
Developing Scenario-based Serious Games for
Complex Cognitive Skills Acquisition: Design,

Development and Evaluation of the
EMERGO Platform

Aad Slootmaker
(Open University of the Netherlands, Heerlen, The Netherlands

aad.slootmaker@ou.nl)

Hub Kurvers
(Open University of the Netherlands, Heerlen, The Netherlands

hub.kurvers@ou.nl)

Hans Hummel
(Open University of the Netherlands, Heerlen, The Netherlands

hans.hummel@ou.nl)

Rob Koper
(Open University of the Netherlands, Heerlen, The Netherlands

rob.koper@ou.nl)

Abstract: Serious games are considered to provide powerful and attractive ways to acquire
complex cognitive skills for education and training. But existing platforms for development of
game-based e-learning often appear either not to be very user-friendly or too rigid or costly.
This article addresses the design, development and evaluation of a generic platform for fast and
flexible development and delivery of a wide variety of scenario-based games that enables
complex cognitive skills acquisition. We present the requirements for the EMERGO platform
and which common components it offers to cater for most of the needed functionalities within
scenario-based games. We explain how users in various roles can use the platform to manage,
develop, deliver and play a broad variety of scenario-based games. Evaluation data are
presented to back up the claim that the platform indeed allows for faster, more user-friendly
and less costly development and delivery of scenario-based games. Seven years after the
platform has been launched, it until now has proven successful and still continues to evolve.
We close off with some conclusions and needs for further development.

Keywords: Adaptive eLearning, eLearning Platforms, Technology Enhanced Learning, Game
Based Learning
Categories: L.2.0, L.3.0, L.3.6, L.5.1

1 Introduction

Serious games offer a solution for enabling professional learning at a distance, when
the acquisition in actual practice would be impossible or rather hard to realize.
Professional education requires students to practice complex cognitive skills in
authentic professional settings. These skills involve cognitive processes, e.g. problem
solving, reasoning, taking decisions or reflecting in context. This kind of experiential

Journal of Universal Computer Science, vol. 20, no. 4 (2014), 561-582
submitted: 31/7/13, accepted: 28/3/14, appeared: 1/4/14 © J.UCS

education often is difficult to organize in a practical, e.g., because there are more
students than internships available or because the supervision of students would be
too time-consuming, risky or insufficient in actual practice.

Existing development frameworks for games often are inadequately tuned toward
specific learning needs [Nadolski, 12], and game engines often have been developed
for just one specific aspect of a game (e.g., graphical rendering). There are
frameworks that integrate a number of these more specific engines, but don’t support
teachers that well in the process of developing serious games, or have a steep learning
curve [de Freitas, 10]. For further take-up in education there was a hard felt need to
provide teachers with a user-friendly author environment. Besides this, existing
frameworks often lack suitable logging of game progress, which impedes research on
the actual effects of serious games.

The Open University of the Netherlands, being a provider of distance education,
has a longer experience in developing serious games for complex cognitive skills
acquisition in various content domains and with different learning purposes. These
serious games were developed on client computers and delivered on cd/dvd. Not all
operating systems were supported, delivery was demanding (reproduction), and
technical or functional bug fixes could not be delivered easily. And there was little
reuse of game components. Games were mostly built from scratch. There was a need
for a platform that would simplify and broaden delivery. The platform should further
foster reuse and exchange between serious games for different content domains by
offering reusable and adaptable components for game development.

Developing serious games is often a costly business. Most games are developed as
3D environments requiring a vast investment in 3D graphics that cannot be reused
easily in other games. However, use of 3D is not always needed, because maximum
fidelity of the environment does not necessarily lead to better learning [Herrington,
07]. Furthermore, the development and testing of the didactic scenarios of serious
games is quite time consuming, because the intended complex skills require many
steps to take and many hours to acquire. There was a need for an approach and
platform that would support more cost-effective development of scenario-based
serious games.

Some ten years ago the need for a user-friendly author environment providing
teachers with reusable and adaptable components to develop serious games cost-
effective was commonly felt in many higher education institutions. This need then
was expressed in the development of a number of online platforms that enabled
teachers to develop their own serious games without programming. Examples are
Fablusi (http://www.fablusi.com/), Unigame (http://www.unigame.net/) and
Cyberdam (http://www.cyberdam.nl/). These platforms enabled the development of
multi-role-playing games where learners take on the role profiles of specific
characters or representatives of organizations. However, our focus was broader than
just role-play. We wanted to offer a rich environment for experiential education where
students mostly learn on their own and where other actors are mostly implemented as
non-playing characters.

The central research question of this article is how to design and develop a
generic platform for fast and flexible development and delivery of a wide variety of
scenario-based serious games which enable complex cognitive skills acquisition.
According to [Westera, 01] cognitive skills are skills that involve mental processes

562 Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

that occur in the mind while using, transforming or supplementing available
knowledge. Complex cognitive skills are associated with higher-order activities like
problem solving, reasoning, thinking, assessing and concluding. They include the
mental processes of analysis, synthesis and evaluation to produce a re-ordering or
extension of the existing cognitive structure. Scenario-based serious games are games
where learners are placed in complex problem spaces, which mimic real world
situations. They are confronted with ill-defined problems, often allowing multiple
solutions and requiring application of necessary methodologies or tools and
collaboration with fellow learners [Westera, 08]. To enable the acquisition of these
complex cognitive skills and this type of games the scenario describes the problem
space, which activities have to be done, which materials are needed and how the
problem space should be adjusted while the student is playing.

