
Flexible Feature Binding with AspectJ-based Idioms

Rodrigo Andrade

(Federal University of Pernambuco, Recife, Brazil

rcaa2@cin.ufpe.br)

Henrique Rebêlo

(Federal University of Pernambuco, Recife, Brazil

hemr@cin.ufpe.br)

Márcio Ribeiro

(Federal University of Alagoas, Maceió, Brazil

marcio@ic.ufal.br)

Paulo Borba

(Federal University of Pernambuco, Recife, Brazil

phmb@cin.ufpe.br)

Abstract: In Software Product Lines (SPL), we can bind reusable features to compose
a product at different times, which in general are static or dynamic. The former allows
customizability without any overhead at runtime. On the other hand, the latter allows
feature activation or deactivation while running the application with the cost of perfor-
mance and memory consumption. To implement features, we might use aspect-oriented
programming (AOP), in which aspects enable a clear separation between invariable
code and variable code. In this context, recent work provides AspectJ-based idioms
to implement flexible feature binding. However, we identified some design deficiencies.
Thus, to solve the issues of these idioms, we incrementally create three AspectJ-based
idioms. We apply these idioms to provide flexible binding for 16 features from five
different product lines. Moreover, to evaluate our idioms, we quantitatively analyze
them with respect to code cloning, scattering, tangling, and size by means of software
metrics. Besides that, we qualitatively discuss our idioms in terms of code reusability,
changeability, instrumentation overhead, behavior, and feature interaction. In conclu-
sion, we show evidences that our idioms address the issues of those existing ones.

Key Words: Software Product Lines, Aspect-Oriented Programming, Idioms, Flexi-
ble Feature Binding

Category: D.1.m, D.2.8, D.2.13

1 Introduction

A Software Product Line (SPL) is a family of software-intensive systems devel-

oped from reusable assets. By reusing such assets, it is possible to construct

a large number of different products applying compositions of different fea-

tures [Pohl et al., 2005].

Depending on requirements and composition mechanisms, features should

be activated or deactivated at different times. In this context, features may be

Journal of Universal Computer Science, vol. 20, no. 5 (2014), 692-719
submitted: 28/7/13, accepted: 15/2/14, appeared: 1/5/14 © J.UCS

bound statically, which could be, for instance, at compile time or preprocess-

ing. The benefit of this approach is to facilitate the applications’ customizability

without any overhead at runtime [Rosenmüller et al., 2011a]. Therefore, this

static feature binding is suitable for applications running on devices with con-

strained resources, such as certain mobile phones. On the other hand, features

may be bound dynamically (e.g. at runtime) to allow more flexibility, with the

cost of performance and memory consumption. Furthermore, if developers do not

know, before runtime, the set of features that should be activated, they could

use dynamic feature binding to activate features on demand.

To support flexible binding for feature code implemented using as-

pects [Kiczales et al., 1997]—which is the technique we focus on this work—we

proposed Layered Aspects [Andrade et al., 2011]. This solution makes it possible

to choose between compile or runtime binding for selected features. Moreover,

it reduces several problems identified in a previous work [Chakravarthy et al.,

2008], such as code cloning, scattering, and tangling [Andrade et al., 2011].

Although these goals are achieved to some extent, Layered Aspects still has

some deficiencies. It may introduce feature code scattering and instrumentation

overhead to the flexible binding implementation. Additionally, applying Layered

Aspects demands several changes, which could hamper the reuse of the flexible

binding implementation.

Hence, to address the Layered Aspects issues and still have low rates of

code cloning, scattering, and tangling, we define three idioms [Andrade et al.,

2013a] based on AspectJ [Kiczales et al., 2001], which we call increments, as

they incrementally address the Layered Aspects issues. In our context, we use the

terminology idiom instead of pattern because our increments are more AspectJ

specific and address a smaller and less general problem than a pattern.

The first idiom addresses part of the issues with the aid of Java annotations.

The second idiom uses the @AspectJ syntax [Laddad, 2009] to address more

Layered Aspects issues. However, this syntax does not support intertypes, so

it may introduce problems, such as feature code scattering. In this context,

due to AspectJ traditional syntax limitations, our final idiom uses a resource

of AspectJ’s compiler to address these issues without introducing @AspectJ

syntax problems.

To evaluate these idioms, we extract code of 16 features from five different

product lines (101Companies, ArgoUML, Freemind, BerkeleyDB, and Sudoku)

and apply each idiom plus Layered Aspects to implement flexible binding for

these features. Then, to evaluate whether our idioms do not present worse re-

sults than Layered Aspects with respect to code cloning, scattering, tangling, and

size, we quantitatively assess the idioms by means of software metrics. To this

end, we use seven metrics: Pairs of Cloned Code, Degree of Scattering across

Components [Eaddy, 2008], Degree of Scattering across Operations [Eaddy,

693Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

2008], Degree of Tangling within Components [Eaddy, 2008], Degree of Tan-

gling within Operations [Eaddy, 2008], Source Lines of Code, and Vocabulary

Size. Additionally, we discuss the three idioms plus Layered Aspects regarding

four factors: their code reusability, changeability, instrumentation overhead, and

behavior based on our five product lines and also on our previous knowledge

about this topic [Andrade et al., 2011, Ribeiro et al., 2009]. As result of this

evaluation, we conclude that our final idiom addresses these three factors and

does not present worse results regarding the software metrics.

This paper extends our previous work [Andrade et al., 2013a] in three ways.

First, our evaluation now considers two additional metrics that help to reinforce

our assessment results. These metrics [Eaddy, 2008] are degree of scattering

across operations (pointcuts, methods, or advice) and degree of tangling within

operations. In this way, we could strengthen some of our results and obtain new

insights not only regarding code scattering and tangling in the level of classes

and aspects but also regarding pointcuts, methods, and advice. Thus, we could

conclude that Layered Aspects scatters code in the level of operations, although

it does not in the level of classes. Moreover, we also conclude that our second and

third idioms do not increase the degree of scattering or tangling in the level of op-

erations. Measuring these two new metrics is important because code scattering

or tangling may hinder reusability, for example, also at the level of operations.

Second, we consider a new case study with three features and a number of fea-

ture interaction cases [Calder et al., 2003]. Thus, we could apply our idioms to

a feature interaction scenario, extending the scope of our earlier evaluation and

the validity of our results in a different context. We consider such scenario be-

cause feature interaction may be damaging to application development and user

expectations [Calder et al., 2003]. Third, we use the SafeRefactor tool [Soares

et al., 2010] to gather evidence that using our idioms preserve feature behavior,

so that they can likely be used as refactoring targets for existing systems.

In summary, the contributions of this paper are:

1. We identify deficiencies in an existing idiom (Layered Aspects) for flexible

feature binding;

2. We address these deficiencies by incrementally defining three idioms for

flexible feature binding;

3. We apply these four idioms to provide flexible binding for 16 features of

five case studies;

4. We quantitatively assess the three idioms plus the existing one with respect

to code cloning, scattering, tangling, and size by means of software metrics;

5. We discuss the idioms regarding reusability, changeability, code instrumen-

tation overhead, behavior, and feature interaction;

At last, we structure the remainder of this paper as follows. In Section 2,

we present the motivation of our work, detailing the Layered Aspects issues.

694 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

Section 3 introduces our three idioms to address these issues. In Section 4, we

present the evaluation of Layered Aspects and our three idioms regarding code

cloning, scattering, tangling, and size, a qualitative discussion and the threats to

validity. Finally, Section 5 discusses related work, and Section 6 concludes this

article.

2 Motivating Example

This section presents the Layered Aspects issues by showing the implementation

of flexible binding for an optional feature of the 101Companies SPL. This prod-

uct line is based on a Java version of the 101Companies project [Favre et al.,

2012], which aims at developing a free, structured, wiki-accessible knowledge re-

source including an open-source repository. This project defines several features

so that developers can implement them using different programming languages

or technologies and share with everyone. The optional feature we consider in

this section is called Total and represents the total salary of a given employee,

the sum of all department salaries, or the sum of all company salaries. We omit

further detail about this SPL because we only focus and use the Total optional

feature throughout this section.

