5.

AutoProved

nPO nPRi nPRa nUn %Pr

Initialisation 6 0 6 0 100

Op SendPacket 2 0 2 0 100

Op ReceiveAcknow 3 0 3 0 100

Op TransmitPacket 2 0 2 0 100

Op TransmitAcknow 2 0 2 0 100

Op ReceivePacket 4 0 4 0 100

SimpleProtocol 19 0 19 0 100

Table 5: Component status for SimpleProtocol

6 Conclusion

This paper discusses the combination usages of different modelling languages

in the context of safety critical system. The method presented here is a model

transformation from coloured Petri net models to abstract B machines while

preserving the same modelling requirements. The strong motivation of such an

approach is to bridge the gap of critical tasks, from a strong requirement anal-

ysis towards a valid implementation on a real system. In the design stage, this

approach may assist the designers on the way from analysis to implementation.
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Listing 3: Part of operations of simple protocol
� �
DEFINITIONS

"MultiSets.def"
// TransmitPacket
VAR_TrPck== nn,pp;
E_A_TrPck== (Ms_Empty(INTxDATA) <+ {(nn|->pp)|->1});
E_TrPck_B== (Ms_Empty(INTxDATA) <+ {(nn|->pp)|->1});
E_TrPck_L== (Ms_Empty(EV) <+ {ee|->1});

CDT_TrPck== (nn:INTEGER & pp:DATA & Ms_Subset(AA,
E_A_TrPck, INTxDATA));

// ReceivePacket
VAR_RcPck== nn,pp,str,kk;
E_B_RcPck== (Ms_Empty(INTxDATA) <+ {(nn|->pp)|->1});
E_R_RcPck== (Ms_Empty(DataLst) <+ {str|->1});
E_RcPck_R(str1)== (Ms_Empty(DataLst) <+ {str1|->1});
E_N_RcPck== (Ms_Empty(INTEGER) <+ {kk|->1});
E_RcPck_N(kk1)== (Ms_Empty(INTEGER) <+ {kk1|->1});
E_RcPck_C(kk1)== (Ms_Empty(INTEGER) <+ {kk1|->1});

CDT_RcPck== (nn:INTEGER & pp:DATA & str:DataLst & kk:
INTEGER & Ms_Subset(BB, E_B_RcPck, INTxDATA) &
Ms_Subset(NextRec, E_N_RcPck, INTEGER) & Ms_Subset(
Received, E_R_RcPck, DataLst))

OPERATIONS
Op_TransmitPacket= SELECT #(VAR_TrPck).(CDT_TrPck)

THEN ANY VAR_TrPck,OK
WHERE CDT_TrPck & OK:BOOL
THEN AA:= Ms_Less(AA,E_A_TrPck,INTxDATA) ||

IF OK=TRUE
THEN BB:= Ms_Add(BB,E_TrPck_B,INTxDATA)
ELSE Limit:= Ms_Add(Limit,E_TrPck_L,EV) END

END END;

Op_ReceivePacket= SELECT #(VAR_RcPck).(CDT_RcPck)
THEN ANY VAR_RcPck WHERE CDT_RcPck
THEN
BB:= Ms_Less(BB,E_B_RcPck,Colset_INTxDATA) ||
IF nn=kk
THEN

IF pp/=val_stop
THEN Received := Ms_Add(Ms_Less(Received,

E_R_RcPck,DataLst),E_RcPck_R(str<-pp),DataLst
)

ELSE Received := Ms_Add(Ms_Less(Received,
E_R_RcPck,DataLst),E_RcPck_R(str),DataLst)
END ||

NextRec := Ms_Add(Ms_Less(NextRec,E_N_RcPck,
INTEGER),E_RcPck_N(kk+1),INTEGER) ||

CC := Ms_Add(CC,E_RcPck_C(kk+1),INTEGER)
ELSE Received := Ms_Add(Ms_Less(Received,E_R_RcPck,

DataLst),E_RcPck_R(str),DataLst) ||
NextRec := Ms_Add(Ms_Less(NextRec,E_N_RcPck,

INTEGER),E_RcPck_N(kk),INTEGER) ||
CC := Ms_Add(CC,E_RcPck_C(kk),INTEGER)
END END END

� �

1680 Sun P., Bon P., Collart-Dutilleul S.: A Joint Development ...



As the coloured Petri nets have an easy-to-understand graphic notation, so

they may be more attractive for designers to use than text-based methods. But

there is a switch point when the implementation consideration is introduced. The

B method has been designed for software development but it is not user-friendly.

Still, the B proved system is accepted as a strong safety proof in the French

railway context. So, our approach cannot only help with the implementation

of coloured Petri net specifications, but it also can integrate information from

different parts, such as enable people from critical tasks to communicate with

the same safety requirement. Because the coloured Petri net is mainly used

by automation engineers or electromechanics engineers, while the B method is

rather used by software engineers, such a transformation can build a bridge

between them. In engineering practice, if we want to validate safety at a system

level, this transformation will be a strong contribution.

The model transformation that is introduced in this paper is designed for non-

hierarchical coloured Petri nets. First, the fundamental definitions of both non-

hierarchical CP-nets and abstract B machines are presented, so that a systematic

translation can be introduced. Second, the detailed mapping process of non-

hierarchical CP-nets and abstract machine notations is explained in three parts:

1. a model framework for mapping the Petri net’s “Place-transition” structure;

2. the multi-set mechanism in B formalism; 3. different colour sets in abstract

machine notation. Then, a global design is presented for proving the equivalent

of this model transformation. We use a small example to illustrate that both

static state and dynamic behaviour are maintained between the CP-net model

and the transformed B machine. Finally, two case studies are presented, which

show our transformation is compatible with various types of colour sets and the

transformed B machines can be automatically proved by Atelier B.

One of the limitations of this paper is that the colour-set ”list” is not so

perfect. Because it is already a concrete programming data type in CP-net, it

is difficult to abstract all its function with set theory and first order logic. An-

other limitation is that the current translation method does not support timed

CP-nets, which are associated with a timed multi-set and new behaviour rules.

Considering the timetable and time constrained protocol, it could be an inter-

esting research task. Note that the B machine dealing with the time concept

still needs some scientific work. However, further research will be conducted

considering more practical aspects.
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