
Synchronizing Data through Update Queries in

Interoperable E-Health and Technology Enhanced

Learning Data Sharing Systems

Mehedi Masud

(Computer Science Department, Taif University, Taif, Saudi Arabia

mmasud@tu.edu.sa)

M. Shamim Hossain

(Software Engineering Department, College of Computer and Information

Sciences, King Saud University, Riyadh, Saudi Arabia

mshossain@ksu.edu.sa)

Atif Alamri, Ahmad Almogren, Mohammed Zakariah

(Research Chair of Pervasive and Mobile Computing, College of Computer

and Information Sciences, King Saud University, Riyadh, Saudi Arabia

atif@ksu.edu.sa, ahalmogren@ksu.edu.sa, mzakariah@ksu.edu.sa)

Abstract: Data interoperability and synchronization among heterogeneous data
providers in collaborative e-health systems are challenging research issues. Efficient
data management techniques promote an efficient way of sharing data. This paper
describes existing approaches to data interoperability (platform independency) for ex-
changing and synchronizing data between heterogeneous data sources or various plat-
forms. We also illustrate an update query execution protocol, which can reduce query
execution cost and query response time. We further perform different experiments to
validate the effectiveness of the proposed approaches.

Key Words: e-health, collaborative environment, data synchronization, query update

Category: H.2.0, H.2.4, H.2.5

1 Introduction

Collaborative systems such as e-health [Hossain 2011] and e-learning

[Deed and Edwards 2011, Forment et al. 2010] provide an effective distributed

data-sharing and multimedia data management environment among data

sources. In such an environment, data sources are autonomous in managing data

(i.e., curate, revise, update). Although sources update their data independently,

at some points they reconcile the updates to maintain data consistency and sup-

port full data-sharing collaboration. Therefore, update actions (e.g., insertion,

deletion, change) on data executed in a source may update the related data in

the collaborative sources.

In general, e-health service providers store medical data (e.g., images and

videos of diagnosis, plain text, etc.) on patients and provide remote access to

Journal of Universal Computer Science, vol. 21, no. 11 (2015), 1439-1453
submitted: 10/5/14, accepted: 12/1/15, appeared: 1/11/15 © J.UCS



Figure 1: A collaborative e-Health network

these data for healthcare providers (e.g., physicians, clinics, medical researchers,

etc.). In a classic system, patients medical data are distributed in autonomous

data sources or by e-health service providers. Medical and multimedia data are

stored and maintained in these sources without considering any centralized or

global architecture. Hence, heterogeneity may result among the sources in terms

of data vocabularies and storage schemes. A mechanism is thus needed for the

interoperability of data in order to share and exchange data among sources.

In such sources, an appropriate data structure is also required to represent the

metadata of the multimedia content to provide fast query processing.

To illustrate this, consider the collaborative e-health system in Figure 1. The

three healthcare service providers (hospital, family physician, laboratory) share

patients medical care information. In such a system, an update action in a source

may trigger updates in other service providers or sources in order to synchronize

or reconcile the related data, i.e., any medical test result found at the laboratory

triggers updates at the family physician and hospital data sources. In the same

way, any update at the hospital data source may trigger an update at the family

physician data source.

There are two fundamental problems to deal with in order to process updates

at these sources:

1. Update translation problem.

To exchange an update action from a source to its related source, the update

action needs to be translated with respect to the source storage schema and

vocabularies of the related source. This update action should be translated for

the related source in such a way that data updated at the original source and the

related source satisfy the constraints between these sources. Formally, if update

action � is executed at source Si and its translated version �′ is executed at

acquainted source Sj , then the execution of � and �′ at Si and Sj makes the

data sources consistent with respect to the mappings between Si and Sj . The

authors in [Green et al. 2007, Masud and Kiringa 2011] present approaches for

1440 Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



Figure 2: A conflict situation

such a translation.

2. Data synchronization problem.

In distributed systems, each source is designed and administered au-

tonomously and there is no centralized control for update execution in the sys-

tem. Different circumstances may occur during the execution of an update ac-

tion, which may lead to data inconsistency between two related sources. One of

the reasons for having inconsistent data is the different execution orders of up-

dates at the sources. The different execution order results from a conflict among

the updates. In the following, we give an example of such a data inconsistency

scenario.