As mentioned in the previous section, to provide flexible feature binding,

we could use the Layered Aspects idiom [Andrade et al., 2011], which makes it

possible to choose between static (compile time) and dynamic (runtime) binding

for features. Basically, the structure of this idiom includes three aspects. One

abstract aspect implements the feature code whereas two concrete subaspects im-

plement static and dynamic feature binding. Listing 1 illustrates part of the Total

feature code implemented using aspects, consisting of pointcuts (Line 3), advice

(Line 6), intertype declarations (Line 11), and private methods, which we omit

for simplicity. To apply Layered Aspects, we need to change the TotalFeature

aspect by including the abstract keyword in Line 1. This allows the concrete

subaspects to inherit from TotalFeature, since only abstract aspects can be

inherited in AspectJ [Laddad, 2009].

Listing 1: TotalFeature aspect

1 privileged aspect TotalFeature {
2
3 pointcut newAbstractView (AbstractView c t h i s) :
4 execution (AbstractView .new (. .)) && this (c t h i s) ;
5
6 void around(AbstractView c t h i s) : newAbstractView (c t h i s) {
7 proceed (c t h i s) ;
8 c t h i s . t o t a l = new JTextFie ld () ;
9 }

10
11 private JTextFie ld AbstractView . t o t a l ;
12 . . .
13 }

695Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

To implement static binding, we define TotalStatic, which is an empty

concrete subaspect that inherits from TotalFeature aspect. Thus, we are able

to statically activate the feature execution by including both aspects in the

project build.

Before explaining the dynamic feature (de)activation, we first need to in-

troduce an important concept used in this article: the driver [Andrade et al.,

2011]. This is the mechanism responsible for dynamically activating or deacti-

vating feature code execution. It may vary from a simple user interface prompt

to complex sensors, which decide by themselves whether the feature should be

activated [Ribeiro et al., 2009]. In our case, the driver mechanism reads a prop-

erty value from a properties file. For instance, to dynamically activate the Total

feature, we would set total=true in the properties file. We do this for simplicity,

since the complexity about providing information for feature activation is out of

the scope of this work.

To implement dynamic binding for the Total feature, we define

TotalDynamic, as showed in Listing 2. Line 3 defines an if pointcut to cap-

ture the driver’s value. To allow dynamic feature binding, Lines 5-8 define an

adviceexecution pointcut to deal only with before and after advice. Thus,

it is possible to execute those pieces of advice defined in TotalFeature aspect

(Listing 1) depending on the driver’s value. For instance, the feature code within

a before or after advice in TotalFeature aspect is executed if the driver con-

dition is set to true in Line 3 of Listing 2. In this case, the adviceexecution

pointcut does not match any join point in TotalFeature because the driver is

negated in Line 6, and therefore, the feature code is executed. On the other

hand, if the driver condition is false, the adviceexecution pointcut matches

some join points. However, feature code is not executed because we do not call

proceed. Additionally, returning null in Line 7 is not harmful when the fea-

ture is deactivated because Layered Aspects does not use the adviceexecution

pointcut for around advice [Andrade et al., 2011].

Listing 2: Layered Aspects TotalDynamic aspect

1 aspect TotalDynamic extends TotalFeature {
2
3 pointcut d r i v e r () : i f (Dr ive r . i sAc t i va t ed (” t o t a l ”)) ;
4
5 Object around () : adviceexecution () && within (TotalFeature)
6 && ! d r i v e r () {
7 return null ;
8 }
9

10 pointcut newAbstractView (AbstractView c t h i s) :
11 TotalFeature . newAbstractView (c t h i s) && d r i v e r () ;
12 }

Thereby, Layered Aspects design states that the pieces of around advice of

the feature code must be deactivated one-by-one because the adviceexecution

696 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

pointcut could lead to problems when the driver states the feature deactivation

[Andrade et al., 2011]. For such a scenario, we would miss the invariable code

execution, since the around advice matched by the adviceexecution would not

be executed and, consequently, the proceed() of the around advice would not

be executed either, which leads to missing the invariable code execution that is

independent of the activation or deactivation of features.

Thus, to avoid this problem, Layered Aspects associates the driver with each

pointcut related to an around advice defined in TotalFeature as showed in Lines

10 and 11. These lines redefine the newAbstractView pointcut and associate it

with the driver. Thus, the code within the around advice defined in Listing 1

is executed only if the driver’s is set to true, that is, the feature is activated.

The redefinition of pointcuts for such cases is the reason why the TotalDynamic

needs to inherit from TotalFeature [Andrade et al., 2011], so the latter needs

to be an abstract aspect, since AspectJ does not provide a way to inherit from

a concrete aspect.

In this context, we may observe three main issues when applying Layered As-

pects to implement flexible feature binding. First, the adviceexecution point-

cut unnecessarily matches all pieces of advice within the feature code, including

around advice. As mentioned, the adviceexecution is used only for before

and after advice. This issue may cause overhead in byte code instrumentation.

Additionally, returning null within adviceexecution pointcut is not a very

elegant solution, even though this situation is not error-prone, as mentioned.

The second issue is the empty concrete subaspect to implement static feature

binding. We have to define it due to the AspectJ limitation, in which an aspect

can inherit from another only if the latter is abstract. So this subaspect is imper-

ative for static feature activation, since it allows feature code instantiation. This

may increase code scattering because we need an empty subaspect for each ab-

stract aspect that implements feature code. For instance, we had to implement 18

empty concrete aspects to implement static binding for our 16 selected features.

Another issue is the pointcut redefinition, which is applied when a pointcut

within the feature code is related to an around advice. In this context, if there

are a large number of around advice, we would need to redefine each pointcut

related to them, which could lead to low productivity or even make the task of

maintaining such a code hard and error-prone. Therefore, this issue could hinder

code reusability and changeability.

Hence, we enumerate the main goals we try to address with the idioms:

1. To prevent adviceexecution pointcut to unnecessarily match around advice;

2. To avoid the empty concrete subaspect to implement static binding;

3. To eliminate the need of redefining each pointcut related to an around advice

within the concrete subaspect to implement the dynamic binding.

We believe that defining idioms to address these issues may bring benefits,

697Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

such as code scattering reduction, increase of reusability and changeability, and

decrease of instrumentation overhead. We discuss these improvements through-

out the next sections.

3 Idioms for flexible binding

In this section, we illustrate our three idioms [Andrade et al., 2013a]. To perform

this, we apply each idiom to implement flexible binding for the Total feature from

the 101Companies SPL. We point out the advantages and disadvantages of each

increment and how they address the issues presented in Section 2. Although we

conclude that the AroundClosure idiom is the best solution in Section 4, the

other idioms are also complete solutions and can be used by developers, which

should be aware of their limitations, as explained throughout this work.

Moreover, for the examples in the following sections, we consider the same

101Companies SPL source code. More specifically, we replicate this source code

so that we could apply each idiom for the code of its features.

3.1 First increment: AnnotatedBind

For this increment, we try to prevent adviceexecution pointcut to match

around advice within feature code, which corresponds to the first issue. To

achieve that, we use an AspectJ 5 mechanism, which includes the support for

matching join points based on the presence of Java 5 annotations [Laddad,

2009].

In this context, we create an AroundAdvice annotation and use it to annotate

all pieces of around advice within the feature code, as depicted in Line 3 of

Listing 3. In this way, we can prevent adviceexecution pointcut to match any

of these annotated advice when applying dynamic binding.

Listing 3: Annotated around advice

1 abstract privileged aspect TotalFeature {
2 . . .

3 @AroundAdvice
4 void around(AbstractView c t h i s) : newAbstractView (c t h i s) {
5 proceed (c t h i s) ;
6 c t h i s . t o t a l = new JTextFie ld () ;
7 }
8 }

To implement the static feature binding, we include the TotalFeature and

TotalStatic aspects plus the Total class in the project build. In its turn, to im-

plement the dynamic feature binding, we change the adviceexecution pointcut

by adding the !@annotation(AroundAdvice) clause. Thus, this pointcut does

not match the pieces of around advice defined in TotalFeature. In Listing 4, we

698 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

show the adviceexecution pointcut with the !@annotation(AroundAdvice)

clause, which is the part that differs from Listing 2. Therefore, we resolve the

first Layered Aspects issue. However, the other two issues remain open. To ad-

dress them, we introduce more increments next.

Listing 4: TotalDynamic aspect with the AnnotatedBind idiom

1 aspect TotalDynamic extends TotalFeature {
2 . . .
3 void around () : adviceexecution () && within (TotalFeature)

4 && !@annotation(AroundAdvice) {
5 i f (Dr ive r . i sAc t i va t ed (” t o t a l ”)) { proceed () ; }
6 }
7 }

3.2 Second increment: @Proceed

For this increment, we try to address the second and third Layered Aspects

issues, which correspond to avoiding the empty concrete subaspect to implement

static binding and to eliminating the need of redefining each pointcut related to

around advice, as explained in Section 2.

To achieve that, we use the new @AspectJ syntax [Laddad, 2009], which of-

fers the option of compiling source code with a plain Java compiler. This syntax

demands that the feature code elements are annotated with provided annota-

tions, such as @Aspect, @Pointcut, and @Around. Listing 5 illustrates part of the

TotalFeature class, which contains feature code similarly to Listing 1. The main

differences are the annotations in Lines 1, 4, and 7, which are used in collusion

with their parameters to define an aspect, pointcut, and advice, respectively.

Listing 5: Total feature with the @Proceed idiom

1 @Aspect

2 class TotalFeature {
3 . . .

4 @Pointcut(”execution(AbstractView.new(..)) && this(cthis)”)

5 public void newAbstractView (AbstractView c t h i s) {}
6

7 @Around(”newAbstractView(cthis)”)

8 void around1 (AbstractView c th i s , Proceed ingJo inPoint pjp) {
9 pjp . proceed () ;

10 c t h i s . t o t a l = new JTextFie ld () ;
11 }
12 }

However, the @AspectJ syntax presents some disadvantages. First, there is no

way to declare a privileged aspect [Laddad, 2009], which is necessary to avoid

creating an access method or changing invariable code element’s visibility, such

as changing from private to public to be visible within TotalFeature class.

699Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

Indeed, we had to change or add get methods for eight program elements only

within the Total feature code. Second, this new syntax does not support intertype

declarations [Laddad, 2009]. Therefore, we need to define an additional aspect,

using the traditional AspectJ syntax, containing the intertype declarations.

Despite these limitations, we could eliminate the empty concrete aspect to

implement the static feature binding. Since TotalFeature of Listing 5 is a class

rather than an abstract aspect, we are able to instantiate it without the concrete

subaspect. In this way, to statically activate the Total feature, we need to include

the TotalFeature and Total classes, and the TotalFeatureInter aspect, which

is the aspect containing intertype declarations, as explained.

To implement the dynamic feature binding, we use an adviceexecution

pointcut, which matches before, after, and around advice. Hence, we do not

need to redefine pointcuts related to around advice. Therefore, we address the

third Layered Aspects issue. Listing 6 illustrates how this increment deals with

dynamic feature binding. Lines 4-14 define an adviceexecution pointcut using

the @AspectJ syntax in a similar way to the one defined in Listing 2. Besides the

syntax, the difference is dealing with scenarios that the feature is dynamically

deactivated. Thus, we define the proceedAroundCallAtAspectJ method in a

separate class and call it in Line 10, which allows us to call the proceed join point

of the matched pieces of advice defined within TotalFeature. Hence, even if the

Total feature is dynamically deactivated, the execution of other functionalities

are not compromised [Andrade et al., 2011]. Additionally, the adviceexecution

pointcut is used for before, after, and around advice. Therefore, it does not

unnecessarily match pieces of advice as the Layered Aspects idiom does. In this

way, the first Layered Aspects issue remains solved.

Listing 6: TotalDynamic class for @Proceed idiom

1 @Aspect
2 public class TotalDynamic {
3 @Around(” adv i c e exe cut ion () && with in (TotalFeature) ”)
4 public Object adv iceexecut ionId iom (Jo inPoint th i sJo inPoint ,
5 Proceed ingJo inPoint pjp) {
6 Object r e t ;
7 i f (Dr ive r . i sAc t i va t ed (” t o t a l ”)) {
8 ret = pjp.proceed();

9 } else {
10 ret = Util.proceedAroundCallAtAspectJ(thisJoinPoint);

11 }
12 return r e t ;
13 }
14 }

Albeit we address the three Layered Aspects issues with our @Proceed idiom,

it still presents some undesired points. First, the @AspectJ syntax is limited: it

does not support privileged aspects, intertype declarations, and exception han-

dling [Laddad, 2009]. Furthermore, the pointcut and advice definitions within

700 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

the annotation statement are verified only at weaving time rather than compile

time with the traditional syntax. This could hamper code maintenance and error

finding. Therefore, in the next increment, we try to keep addressing the three

Layered Aspects issues without using the @AspectJ syntax.

3.3 Final increment: AroundClosure

Now, we improve our previous increment by addressing all the three Layered

Aspects issues presented in Section 2, but without introducing the @AspectJ

syntax deficiencies. To achieve that, we still need to avoid these three issues and

use the traditional AspectJ syntax.

The AroundClosure idiom does not demand any changes in the feature code

implementation showed in Listing 1. Thus, to provide flexible binding to the

Total feature with AroundClosure, we need Total class plus the TotalFeature,

and TotalDynamic aspects, as showed in Listing 1, and 7, respectively.

In this context, since TotalFeature is not an abstract aspect like in Layered

Aspects or our first increment (AnnotatedBind), it is not necessary to have an

empty abstract aspect to implement static feature binding. We just include the

TotalFeature aspect and Total class in the project build to statically activate

the Total feature.

Further, to implement the dynamic feature binding, we define the

TotalDynamic aspect, as illustrated in Listing 7. We define a generic advice

using adviceexecution pointcut that works with before, after, and around

advice. Hence, we do not need to redefine each pointcut within the feature im-

plementation that is related to an around advice. Thereby, TotalDynamic does

not extend TotalFeature, so the abstract aspect is no longer needed.

Listing 7: TotalDynamic aspect with AroundClosure

1 aspect TotalDynamic {
2 Object around () : adviceexecution () && within (TotalFeature) {
3 i f (Dr ive r . i sAc t i va t ed (” t o t a l ”)) {
4 return proceed () ;
5 } else {
6 return Ut i l . proceedAroundCall(th i sJo inPo in t) ;
7 }
8 }
9 }

More specifically, to deal with dynamic feature binding, we just call

proceed() in Line 4, so the feature code within the advice defined in

TotalFeature is executed. We have to define the around advice as returning

an Object in Line 2 to make it generic, avoiding compilation errors when an

around advice, that is not void, is present in the feature implementation.

On the other hand, it is not trivial to deal with the scenario in which the

feature is dynamically deactivated due to around advice. This kind of advice

701Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

uses a special form (proceed) to continue with the normal invariable code

flow of execution at the corresponding join point. This special form is imple-

mented by generating a method that takes in all of the original arguments

to the around advice plus an additional AroundClosure object that encapsu-

lates the invariable code flow of execution [Hilsdale and Hugunin, 2004], which

has been interrupted by the pieces of advice related to the feature and after-

wards interrupted by the adviceexecution pointcut. Thus, in Line 6, we call

the proceedAroundCall method passing as argument thisJoinPoint, which

contains reflective information about the current join point of the feature code

advice that adviceexecution is matching.

To avoid missing the invariable code flow of execution when the feature is dy-

namically deactivated, Listing 8 defines part of the proceedAroundCallmethod.

First, we obtain an array with the arguments of the matched advice through the

thisJoinPoint information in Line 3. By means of this array we obtain the As-

pectJ AroundClosure object. Thus, we directly call the AroundClosuremethod

run in Line 6, which executes the invariable code. This run method is automat-

ically called under the hood by the proceed of each around advice. However,

since we miss this proceed when the feature is dynamically deactivated, we need

to manually call run so that we do not miss the invariable code execution.