Example 1. Consider two updates �1 and �2 originated at sources Sp and Sq,

respectively. Assume that �1 and �2 have been propagated to two sources Si

and Sj from two different paths. This scenario is shown in Figure 2. Assume that

�1 and �2 are conflicting updates. Updates �1 and �2 need to be executed in

the same order for maintaining data consistency at the data providers. Without

sharing the conflict information, Si and Sj are unable to make a decision on the

execution order. These two updates may have been involved in a conflict with

other sources and they have been executed in a certain order.

This paper considers the problem of data synchronization during the execution

of update queries and proposes a decentralized mechanism for resolving conflicts.

It presents a decentralized collaborative approach to resolve conflicts. These con-

flicts are resolved among the sources by sharing information on update execution

status. Essentially, each source that executes a query update exchanges infor-

mation with the updates originator. The originator of the update action has the

prime role in ensuring execution correctness, resolving conflicts, and terminat-

ing update execution. A candidate update is selected by the conflicting update

originators and executed finally in the system.

The next section presents the update query execution model and the pro-

tocol of update execution. Section 3 presents the data consistency notions and

framework for synchronizing data. These consistency notions describe the con-

straints of data consistency. Section 4 describes the assessment results. Section

5 describes the related study and Section 6 concludes the paper.

1441Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



2 Update Query Execution Model

A query is a read or write, i.e., update operation on data in a source. There are

two types of queries: (i) a read query and (ii) an update query. A read query

only reads data. This is not considered for data synchronization in the proposed

conflict resolution protocol. The execution of a read query is completed without

participating in the conflict resolution protocol. An update query contains write

operations. Update queries participate in the proposed data synchronization

model if they are involved in a conflict. Therefore, our concern is only with the

execution of an update query in the system.

In a collaborative system, if a user possesses query �i into source Si, the

source executes the query. Then, for �i source Si becomes the initiator. In order

to maintain data consistency and synchronization between the two sources, if �i

updates data at Si and if the updated data by �i has a relation with the data

at Sj , which is an acquainted source of Si, then the related data at Sj have to

be updated. Generally, mappings establish relationships between the data in the

two sources. When �i is received by Sj , source Sj executes �i and forwards �i

to its acquainted sources related to the updated data. The source that has no

acquaintees to forward the query is called the terminate source. Hence, a query

is propagated from the query originator to all the acquainted sources before the

query propagation terminates.

The execution scenario of an update query �i originated at Si can be rep-

resented as a tree. �i is viewed as a one-level depth tree with �i as a root and

the participants as children. Si produces a group of participant updates from �i

for the execution in its acquaintees. Update �i is transformed into a multi-level

update if the acquaintances of Si produces participant updates. As participants

are produced in the system, an Update Execution Tree (UET) is evolved. The

nodes in the tree depict the sources where the update executes and the label

shows the participant updates. An edge from a source Si to a source Sj repre-

sents that Si has forwarded �i to Sj for execution. When a source accepts an

update query, the source executes the query (if the query is not involved in a

conflict with any other update query that is initiated by a different source) or

the source halts the execution of the update (if a conflict is detected). When the

execution is halted the update is involved in the conflict resolution protocol to

be considered for a candidate update in order to be executed further or stopped.

If the update is considered for candidate then the update execution continues.

Otherwise, the update is compensated and execution is terminated.

The execution scenario of update query �i originated at Si can be repre-

sented as a tree. �i is viewed as a one-level depth tree with �i as a root and the

participants as children. �i produces a group of participant updates from �i

for the execution in its acquaintees. Update �i is transformed into a multilevel

update if the acquaintances of Si produce participant updates. As participants

1442 Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



are produced in the system, an Update Execution Tree (UET) is evolved. The

nodes in the tree depict the sources where the update is executed and the label

shows the participant updates. An edge from source Si to source Sj represents

that Si has forwarded �i to Sj for execution. When a source accepts an update

query, the source executes the query (if the query is not involved in a conflict

with any other update query that is initiated by a different source) or halts the

execution of the update (if a conflict is detected). When the execution is halted,

the update is involved in the conflict resolution protocol to be considered for a

candidate update in order to be executed further or stopped. If the update is

considered for a candidate update, update execution continues. Otherwise, the

update is compensated and execution is terminated.

The execution of an update query in a collaborative system also differs from

the execution model of a transaction in a distributed transaction execution.

In a distributed system, users submit a transaction to the global transaction

manager (GTM). Then, the GTM decomposes the transaction into a set of sub-

transactions and forwards each sub-transaction to the respective local database.