As explained, this idiom uses the AroundClosure object, which is an internal

resource of AspectJ’s compiler. Therefore, to the correct operation of this idiom,

the AroundClosure object must be present in the compiler. Although we focus

only on AspectJ, other AOP-based compilers also include this object [Aracic

et al., 2006,Avgustinov et al., 2005].

Listing 8: The proceedAroundCall method

1 static Object proceedAroundCall (Jo inPoint th i sJo inPo in t) {
2 . . .
3 Object [] args = th i sJo inPo in t . getArgs () ;
4 int i = (args . l ength − 1) ;
5 i f (args [i] instanceof AroundClosure) {
6 return ((AroundClosure) args [i]) . run (args) ;
7 }
8 }

At last, the AroundClosure idiom addresses the Layered Aspects issues with-

out introducing the @AspectJ syntax problems. We evaluate our three idioms

plus Layered Aspects in the next section.

4 Evaluation

In this section, we explain our evaluation. The Section 4.1 presents the selected

case studies and the main procedures we follow to conduct our evaluation. In

Section 4.2, we quantitatively evaluate our idioms and Layered Aspects in a sim-

ilar way we did in our previous work [Andrade et al., 2011] to avoid bias. Besides

702 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

that, we discuss our three idioms and Layered Aspects regarding code reusabil-

ity, changeability, instrumentation overhead, behavior, and feature interaction

in Section 4.3.

4.1 Study Settings

We consider 16 features of five case studies: two features of 101Companies [Favre

et al., 2012], eight features of BerkeleyDB [Kästner et al., 2007], one feature of

ArgoUML [Tigris, 2013], two features of Freemind [Müller et al., 2013], and

three features of Sudoku [Kästner, 2013], which is our new case study. Besides

101Companies and Sudoku, the other three case studies are the same of our pre-

vious work [Andrade et al., 2011]. This is important to show the gains obtained

with the idioms on the top of the same features. In this way, we avoid biases

such as implementing flexible binding for feature that present different degree of

scattering or tangling. In Table 1, we map the 16 features to the respective case

study. These case studies represent different sizes, purposes, architectures, gran-

ularity, and complexity. Moreover, the code of their features present different

types, such as optional or alternative features [Kang et al., 1990].

Table 1: Case study and features

Case study Features
Freemind Icons and Clouds
ArgoUML Guillemets
101Companies Total and Cut
BerkeleyDB EnvironmentLock, Checksum, Delete, LookAheadCache,

Evictor, NIO, IO, and INCompressor
Sudoku Solver, Undo, and Guesser

To perform our evaluation, we follow four main procedures, as explained next.

However, we do not execute the first and second procedures for the BerkeleyDB

case study because it already existed, as we discuss in Section 4.4.

First, to create the product lines from the original code of these case studies,

we assigned the code of their features by using the prune dependency rules

[Eaddy et al., 2007], which state that ”a program element is relevant to a feature

if it should be removed, or otherwise altered, when the feature is pruned from

the application”. By following these rules, we could identify all the code related

to the features. We chose this rule to reduce introducing bias while identifying

feature code.

Second, we extracted part of the feature code that is tangled with invariable

code into AspectJ aspects. However, the code within some classes is not ex-

tracted into aspects when the whole class is only relevant to the feature. Thus,

703Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

this feature code is not tangled or scattered throughout the invariable code. Ad-

ditionally, there are references to the elements of these classes only within the

feature code. Each feature code is localized in a different and unique package,

which contains aspects and, possibly, classes. In summary, there are two pro-

cedures: (i) we extract feature code that is tangled with invariable code into

aspects and (ii) we move classes that contain only the feature code into the

package created specifically for this feature.

Third, to evaluate our three idioms and Layered Aspects, we applied each

one of our three idioms plus Layered Aspects to implement flexible binding for

the 16 features of the five case studies.

For the 101Companies, we apply each one of our three idioms plus Layered

Aspects to implement flexible binding for its two features. This product line has

nearly 900 lines of code whereas 300 of code for the two selected features.

For BerkeleyDB, we apply the four idioms to implement flexible binding for

eight features of the BerkeleyDB product line [Kästner et al., 2007]. This prod-

uct line has around 32000 lines of code whereas the eight selected features sum

up approximately 2300 lines of code. This allows us to test our AroundClosure

idiom and the increments in a large and widely used application.

For ArgoUML, we create a product line by extracting the code of one feature

into AspectJ aspects. Then, we apply the four idioms presented to implement

flexible binding for these features. Our ArgoUML product line has nearly 113000

lines of code and 200 of feature Guillemets code.

For Freemind and Sudoku, we also extract the code of five features into

AspectJ aspects. Then, we apply the four idioms to provide flexible feature

binding for these features. The Freemind product line has about 67000 lines

of code and both selected features have approximately 4000 lines. The Sudoku

product line has 2100 lines of code and its two features sum up 250 lines.

Fourth, we collect the number of lines of code (LOC) of relevant components,

such as feature or driver code, to provide as input to compute the metrics. We

use the Google CodePro AnalytiX1 to obtain the LOC and we use sheets to help

the computation of the metrics. Moreover, we detail the selected metrics and

results in Section 4.2.

4.2 Quantitative analysis

To drive the quantitative evaluation of our idioms, we follow the Goal-Question-

Metric (GQM) design [Basili et al., 1994]. We structure it in Table 2. We use

Pairs of Cloned Code in Section 4.2.1 to answer Question 1, as it may indicate

a design that could increase maintenance costs [Baxter et al., 1998] because a

change would have to be done twice to the duplicated code. To answer Question

1 https://developers.google.com/java-dev-tools/download-codepro

704 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

2, we use Degree of Scattering across Components [Eaddy, 2008] and Degree

of Scattering across Operations [Eaddy, 2008] in Section 4.2.2 to measure the

implementation scattering for each idiom regarding driver and feature code. To

answer Question 3, we measure the tangling between driver and feature code con-

sidering the Degree of Tangling within Components [Eaddy, 2008] and Degree

of Tangling within Operations [Eaddy, 2008] metrics in Section 4.2.3. Further-

more, Source Lines of Code and Vocabulary Size are well known metrics for

quantifying a module size and complexity. So, in Section 4.2.4, we answer Ques-

tion 4 measuring the size of each idiom in terms of lines of code and number of

components. Albeit we show only part of the graphs and data in this section, we

provide them completely elsewhere [Andrade et al., 2013b].

Table 2: GQM

Goal
Purpose Evaluate idioms regarding
Issue cloning, scattering, tangling, and size of

their flexible binding implementation
Object for features
Viewpoint from a

software engineer viewpoint
Questions and Metrics
Q1- Do the idioms increase code cloning?
Pairs of Cloned Code PCC

Q2- Do the idioms increase driver
and feature code scattering?
Degree of Scattering across Components DOSC
Degree of Scattering across Operations DOSO

Q3- Do the idioms increase tangling
between driver and feature code?
Degree of Tangling within Components DOTC
Degree of Tangling within Operations DOTO

Q4- Do the idioms increase lines
of code and number of components?
Source Lines of Code SLOC
Vocabulary Size VS

4.2.1 Cloning

To answer Question 1 and investigate whether our idioms increase code cloning,

we use the CCFinder [Kamiya et al., 2002] tool to obtain the PCC metric results.

CCFinder is a widely used tool [Kamiya et al., 2013] to detect cloned code

[School and Rajapakse, 2005,Kapser and Godfrey, 2006,Bruntink et al., 2005].

Similarly to our previous work [Andrade et al., 2011], we use 12 as the token set

size (TKS) and 40 as the minimum clone length (in tokens) to preset the tool,

which means that to be considered cloned, two pairs of code must have at least

40 equal tokens.

In general, the four idioms present similar results. There is no code replication

for 11 features out of 16 regarding the four idioms. Additionally, the idioms

705Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

lead to low PCC rates for the code of these five features that present code

replication [Andrade et al., 2013b]. Therefore, our idioms do not increase code

cloning. This answers Question 1.

4.2.2 Scattering

To answer Question 2, we use DOSC and DOSO to analyze feature and driver

code scattering for each idiom. Feature and driver are different concerns, so we

analyze them separately. Although, the only way we could measure the driver

code scattering is after an idiom is applied to provide flexible binding for the

selected features. In this way, we discuss driver code scattering considering the

four idioms applied to the selected features.

Figure 1: DOSC and DOSO for driver

Driver. On the upper side of Figure 1, we present the results regarding the

DOSC metric. The only idiom that presents driver scattering is our Annotated-

Bind idiom. This occurs due to the annotations we must add to around advice

defined within the feature code, as explained in Section 3.1. This may hinder

code reusability and changeability. However, the AnnotatedBind idiom reduces

706 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

the byte code instrumentation, as we discuss in Section 4.3. Additionally, fea-

tures Cut and Guesser do not present an around advice, therefore there is no

AroundAdvice annotation in its code. The NIO, IO, and Solver features only

present around advice, thus there is no need to add the AroundAdvice annota-

tion, as only one pointcut redefinition implements the driver.

Nevertheless, the new considered metric shows different results on the bottom

side of Figure 1. By means of the DOSO metric, we identify that the Layered

Aspects [Andrade et al., 2011] idiom implementation scatters driver code at the

operation level. This happens because we need to associate driver code with the

redefined pointcuts related to around advice. Therefore, the driver code could be

present in many redefined pointcuts. Although, @Proceed and AroundClosure

do not scatter driver code throughout methods, pointcuts, or advice.

Furthermore, @Proceed and AroundClosure do not present any driver code

scattering, since their driver is implemented within a unique aspect and advice

for each idiom.

Feature. Figure 2 illustrates the DOSC results considering features. In this

context, our @Proceed idiom presents a disadvantage when compared to the oth-

ers. This happens because the @AspectJ syntax, which is used by the @Proceed

idiom, does not support intertype declarations. Thus, as explained in Section 3.2,

this idiom needs an additional AspectJ aspect (traditional syntax) to implement

the intertype declarations, which contributes to scatter feature code across at

least two components. On the other hand, the features NIO, IO, and Guesser

do not present intertype declarations within their implementation. Thus, our

@Proceed idiom does not scatter feature code in these cases. Our Annotated-

Bind idiom and Layered Aspects present similar results because the implemen-

tation of these two idioms are similar regarding feature code. Additionally, the

AroundClosure idiom only presents feature code scattering when more than one

aspect is used to implement feature code, which is the case of the Delete feature.

Figure 2: DOSC for feature

707Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

Furthermore, the DOSO results for features are equal to the four considered

idioms. Since applying the idioms does not change the feature code, the idiom

implementation needs the same number of pieces of advice, which contain the

same feature code. Therefore, we omit the graph with the DOSO metric results.

At last, we answer Question 2 saying that AnnotatedBind increases driver

code scattering whereas our @Proceed idiom increases feature code scattering.

However, our final solution (AroundClosure) does not present driver scattering.

Additionally, it does not increase feature code scattering.

4.2.3 Tangling

This section answers Question 3 by investigating the extent of tangling between

feature and driver code. According to the principle of separation of concerns

[Parnas, 1972], one should be able to implement and reason about each concern

independently.

Similarly to our previous work [Andrade et al., 2011], we also assume that

the greater the tangling between feature code and its driver code, the worse the

separation of those concerns. Thus, we measure the Degree of Tangling within

Components (DOTC) and the Degree of Tangling within Operations (DOTO).

On the upper side of Figure 3, we show the DOTC metric results. Only

the AnnotatedBind idiom presents tangling between two concerns: driver and

feature. This happens due to the AroundAdvice annotation included within the

aspects that implement feature code. On the other hand, @Proceed and Around-

Closure present no tangling between driver and feature code. For example, List-

ings 6 and 7 contain only driver code by following the prune dependency rule,

that is, the code defined within TotalDynamic class and aspect is relevant only to

the driver concern. In this way, these idioms comply with the results obtained for

Layered Aspects. The features Cut, Undo, and Guesser do not present around

advice and therefore none AroundAdvice annotation. On the other hand, the fea-

tures IO, NIO, and Solver only present around advice, thus there is no need to

introduce the AroundAdvice annotation since there is no code instrumentation

overhead.

Moreover, we reinforce our findings [Andrade et al., 2013a] with the DOTO

results showed in the bottom side of Figure 3. As illustrated, only the Annotat-

edBind idiom presents tangling between feature and driver code at the operation

level. This happens for the same reason explained before for the DOTC results.

Thus, we conclude that our AnnotatedBind idiom increases the tangling be-

tween driver and feature code. However, @Proceed and AroundClosure does not

present tangling at all. This answers Question 3.

708 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

Figure 3: DOTC and DOTO

4.2.4 Size

To identify the idiom that increases the size of its implementation, we try to

answer Question 4. For this purpose, we use the SLOC and VS metrics.

In this context, the differences between the four idioms is insignificant for

SLOC and VS metrics. For instance, the Icons feature presents between 2155

and 2186 source lines of code for the smallest and largest idiom implementation,

respectively. This represents a difference of only 1.41% of the feature imple-

mentation. Similarly, the differences between the four idioms for the VS metric

results are also insignificant. Therefore, we answer Question 4 stating that our

idioms do not increase lines of code and number of components.

4.3 Qualitative discussion

In this section, we qualitatively discuss Layered Aspects and our three idioms

in terms of code reusability, changeability, and instrumentation overhead. Fur-

thermore, we discuss the use of SafeRefactor [Soares et al., 2010] to check any

behavioral changes between the flexible feature binding using different idioms

and a scenario in which features interact.

709Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

Reusability is related to how easily we can reuse the flexible binding im-

plementation using an idiom. Therefore, we are interested in checking what we

need to do to reuse a given idiom code when applying it to another feature.

Layered Aspects and AnnotatedBind. We may have to perform several changes

to reuse the code of the implementation of these idioms. Only if the features we

aim at applying flexible binding do not present any around advice within its

implementation, then we would perform few changes to reuse the code of these

idioms between the features, since the adviceexecution pointcut is reused as

it applies to all before and after advice. However, Layered Aspects and our

AnnotatedBind redefine the pointcuts related to around advice, which hinders

reuse since these pointcuts are associated to a particular feature. Hence, this

compromises the overall reusability of the implementation of both idioms.

@Proceed and AroundClosure. Few changes are needed to reuse the code of

both idioms. The adviceexecution pointcut matches all the pieces of advice

within the feature implementation, it does not matter whether they are before,

after, or around. Thus, @Proceed and AroundClosure are easily reused, since

the difference between one dynamic feature binding to another is only the as-

pect that the adviceexecution pointcut should apply (within clause in List-

ing 6 and 7) and the input to the driver. For example, if we want to apply the

AroundClosure idiom to the Cut feature, we could reuse the code of this idiom

used in Total feature. In Listing 7, we would alter TotalFeature to CutFeature

in Line 2, which corresponds to the aspect that contains the Cut feature code

and “total” to “cut” in Line 4, which represents the Cut feature property in

the properties file used for the driver in our case.

Changeability is related to the amount of changes we need to perform in

the application or in the idiom to implement flexible feature binding. Hence, we

are interested in how difficult or time consuming the task of applying a flexible

feature binding implementation through an idiom is.

Layered Aspects and AnnotatedBind. Applying these idioms demands several

changes to implement flexible binding for a feature. For Layered Aspects, all

pointcuts related to an around advice defined within the feature implementation

are redefined in the aspect that implements dynamic feature binding. Hence, if

the 101Companies SPL is being modified to support flexible binding, we need to

change the aspect containing feature code (TotalFeature) to support pointcut

redefinition and we would need to redefine each pointcut related to around advice

in order to associate it with driver code. Similarly, our AnnotatedBind idiom

demands these pointcut redefinitions and we need to introduce the annotations

in the around advice, as explained in Section 3. This could require a lot of

changes.

@Proceed and AroundClosure. Applying these idioms demands few changes

to implement flexible binding for a feature. As explained in Section 3, the @Pro-

710 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

ceed and AroundClosure idioms do not redefine pointcuts. Hence, neither major

changes nor altering feature code are needed.