Each local database then independently executes the sub-transaction. In our

proposed framework, an update is propagated as a single update without being

decomposed into sub-transactions. In a distributed system, the GTM controls

the execution of transactions. In our model, there is no GTM or controller.

2.1 Update query execution

A source starts building a dynamic tree, called a UET, when a user possesses a

query to a source. A UET is used to monitor the execution of the update in the

system. The construction of a UET for an update is discussed below.

1. If update query �i is submitted to source Si, the source executes �i and

creates a root node to construct a UET for �i. The root node is labeled with

�i.

2. If the data updated by �i in Si have a relation with the data in source Sj ,

Si generates participant update�j to be executed at Sj for data synchronization

and forwards �j to Sj . If a participant is forwarded, a new �j is generated. An

edge is also inserted between �i and �j . Note that when the initiator forwards

an update, it also forwards its id. In this way, the receiver of the update knows

the initiator of the update.

3. When an acquainted source receives a participant update, it performs the

following tasks:

i. Executes the update.

ii. The acquainted source informs the initiator by sending a vote message.

The source then waits for a forward message from the initiator. After receiving

the forward message the acquainted source further forwards the update in the

system. The vote message includes all the newly produced participant updates

1443Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



that also include the ids of the acquainted sources where new updates will be

forwarded by the source.

4. If the vote message is received by the initiator, the initiator produces a

group of nodes from the newly generated updates listed in the vote message.

The initiator then creates edges in the UET between the new updates and the

update from which the new updates are produced. The update initiator next

informs the vote message sender by sending a forward message.

5. A source forwards new updates to other related sources if the source re-

ceives the forward message.

Figure 3 shows the update query execution technique.

3 Data Synchronization Framework

Data sources in an e-health data-sharing system execute updates without any

centralized control. In such a system, there is no requirement for a protocol for

multisite commitment [Hwang et al. 1994], which blocks the execution of queries.

Therefore, the protocol is not feasible for a distributed e-health system. In an

e-health system, sources execute updates locally and then forward updates asyn-

chronously to other related sources. Therefore, conflict may occur for the same

pair of updates when different sources execute and propagate updates asyn-

chronously. To obtain a consistent execution of conflicting updates in the system,

sources must execute the updates involved in a conflict in the same order. In this

section, we present the notion of ensuring a consistent execution of updates and

propose a framework for achieving such a consistent execution.

3.1 Notion of ensuring consistency

Data in a data source is partitioned into two partitions: (i) shared data (SD) and

(ii) local data (LD). Shared data are shared with other sources and local data are

not shared. An update can access LD and SD data items where the update is ini-

tiated. A local source also maintain the local and shared data consistency. Local

data consistency is maintained if an update modify only the local data. However,

if an update accesses shared data, then the data synchronization and consistency

must be managed in the local as well as in the acquainted sources. Related

sources are the sources that store data of common interest. Hence, if a shared

item x is updated then the update is forwarded to the acquainted sources for

coordination and synchronization of the shared data [Masud and Kiringa 2007].

Definition 1 conflict. Let �i and �j be two updates to be executed in a

source. Let WS(�i) and WS(�j) denote the set of data items on which �i and

�j perform write operations, respectively. A conflict occurs between �i and �j

if WS(�i) ∩WS(�j) �= ∅.

1444 Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



Actor:{Initiator (Si), Sources (Sj , Sk, · · · )}

Users submit an update query �i at Si

Initiator (Si):

Si execute �i

Starts building EUT (�i)

Inserts a node with the symbol �i, i.e., root node �i, in EUT (�i)

Π = Finds acquaintances for execution of �i

if |Π|=0 then

Terminates �i

else

Generates query updates �j ,�k, · · · for each source in Π

while true do

Initiator waits for a vote message vj from the sources in Π

for each vote vj do

Creates a node �j in EUT (�i) for each newly generated update �j and

adds an edge from �i to �j .

endfor

if checkTerminate(�i)==true then

Sends a terminate message to all the sources

terminate while loop

endif

endwhile

endif

Source Sj:

while true do

halt the execution for receiving an update query message m

switch type of message m do

case �j

executes �j

send vote vj to the initiator

case forward message

forward �j to the acquaintances of Sj

case terminate message

terminate execution of �i

endswitch

endwhile

Figure 3: Update Query Execution Protocol

1445Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



A typical approach for ensuring data consistency during the execution of con-

flicting updates is synchronizing updates in such a way that updates’ execution

is serializable. Generally, in a distributed system, the Global Transaction Man-

ager (GTM) ensures that update’s execution order is consistent in the sources.

With respect to the execution of updates in two sources (Si, Sj), the following

condition must be satisfied:

– Si and Sj must execute conflicting updates into the same serial. For-

mally, for all pair of conflicting updates (�p,�q) in a set of updates

� = {�1,�2 · · · ,�n} executed in all the pair of sources (Si, Sj) then

�1 ≺OSj
�2 iff �1 ≺OSi

�2. Here, �1 ≺OSi
�2 represents execution order

of updates �1 and �2 at Si and Sj is an acquainted source of Si.

In the following we introduce the notion of update execution consistency in

a source as well as into its related sources.

Definition 2 Child-Level Order. A child-level order S
c
i= O(Si) ∪

(
⋃m

j=1
O(Sj) w.r.t an order O(Si) in source Si for a group of updates Γ

is the union of order O(Si) and all the orders O(Sj) at source Sj (1 ≤ j ≤ m),

such that each Sj is acquaintee of Si.

Definition 3 Child-Level Consistent Order. A child-level order S
c
i is

named child-level consistent w.r.t an order O(Si) in Si for a set of updates

Γ = {�1,�2, · · · ,�n} and all orders O(Sj) in Sj over each child Sj if

1. for any two updates �1 and �2 in O(Si), if there exists an order O <

�1,�2 >, such that O(Sj) ∈ S
c
i (i �= j), the O is consistent between �1 and

�2

Consistent updates’ execution is achieved by maintaining the Child-Level

Consistent Order in each child of the propagation paths of the updates.

Theorem4. An execution order O(Si) consists of a set of updates Γ =

{�1,�2, · · · ,�n} is consistent in a update propagation path (Si → · · · → Sz) if

for each child in (Si → · · · → Sz), {S
c
i , · · · , S

c
z} is child-level consistent.

Theorem5. An execution order O(Si) consisting of a set of updates Γ =

{�1,�2, · · · ,�n} is consistent over the system with respect to O(Si) in Si if

over every propagation path (Si → · · · → Sz), and for each child in individual

path (Si → · · · → Sz), S
c
i is child-level consistent, and all the propagation paths

between Si and Sz is acyclic.

1446 Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



Figure 4: Update synchronization process (a) Process of sending conflict infor-

mation to the initiators (b) Initiators decide order (c) Decision of update order

reaches to the requester

3.2 Data synchronization approach

This section presents a data synchronization framework when two updates initi-

ated from two different initiators are involved in a conflict during their execution

in the system. A candidate update is selected from the updates that are conflict-

ing and for which execution is completed in the system. Consider a scenario that

source Sk accepts two conflicting updates from two different initiators. Source Sk

cannot make a decision on which one to accept and which one to reject without

the execution knowledge of the conflicting updates in other sources. A conflict

may occur between two updates at different sources during their propagation

in a collaborative system for an arbitrary network topology. To maintain data

consistency in the sources, updates involved in a conflict must be executed in

the same serial order.

Our proposed update-processing approach is optimistic. Optimistic ap-

proaches support accessing data while executing update operations. Users can

change and read the database in the sources when the sources are disconnected

and can synchronize the data with the acquainted sources when the sources

reconnect [Petersen et al. 1997, Kermarrec et al. 2001]. Optimistic approaches

support relaxed consistency [Saito and Shapiro 2005]. In relaxed consistency, up-

date propagation is asynchronous without halting read queries. Major commer-

cial vendors provide this asynchronous replication mechanism. In the following,

we discuss the process of maintaining data consistency.

1: If a source receives updates from two different sources and a conflict is

detected, the source halts the execution of the updates. The source also asks the

parent about the order of update execution.

Note: A source becomes a parent when it forwards an update and becomes

a child when it receives one.

2: The parent asks its parent if it has no data about the execution order.

The inquiring message is propagated until it reaches a source that is aware of

the updates execution order or the updates’ initiators.

1447Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



Note: An intermediate source may have identified the conflict of the same

updates and forwarded an inquiry message to the initiators; hence, the execu-

tion order may have been decided already. Therefore, a source that detects a

conflict for the same group of updates may have received the conflict resolu-

tion result through an intermediate data source from the path to the update

initiator [Hossain et al. 2014].