Instrumentation overhead (CIO). Now, we are interested in avoiding

pointcuts that unnecessarily match join points. If we can exclude all the unnec-

essary instrumentation, we may gain in performance due to the less instrumen-

tation provided by the AspectJ compiler.

Layered Aspects. Implementing flexible feature binding with this idiom

may lead to instrumentation overhead because its adviceexecution pointcut

matches more join points than necessary. The code of this idiom instruments

all the pieces of advice within the feature implementation. However, the pieces

of around advice are handled by the redefined pointcuts. This may lead to an

overhead in the runtime as well.

AnnotatedBind. Our AnnotatedBind idiom annotates the around advice in

collusion with the !@annotation(AroundAdvice) in the adviceexecution to

avoid instrumentation overhead. In this way, the advicexecution pointcut only

matches before and after advice, which eliminates the unnecessary instrumen-

tation caused by the use of Layered Aspects.

@Proceed and AroundClosure. This increment and AdviceClosure do not

present instrumentation overhead because their adviceexecution pointcut

matches all the pieces of advice within the feature implementation only once.

Hence, there is no unnecessary instrumentation.

Behavior. It is important to try to guarantee that using our idioms does

not change the behavior of the feature code execution. Thus, to bring evidence

that the execution of one flexible feature binding implementation presents the

same behavior using any of the four idioms, we use the SafeRefactor tool [Soares

et al., 2010], which receives two source code as input. It generates and executes

unit tests and reports whether there are behavioral differences between the ex-

ecution of these two sources. In our context, we use the SafeRefactor to detect

behavioral changes between flexible feature binding implemented with different

idioms. Therefore, we analyze two versions of the same case study (i.e. 101Com-

panies), although each one using a distinct idiom to provide flexible binding for

their features.

In this context, the SafeRefactor reports that our implementations do not

present behavioral changes. That is, there is no difference in the execution of

the generated tests when comparing the same feature with two different idioms.

In Table 3, we illustrate details of the SafeRefactor report for the 101Compa-

nies and Freemind, which are sufficient for our discussion. However, we provide

the full results in our online appendix [Andrade et al., 2013b]. For example,

we analyze the 101Companies with Layered Aspects against the 101Companies

with our AnnotatedBind idiom. The tool generates and executes 141 tests, re-

porting no behavioral changes between the code execution of Total feature using

711Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

Layered Aspects or our AnnotatedBind idiom. It is important to note that the

SafeRefactor tool exercises more methods and execution paths when more tests

are generated. Moreover, the number of generated tests may vary as shown in

Table 3. This variation occurs due to the number of methods and advice of the

source code and the number of methods and advice in common between the two

source code. In some cases, we need to change a method’s modifier from private

or protected to public, specially for our @Proceed idiom, which does not sup-

port privileged aspects due to the @AspectJ syntax limitations, as explained in

Section 3.2.

We already expected such results since our idioms are designed to change

the least feature code possible. As a matter of fact, the differences between the

idioms are focused on the way to implement static and dynamic feature binding,

which leads to few changes in the feature code itself. Unfortunately, we could

not compare our flexible binding implementations with the original code because

SafeRefactor identifies common methods between Source and Target projects to

generate the tests, and these common methods must have the same modifier,

parameters, return, name, and be defined in the same class. Therefore, after

refactoring the feature code into aspects, SafeRefactor would not identify these

common methods.

Table 3: SafeRefactor results

Source Target Number of tests Changes?
101Companies-LayAspects 101Companies-AnnotatedBind 141 No
101Companies-LayAspects 101Companies-@Proceed 180 No
101Companies-LayAspects 101Companies-AroundClosure 119 No
101Companies-AnnotatedBind 101Companies-@Proceed 135 No
101Companies-AnnotatedBind 101Companies-AroundClosure 145 No
101Companies-@Proceed 101Companies-AroundClosure 157 No

Freemind-LayAspects Freemind-AnnotatedBind 241 No
Freemind-LayAspects Freemind-@Proceed 229 No
Freemind-LayAspects Freemind-AroundClosure 247 No
Freemind-AnnotatedBind Freemind-@Proceed 275 No
Freemind-AnnotatedBind Freemind-AroundClosure 275 No
Freemind-@Proceed Freemind-AroundClosure 215 No

Feature interaction. Now, we illustrate how we apply our idioms in case

features interact. A feature interaction occurs when one or more features modify

or influence other features [Calder et al., 2003,Liu et al., 2005]. This interaction

could be structural [Liu et al., 2005] or behavioral [Calder et al., 2003]. We

could implement our idioms and Layered Aspects in such a scenario without

additional effort. To illustrate a feature interaction scenario we consider a new

case study called Sudoku in this work.

For instance, the features Solver and Guesser of the Sudoku case study in-

teract structurally and behaviorally. The former uses the latter to guess possible

712 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

solutions in a Sudoku board. Moreover, part of the Guesser code is defined

within the Solver code. The Solver feature is responsible for providing a so-

lution for a certain board of the Sudoku game whereas the Guesser feature

implements an algorithm to guess possible solutions for Sudoku. In Listing 9,

we show part of the Solver feature implementation. The solve method (Lines

2-10) is defined as an intertype because this whole method was extracted from

the BoardManager class, as it concerns only to the Solver feature. This method

also contains Guesser code. In order to provide a join point inside a method that

can be extended by the aspect where the Guesser feature is implemented, we

create a hook method (Lines 12-16). Hook methods are empty methods placed

in the code for later extension [Kästner et al., 2007].

Listing 9: Solver feature

1 aspect SolverFeature {
2 L i s t BoardManager . s o l v e (Board board) {
3 L i s t s o l u t i o n s = new LinkedLis t () ;
4 i f (! board . i sSo l v ed ()) {
5 hookguesser(board, solutions);

6 } else {
7 s o l u t i o n s . add (board) ;
8 }
9 return s o l u t i o n s ;

10 }
11
12 void BoardManager . hookguesse r (Board board , L i s t s o l u t i o n s) {
13 Guesser guesser = new Guesser();

14 List guessed = guesser.guess(board);

15 solutions.addAll(solve(((Board) guessed.get(i))));

16 }
17 }

Listing 10: Guesser feature

1 aspect GuesserFeature {
2 pointcut hookguesse r (BoardManager c th i s , Board board ,
3 L i s t s o l u t i o n s) : execution (∗ BoardManager . hookguesse r (. .))
4 && this (c t h i s) && args (. . .) ;
5
6 before (BoardManager c th i s , Board board , L i s t s o l u t i o n s)
7 : hookguesse r (c th i s , board , s o l u t i o n s) {
8 Guesser guesser = new Guesser();

9 List guessed = guesser.guess(board);

10 solutions.addAll(solve(((Board) guessed.get(i))));

11 }
12 }

In this context, we also use pointcuts and advice to implement the Guesser

feature within aspects, although we extracted the Guesser code from the aspects

that implement the Solver feature instead of the invariable code. Listing 10

illustrates the Guesser feature implementation in an aspect. Lines 2-4 define a

713Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

pointcut that matches the hookguessermethod. We remove the Guesser feature

code in Lines 13-15 of Listing 9 and implement it in an advice that corresponds

to the Guesser feature implementation (Lines 8-10 of Listing 10).

At last, we observe that it is possible to apply our idioms to feature in-

teraction scenario similar to the one presented. Furthermore, the quantitative

evaluation results for Solver and Guesser comply with the results considering

the other features (Section 4.2). Thus, this feature interaction scenario does not

decrease the quality or our idioms regarding code cloning, scattering, tangling,

or size.

4.4 Threats to validity

In this section, we discuss some threats to the validity of our work. We divided

it in threats to internal and external validity.

Threats to internal validity are concerned with the fact that the assess-

ment leads to the results [Wohlin et al., 2000].