Now we demonstrate the protocols to determine the execution order of the

two conflicting updates. By applying two resolution protocols (friendly resolution

and absorption resolution), an execution order is determined. The process is

described below.

See the Figure 4(a). Sources Sp and Sq have initiated two updates �1 and

�2, respectively. Consider that there is a conflict between the updates �1 and

�2 and the sources Si and Sj have detected the conflict. In Figure 4(b), the

propagation of the conflict information message is shown with dotted lines from

Si to Sq and Sp. Since initiators are informed by a vote message by the sources

after executing updates, the initiators of the updates know the count of sources

where the updates have been executed successfully. We consider this number as

the update execution level execution. The level is denoted by level(�i). How the

initiators reach an agreement of the update order execution when they receive

the conflict information from Si and Sj (see Figure 4(c) is described below.

See Figure 4(a). Sources Sp and Sq have initiated two updates �1 and �2,

respectively. Consider that there is a conflict between updates �1 and �2 and

sources Si and Sj have detected the conflict. In Figure 4(b), the propagation

of the conflict information message is shown with dotted lines from Si to Sq

and Sp. Since the initiators are informed by a vote message by the sources after

executing the updates, the initiators of the updates know the count of sources

where the updates have been executed successfully. We consider this number as

the update execution level. The level is denoted by level(�i). How the initiators

reach an agreement on the update order execution when they receive the conflict

information from Si and Sj (as shown in Figure 4(c)) is described below.

Friendly Resolution: If (level(�1)= level(�2))

When the initiators receive the conflict information of updates they select

a candidate update, which one to execute and which to reject. Consider the

update�1 is considered for a candidate update. After selecting the candidate the

compensation process starts for �2. While the compensation process is running,

no update is executed in the sources where �1 and �2 have been executed. The

propagation of �1 and �2 is also stopped. To start the compensation process,

S2 forwards a compensation message to the sources those executed �2. Each

source now generates a compensate update �−

2
and performs the compensation

process. After finishing the compensation task the sources inform to S2. After

that execution of �1 starts.

1448 Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



Figure 5: Example of conflict resolution(a) Update propagation and conflict (b)

Initiators decide order

Absorption Resolution: If (level(�1) �= level(�2))

When the initiators receive the conflict information they select a candidate

based on following protocol:

if level(�2)>level(�1) then �2 is selected as a candidate update else �1 is

selected as a candidate update and the compensation process starts as presented

in the friendly resolution.

Example 2. See in Figure 5. Two sources S1 and S2 initiated two conflicting

updates �1 and �2 in the system.

Step 1: S1 forwards the update�1 to S3. Source S3 executes�1 and forwards

�1 to S4. Meanwhile, S2 also forward update �2 to S4 and S5. Notice that �1

and �2 involve in a conflict at S4.

Step 2: Sources S4 sends the information about conflict to S3 and S2 af-

ter identifying the conflict. However, S3 has no information about the conflict.

Therefore, S3 forwards the conflict information to S1

Step 3: When both the initiators S1 and S2 receive conflict information they

decide the candidate update from the updates. Here, level(�1) > level(�2).

Hence, the absorption protocol is considered and �1 is selected as a candidate

by both S1 and S2. The candidate information is sent to S4.

Step 4: If �2 is executed before �1 then S4 first executes a compensate

update �−

2
and then executes the updates �1.

4 Evaluation

We show the different evaluation results of the proposed data synchroniza-

tion approach and update processing. We consider a large collaborative set-

ting to evaluate the proposed data synchronization approach. The simula-

tor [Masud and Kiringa 2008] is used to make the environment. The same JVM

is used to set up all the sources and a distinct thread is used for each source. For

communication between the sources, we implement a FIFO queue. Each source

1449Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



Figure 6: Response time of an update execution in different size of networks

uses a MySQL database for data storage. Update actions are MySQL select com-

mands, i.e. read query, and update commands, i.e., write action. In the system,

there is no network delay since all the sources run on the same computer. For

the evaluation, we only consider write-write conflicts between update actions.

We first determine the response time of update execution by applying the

proposed approach considering various network sizes, i.e., how many data sources

are in the system. We consider an arbitrary topology for each network. Figure-

Figure 6 shows the result of the observed evaluation. It is observed that response

time increases linearly for an increasing network size. This proves that the pro-

tocol has scalability.

We evaluate the proposed conflict resolution protocol with different conflict

situations among the updates. We monitor how the proposed conflict resolu-

tion protocol influences update execution time in the system. The updates are

originated concurrently from 10 sources in a 100-source network. For the evalu-

ation, we consider different patterns of conflicts among the updates. In the first

pattern, there is no conflict among the updates. In the second pattern, a con-

flict occurs between two updates, in the third pattern, a conflict occurs among

three updates, and so on. A conflict may occur among five updates. Figure 7

shows the evaluation results. It is noted that update execution time increases

with increasing number of conflicting updates; however, the increase in time is

not serious. We show that execution time gradually increases with an increasing

number of conflicts. This proves that the resolution protocol is efficient.

We also conducted performance evaluation of the presented data synchro-

nization technique considering various conflict factors to determine the result of

the conflicting factors. A conflict factor is calculated as (number of conflicting

updates/number of active or running updates) in the system. For this analysis

we consider twenty data sources, ten update, and different sources initiated the

updates. Figure 8 shows the evaluation results. The updates are selected in such

a fashion that they participate in a conflict as defined conflict factors. The con-

flict factors are 0.1, 0.2, 0.3, 0.4, and 0.5. It is observed that update execution

time increases with the increasing value of update conflict factors. However, the

1450 Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



Figure 7: Execution time in update conflicting situations

Figure 8: Number of conflicting updates and their execution time

impact is not serious.

We also conduct a performance evaluation of the presented data synchro-

nization technique considering various conflict factors to determine the result of

the conflicting factors. A conflict factor is calculated as (number of conflicting

updates/ number of active or running updates) in the system. For this analysis,

we consider 20 data sources, 10 updates, and the different sources initiated by

the updates. Figure 8 shows the evaluation results. The updates are selected in

such a fashion that they participate in a conflict as defined conflict factors. The

conflict factors are 0.1, 0.2, 0.3, 0.4, and 0.5. It is observed that execution time

of updates increases with the conflict value factors. However, the impact is not

serious.

5 Related works

Multimedia interoperability and content management among healthcare in-

formation systems is an important research domain. The authors in

[Chang 1994, Yuksel and Dogac 2011] focus on using traditional distributed

database query-processing techniques, data interoperability for multimedia inter-

operability, and content management. The authors in [Yuksel and Dogac 2011,

Porumb et al. 1997] focus on multimedia database query processing and data

sharing. Yuksel and Dogac [Yuksel and Dogac 2011] proposed a framework for

1451Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



data interoperability in clinical data-sharing applications and medical devices.

There are fundamental differences in our approach compared with the above-

mentioned approaches. We present a data interoperability solution between data

sources in an e-health system that is patient-centric to facilitate collaboration

Porumb et al. [Porumb et al. 1997] presented a prototype of virtual collabo-

ration for providing the real-time collaboration of telemedicine services among

users. The approach provides services at the application level. However, we pro-

pose a framework for establishing collaboration among e-health service providers.

Mork, Gribble, and Halevy in [Mork et al. 2004] presented update manage-

ment techniques for a big data-sharing environment, using view maintenance

techniques. A source in the system is a receiver of data and the schema is made

of a view of other data sources schemas. Other sources act as data providers.

Bertossi and Bravo in [Bertossi and Bravo 2007] presented the semantics of

database repair for ensuring data consistency in peer-to-peer data-sharing sys-

tems. The repair semantics for data inconsistency between peers is handled at

query time. However, we consider an update execution technique in a collabora-

tive data-sharing system where each data source shares its data with others and

imports data from related data sources.

6 Conclusion

We present protocols for data synchronization through an exchange of updates

in an e-health data-sharing environment. Each data source in the environment

independently maintains data consistency. However, data are synchronized

among the data sources in a collaborative fashion. Mainly, data sources resolve

conflicts through an exchange of conflict information. In addition, we present

a collaborative framework for metadata management that handles various

medical multimedia content types, such as videos, images, text graphics, and

audio. The framework first determines the media content features and then

generates metadata to represent the media. Finally, we generate an identifier for

the media to support efficient query processing. For efficient query processing,

we present an agent-based update query execution protocol.

Acknowledgments

This work was supported by the Research Center of College of Computer

and Information Sciences (CCIS), King Saud University through the research

project no RC120902. The authors are grateful for this support.

References

[Bertossi and Bravo 2007] Bertossi, L., Bravo, L.: “The semantics of consistency and
trust in peer data exchange systems”; Proc. Intl Conf. on Logic for Programming

1452 Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...