BerkeleyDB refactoring. Our BerkeleyDB case study was originally refactored

by Kästner et al. [Kästner et al., 2007]. The code of its features was extracted

into aspects. However, this extraction was not in accordance with the way we

extracted the implementation of features of the other case studies. Therefore, we

refactored the code of BerkeleyDB product line’s features so as to comply with

the other feature implementations. Indeed, we followed the same procedures in

order to refactor these implementations, such as the prune dependency rule.

Feature code identification. We cannot assure that the extraction of our se-

lected features does not present bias because the task of identifying feature code

is in a certain way subjective. This could be a hindrance to researchers that

might try to replicate our work. Indeed, there could be unconformities between

feature code identified by different researchers [Lai and Murphy, 1999].

However, we tried to minimize this threat in two ways. First, we used the

prune dependency rules [Eaddy et al., 2007] to identify feature code. These rules

define some procedures that the researcher should follow to avoid introducing

bias in the resulting extracted feature code, as we mentioned in Section 4. Sec-

ond, only one researcher identified the implementation of the selected features.

We believe that restricting the number of people decreased unreliability.

Threats to external validity regard the generalization of the results

[Wohlin et al., 2000].

Selected software product lines limitations. To perform our assessment, we

selected five applications. The first and third authors were the ones who extracted

the code of the 16 features. Thus, we defined five new SPLs based on these five

applications. Although these SPLs are used only for academic purposes, their

code covers different characteristics such as distinct complexities, architectures,

granularities, purposes, and sizes.

714 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

Furthermore, the SPLs are written in Java and the feature code is imple-

mented using AOP. Therefore, we cannot generalize the results presented here

for other contexts, such as different programming paradigms or languages. Nev-

ertheless, the combination of Java and AspectJ can be used in SPLs, which

reinforce the significance of our idioms. So the increments presented could be

applied to other SPLs that comply with the technologies we considered.

Feature interaction scenario limitations. Another threat concerns the feature

interaction scenario, which is presented only in the new Sudoku case study. We

cannot assure that our idioms work the same way to all feature interaction sce-

narios. However, we believe that extracting parts of feature code by means of as-

pects would not cause problems in other feature interaction examples. Although,

we should need to refactor the feature code before extracting it to aspects. For

instance, there is no way to extract a single parameter from a method by using

aspects. Thus, such case demands refactoring before the extraction. We plan to

find and investigate these scenarios in future work.

Multiple drivers absence. In this work, we only consider applying one driver

at a time. However, we realize that some applications may depend on several

conditions to activate or deactivate a certain feature. For instance, Lee et al.

utilize a home service robot product line as case study [Lee and Kang, 2006].

This robot dynamically changes its configuration depending on the environment

brightness or its remaining battery. It would demand at least two drivers to

(de)activate some of its features in our context. Furthermore, the driver related

boolean expression could become complex and hard to maintain, since simple

boolean operations such as AND or OR may not work. Therefore, we reinforce

that the mechanism that provides information to the driver is out of the scope

of this work. Our proposal is to abstract the way our idioms receive this infor-

mation. However, even the evaluation of a complex boolean expression could be

only true or false, and this is what our idioms need to know. Nevertheless, we

plan to study these scenarios in future work.

AspectJ compiler dependence. As explained in Section 3, our AroundClosure

idiom depends on an internal resource of AspectJ’s compiler. Thereby, this idiom

may not work when applied in scenarios where a different compiler is used. How-

ever, besides AspectJ compiler, which is popular, other well-known compilers,

such as the ones used for CaesarJ [Aracic et al., 2006] and ABC [Avgustinov

et al., 2005] also include the resource needed by AroundClosure idiom. Thus, we

believe our idiom covers at least three popular compilers.

5 Related work

Besides Layered Aspects [Andrade et al., 2011], which is an idiom we developed

to fix some problems in existing solutions for flexible binding, we point out other

715Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

researches regarding flexible binding as well as studies that relate aspects and

product line features.

Rosenmüller et al. propose an approach for statically generating tailor-made

SPLs to support dynamic feature binding [Rosenmüller et al., 2011b]. Similarly

to part of our work, they statically choose a set of features to compose a prod-

uct that supports dynamic binding. Furthermore, the authors describe a feature-

based approach of adaptation and self-configuration to ensure composition safety.

In this way, they statically select the features required for dynamic binding and

generate a set of binding units that are composed at runtime to yield the pro-

gram. Additionally, they implement their approach in one case study and eval-

uate it with concern to reconfiguration performance at runtime. Their contribu-

tion is restricted to applications based on C++, since they use the FeatureC++

language extension [Apel et al., 2005]. In contrast, our contribution is restricted

to applications written mostly in Java, since we use AspectJ to provide flexible

feature binding. Thus, our contribution applies to a different set of applications.

Lee et al. propose a systematic approach to develop dynamically reconfig-

urable core assets, which lies in the management of dynamic binding time regard-

ing changes during the product execution [Lee and Kang, 2006]. Furthermore,

they present strategies to manage product composition at runtime. Thus, they

are able to safely change product composition (activate or deactivate features)

due to an event occurred during runtime. However, the authors only provide

conceptual support for a reconfiguration tool with no actual implementation.

Trinidad et al. propose a process to generate a component architecture that is

able to dynamically activate or deactivate features and to perform some analysis

operations on feature models to ensure that the feature composition is valid

[Trinidad et al., 2007]. They apply their approach to generate an industrial real-

time television SPL. However, they do not consider crosscutting features, which

is very common based on our experience. In contrast, our approach works with

crosscutting features.

Dinkelaker et al. [Dinkelaker et al., 2010] propose an approach that uses a

dynamic feature model to describe variability and a domain-specific language

for declaratively implementing variations and their constraints. This work has

mechanisms to dynamically detect and resolve feature interactions at runtime.

Marot et al. [Marot andWuyts, 2010] propose OARTA, which is a declarative

extension to the AspectBench Compiler [Avgustinov et al., 2005], which allows

dynamic weaving of aspects. OARTA extends the AspectJ language syntax so

that a developer can name an advice, which allows referring to it later on. It is

possible that aspects weave on other aspects. Therefore, they exemplify how to

dynamically deactivate features in runtime situations (e.g. features competing

for resources, which may be deactivated to speed up the execution). By using

AspectJ, we would have to add an if() pointcut predicate to the pointcut of

716 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

the advice that contains feature code. This may lead to a high degree of driver

code scattering. Thus, as shown in Section 4, our AroundClosure idiom does not

present such an issue.

An alternative proposal considers conditional compilation as a technique to

implement flexible feature binding [Dolstra et al., 2003]. This work discusses

how to apply conditional compilation in real applications like operating sys-

tems. Similarly to what we describe in our work, developers need to decide what

features should be included to compose the product and their respective binding.

However, the work concludes that, in fact, conditional compilation is not a very

elegant solution to provide flexible feature binding. Hence, for complex variation

points, the situation becomes even worse.

Chakravarthy et al. present Edicts [Chakravarthy et al., 2008], which is an

AspectJ-based idiom to implement flexible feature binding. The idea is to scatter

feature code across one abstract aspect and two concrete subaspects. Then, the

programmer implements the driver by adding if statements within the pieces

of advice. However, our previous work [Andrade et al., 2011] identified issues

regarding code cloning, scattering, tangling, and size when applying Edicts to

provide flexible feature binding. In this way, we reduce these issues with Lay-

ered Aspects and moreover, we fix the Layered Aspects limitations with the

AroundClosure idiom proposed in this work.

6 Conclusion

In this work, we identify deficiencies in an existing AspectJ-based idiom to imple-

ment flexible feature binding in the context of software product lines. To improve

this idiom, we incrementally define an idiom called AroundClosure. The creation

of AroundClosure is performed increment-by-increment, which means that ev-

ery increment corresponds to an improved idiom. To evaluate our idioms, we

perform a quantitative assessment regarding code cloning, scattering, tangling,

and size. Furthermore, we qualitatively discuss these idioms with respect to code

reusability, changeability, instrumentation overhead, and behavior. Our evalua-

tion results show that AroundClosure idiom brings advantages with respect to

both quantitative and qualitative assessments. To achieve our conclusions, we

base our analysis in 16 features of five different product lines and in our knowl-

edge acquired during our research and previous work.