Artificial Intelligence and Reasoning, 2007, 107-122.
[Chang 1994] Chang, Y.: “Interoperable query processing among heterogeneous

databases”; PhD thesis, University of Maryland, (1994), 3-40, Maryland, USA.
[Chen 2010] Chen, S.: “Multimedia databases and data management: a survey”; Int.

J. of Multimedia Data Engineering and Management, 1, 1(2010) 1-11.
[Deed and Edwards 2011] Deed, C. and Edwards, A.: “The Role of Outside Affor-

dances in Developing Expertise in Online Collaborative Learning”; Intl. J. Knowl-
edge Society Research, 2, 2(2011) 25-36.

[Forment et al. 2010] Forment, M. A., De Pedro, X., Casa, M. J., Piguillem, J., and
Galanis, N.: “Requirements for Successful Wikis in Collaborative Educational Sce-
narios”; Intl. J. Knowledge Society Research, 1, 3(2011) 44-58.

[Green et al. 2007] Green, T., Karvounarakis, G., Ives, Z., Tannen, V.: “Update Ex-

change with Mappings and Provenance”; Proc. 33rd Int’l Conf. on Very Large Data
Bases (VLDB). 2007, 675-686.

[Hossain 2011] Hossain, M.S.: “Adaptive media service framework for health monitor-
ing”; in Proc. ACM ICIMCS’11, Chengdu, China, August 5-7, 2011.

[Hossain et al. 2014] M. Shamim Hossain, M. Masud, G. Muhammad, M. Rawashdeh,
M. M. Hassan, ”Automated and user involved data synchronization in collaborative
e-health environments,” Elsevier Computers in Human Behavior, vol. 30, pp. 485-
490, Jan 2014.

[Hwang et al. 1994] Hwang, S., Srivastava, J., Li., J.: “Transaction Recovery in Fed-
erated Autonomous Database Systems”; Distributed and Parallel Databases, 2, 2
(1994) 151-182.

[Kermarrec et al. 2001] Kermarrec, AM., Rowstron, A., Shapiro, M., Druschel, P.:
“IceCube Approach to The Reconciliation of Divergent Replicas”; Proc. ACM sym-
posium on Principles of Distributed Computing (PODC), 2001, 210-218.

[Masud and Kiringa 2011] Masud, M., Kiringa, I.: “Update Translation in Instance-
Mapped Heterogeneous Peer Databases”; Int’l Journal of Semantic Computing, 5,
2 (2011) 211-234.

[Masud and Kiringa 2008] Masud, M., Kiringa, I.: “PDST: A Peer Database Sim-
ulation Tool for Data Sharing Systems”; Proc. Int’l Conf. on Simulation Tools
(SIMUTools), 2008, 1-6.

[Masud and Kiringa 2007] Masud, M., Kiringa, I.: “Acquaintance based consistency
in an instance-mapped P2P data sharing system during transaction processing”;
Proc. OTM Confederated International Conference on On the Move to Meaningful
Internet Systems: CoopIS, 2007, 169-187.

[Mork et al. 2004] Mork, P., Gribble, S., Halevy, A.: “Managing Change in large-scale
data sharing systems”; UW CSE Technical Reports UW-CSE-04-04-01.pdf., 2004.

[Petersen et al. 1997] Petersen, K., Spreitzer, M., Terry, D., Theimer, M., Demers,
A.: “Flexible Update Prpagation for Weakly Consistent Replication”; Proc. ACM
Symposium on Operating Systems Principles, 1997, 288-301.

[Porumb et al. 1997] Porumb, C., Porumb, S., Orza, B., and Budura, D.: “Computer-
Supported collaborative work and its application to e-Health”; Proc. Conf. on
Advances in Mesh Networks, 2000, 75-80.

[Saito and Shapiro 2005] Saito, Y., Shapiro, M.: “Optimistic Replication Algorithms”;
ACM Computing Surveys (CSUR), 37, 1(2005) 42-81.

[Yuksel and Dogac 2011] Yuksel, M. and Dogac A.: “Interoperability of medical device
information and the clinical applications: an HL7 RMIM based on the ISO/IEEE
11073 DIM”; IEEE Trans. On Information Technology in Biomedicine, 15, 4(2011)
557-566.

1453Masud M., Hossain M.S., Alamri A., Almogren A., Zakariah M.: Synchronizing ...