Acknowledgments

We would like to thank colleagues of the Software Productivity Group (SPG)

for helping to improve this work. Specially Gustavo Soares who helped us with

SafeRefactor. Besides that, we would like to acknowledge financial support from

717Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

CNPq, FACEPE, CAPES, and the Brazilian Software Engineering National In-

stitute of Science and Technology (INES).

References

[Andrade et al., 2011] Andrade, R. et al. (2011). Assessing idioms for implementing
features with flexible binding times. In Proc. of the European Conf. on Software
Maintenance and Reengineering, pages 231–240.

[Andrade et al., 2013a] Andrade, R. et al. (2013a). AspectJ-based idioms for flexible
feature binding. In Proc. of the Brazilian Symposium on Software Components, Ar-
chitectures, and Reuse, pages 59–68.

[Andrade et al., 2013b] Andrade, R. et al. (2013b). Online appendix,
http://tinyurl.com/mkcaf5k.

[Apel et al., 2005] Apel, S. et al. (2005). FeatureC++: On the symbiosis of feature-
oriented and aspect-oriented programming. In Proc. of the Int. Conf. on Generative
Programming and Component Engineering, pages 125–140.

[Aracic et al., 2006] Aracic, I. et al. (2006). An overview of caesarJ. Transactions on
Aspect-Oriented Software Development, 3880:135–173.

[Avgustinov et al., 2005] Avgustinov, P. et al. (2005). ABC: An extensible AspectJ
compiler. In Proc. of the Int. Conf. on Aspect-Oriented Software Development, pages
87–98.

[Basili et al., 1994] Basili, V., Caldiera, G., and Rombach, D. H. (1994). The goal
question metric approach. In Encyc. of Software Engineering, pages 528–532.

[Baxter et al., 1998] Baxter, I. et al. (1998). Clone detection using abstract syntax
trees. In Proc. of the Int. Conf. on Software Maintenance, pages 368–377.

[Bruntink et al., 2005] Bruntink, M., van Deursen, A., van Engelen, R., and Tourwe,
T. (2005). On the use of clone detection for identifying crosscutting concern code.
IEEE Transactions on Software Engineering, 31:804–818.

[Calder et al., 2003] Calder, M. et al. (2003). Feature interaction: a critical review
and considered forecast. Computer Networks: The Int. Journal of Computer and
Telecommunications Networking, 41(1):115–141.

[Chakravarthy et al., 2008] Chakravarthy, V., Regehr, J., and Eide, E. (2008). Edicts:
Implementing features with flexible binding times. In Proc. of the Int. Conf. on
Aspect-Oriented Software Development, pages 108–119.

[Dinkelaker et al., 2010] Dinkelaker, T., Mitschke, R., Fetzer, K., and Mezini, M.
(2010). A dynamic software product line approach using aspect models at runtime.
In Proc. of the Workshop on Composition and Variability.

[Dolstra et al., 2003] Dolstra, E. et al. (2003). Timeline variability: The variability of
binding time of variation points. Technical Report UU-CS-2003-052.

[Eaddy, 2008] Eaddy, M. (2008). An Empirical Assessment of the Crosscutting Con-
cern Problem. PhD thesis, Columbia University, New York.

[Eaddy et al., 2007] Eaddy, M., Aho, A., and Murphy, G. C. (2007). Identifying, as-
signing, and quantifying crosscutting concerns. In Proc. of the Int. Workshop on
Assessment of Contemporary Modularization Techniques, pages 2–7.

[Favre et al., 2012] Favre, J.-M. et al. (2012). 101companies: A community project on
software technologies and software languages. 7304:58–74.

[Hilsdale and Hugunin, 2004] Hilsdale, E. and Hugunin, J. (2004). Advice weaving in
aspectJ. In Proc. of the Int. Conf. on Aspect-oriented software development, pages
26–35.

[Kamiya et al., 2002] Kamiya, T. et al. (2002). Ccfinder: A multi-linguistic token-
based code clone detection system for large scale source code. IEEE Transaction
on Software Engineering, 28(7):654–670.

[Kamiya et al., 2013] Kamiya, T. et al. (2013). CCFinder tool,
http://www.ccfinder.net/.

718 Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

[Kang et al., 1990] Kang, K.-C. et al. (1990). Feature-oriented domain analysis
(FODA). Technical Report CMU/SEI-90-TR-21.

[Kapser and Godfrey, 2006] Kapser, C. J. and Godfrey, M. W. (2006). Supporting the
analysis of clones in software systems: A case study. Journal of Software Maintenance
and Evolution: Research and Practice, 18:61–82.

[Kästner, 2013] Kästner, C. (2013). Sudoku, http://tinyurl.com/oelty38.
[Kästner et al., 2007] Kästner, C. et al. (2007). A case study implementing features
using AspectJ. In Proc. of the Int. Software Product Line Conf., pages 223–232.

[Kiczales et al., 1997] Kiczales, G. et al. (1997). Aspect–oriented programming. In
proc. of European Conf. on Object–Oriented Programming, pages 220–242.

[Kiczales et al., 2001] Kiczales, G. et al. (2001). Getting started with AspectJ. Com-
munications of the ACM, 44(10):59–65.

[Laddad, 2009] Laddad, R. (2009). AspectJ in Action: Enterprise AOP with Spring
Applications. Manning Publications.

[Lai and Murphy, 1999] Lai, A. and Murphy, G. C. (1999). The structure of features in
Java code: an exploratory investigation. InWorkshop on Multidimensional separation
of concerns.

[Lee and Kang, 2006] Lee, J. and Kang, K. C. (2006). A feature-oriented approach to
developing dynamically reconfigurable products in product line engineering. In Proc.
of the Int. Software Product Line Conf., pages 131–140.

[Liu et al., 2005] Liu, J. et al. (2005). Modeling interactions in feature oriented soft-
ware designs. In Feature Interactions in Telecommunications and Software Systems,
pages 178–197.

[Marot and Wuyts, 2010] Marot, A. and Wuyts, R. (2010). Composing aspects with
aspects. In Proc. of the Int. Conf. on Aspect-Oriented Software Development, pages
157–168.

[Müller et al., 2013] Müller, J. et al. (2013). Freemind, http://tinyurl.com/5qrd5.
[Parnas, 1972] Parnas, D. L. (1972). On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1053–1058.

[Pohl et al., 2005] Pohl, K., Bockle, G., and van der Linden, F. J. (2005). Software
Product Line Engineering. Springer-Verlag, Berlin.

[Ribeiro et al., 2009] Ribeiro, M. et al. (2009). Does AspectJ provide modularity when
implementing features with flexible binding times? In Latin American Workshop on
Aspect-Oriented Software Development, pages 1–6.

[Rosenmüller et al., 2011a] Rosenmüller, M. et al. (2011a). Flexible feature binding in
software product lines. Automated Software Engineering, 18(2):163–197.

[Rosenmüller et al., 2011b] Rosenmüller, M. et al. (2011b). Tailoring dynamic soft-
ware product lines. In Proc. of the Int. Conf. on Generative programming and com-
ponent engineering, pages 3–12.

[School and Rajapakse, 2005] School, D. R. and Rajapakse, D. C. (2005). An inves-
tigation of cloning in web applications. In Proc. of the Special Interest Tracks and
Posters of the Int. Conf. on World Wide Web, pages 252–262.

[Soares et al., 2010] Soares, G., Gheyi, R., Serey, D., and Massoni, T. (2010). Making
program refactoring safer. IEEE Software, 27:52–57.

[Tigris, 2013] Tigris (2013). ArgoUML, http://argouml.tigris.org/.
[Trinidad et al., 2007] Trinidad, P. et al. (2007). Mapping feature models onto com-
ponent models to build dynamic software product lines. In Proc. of the Int. Software
Product Line Conf., pages 51–56.

[Wohlin et al., 2000] Wohlin, C. et al. (2000). Experimentation in software engineer-
ing: an introduction. Kluwer Academic, Boston.

719Andrade R., Rebelo H., Ribeiro M., Borba P.: Flexible Feature Binding ...