To answer the research question, the remainder of this article will be structured as
follows. In section two we elaborate on the type of scenario-based games the platform
supports. In section three we present the requirements for the platform. In section four
we describe how we developed the platform and present the history of versions. In
section five we present the platform roles, the domain model and common reusable
components and their underlying generic design. In section six we evaluate if the
platform satisfies the requirements and compare it to related work. In section seven
we summarize our findings and present our plans for future work.

2 Scenario-based serious games supported by the platform

The platform supports games where the student works as a trainee in an immersive
virtual environment that resembles real-life environments like a law firm or an office
environment. His virtual supervisor will give him assignments, and will react to and
reflect on his outcomes. He will meet virtual experts or other people to gain
background knowledge about the skills to acquire. Within the environment the student
has a tablet with apps that provide background materials, enable communicating with
virtual persons and other students, and help the student to acquire the skills. The
student will be confronted with the consequences of his acts. This means that the
environment must be able to respond to student actions by giving clear feedback, and
adjust itself according to the progress of the student.

Within a game on Sexology for instance, the student attends two patient
interviews and a multidisciplinary meeting, and interviews four subject matter
experts. He has to learn to prepare himself for the patient interview, to write a
summary of the interview, to work out a model related to the causes of the patient’s
problem, and to write a proposal for treatment. The student starts the game on a
square with buildings related to the Sexology course: a hospital, a university, a
school, a health service, an aids center and a station (see Figure 1). The station is used
to visit virtual patients at home. Within the hospital the student finds his supervisor,
subject matter experts, rooms for patient interviews and meetings, and his own room.
He has a notepad to make contextualized notes and a recorder to record parts of
interviews. On his tablet the student finds background materials like the patient
records, a log containing all notes made with the notepad, an app with all recordings
made during interviews, a manual explaining the interface of the game and an email
app to get mails and send in assignment outcomes.

563Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

Figure 1: Screen of a game showing a square with buildings to visit. On the bottom
left corner we see an icon for the tablet. On the bottom right corner we see a mike to
record parts of interviews and a notepad to make contextualised notes

3 Requirements for the platform

The objective of the platform is to enable the fast and flexible development and
delivery of a wide variety of scenario-based serious games which enable complex
cognitive skills acquisition. Intended users of the platform are teachers, students,
administrators and programmers. Teachers will develop games by writing a game
scenario, selecting relevant educational material and using the platform to enter game
data, game materials and game script, and they will monitor students; Students will
use the platform to play games; Administrators will manage platform users; and
Programmers will extend the platform. Based on our experience and studies carried
out by others [Aldrich, 05], as well as on aforementioned problems with current
development, we now list following functional (F) and non-functional (N)
requirements for the platform (Table 1).

F1 Offer teachers an intuitive and user-friendly author environment where
they independently can create and edit games.

F2 Enable teachers to create and edit game roles, so students playing together
in one game can have different roles.

F3 Offer teachers a set of common reusable and adaptable components that
covers most of the needed functionalities to acquire complex cognitive
skills using scenario-based serious games. Teachers should be able to

564 Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

select components they need and edit these now called game components.
F4 Enable several teachers working together on the same game so work can

be divided.
F5 Enable teachers to preview games or a single game component as a

student, at any stage of the development process.
F6 Enable teachers to test games as a student at any stage of the development

process and starting from multiple points within the game script.
F7 Enable teachers to import and export games so games can be distributed to

other platform instances and their content can be reused.
F8 Enable teachers to import and export game components so game content

can be reused.
F9 Enable teachers to monitor progress of students.
F10 Enable teachers to interfere in a running game, for instance if outcome

quality is insufficient or if a student is stuck in the game.
F11 Offer students an intuitive immersive player environment where they play

developed games. The player environment should be adjusted according to
the actions and progress of a student by using game script.

F12 Enable to save and persist all student actions, for game script to operate
on, and for evaluation and research purposes.

F13 Enable students to send in assignment outcomes, allowing progression
within the game (triggered by game script) and monitoring of progress.

F14 Enable students to enrich the running game with user generated content
and share this content with other students.

F15 Enable administrators to manage platform users and their roles.
F16 Enable administrators to manage game runs, by assigning a cohort of

students to a run and assigning students to game roles.
F17 Enable administrators to manage game teams, teams of students operating

within the same game run.
F18 Enable programmers to easily extend the platform with new languages.
F19 Enable programmers to rather easily extend the set of common reusable

components with new components.
F20 Enable programmers to extend the player environment with new skins, to

be able to offer (external) parties their own look and feel.
N1 Be reliable and stable.
N2 Be usable on multiple operating systems, e.g., at and across institutions.
N3 Offer efficient development and delivery of games. Delivering and

updating the platform and developed serious games should be easy and not
affect student’s progress.

N4 Be backward compatible, authoring and playing of earlier developed
games should be possible.

N5 Be integrated with institutional infrastructures.

Table 1: Functional (F) and non-functional (N) requirements for the platform

Requirements F3 and F11 directly relate to acquiring complex cognitive skills.
Learners will perform authentic tasks in an environment that challenges and makes
them curious, presents appropriate and unambiguous outcome goals and provides

565Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

clear, constructive and encouraging feedback [Nadolski, 12]. Requirements F1, F5
and F6 relate to aforementioned need for a more user-friendly author environment.
Requirements F3, F7 and F8 relate to the need for reusable and adaptable
components. Requirements F1, F2 till F8, and N3 relate to the need for more cost-
effective development. The requirements are elaborated in a use case diagram (see
Figure 2).

Figure 2: Use case diagram for the platform. Requirements are indicated

566 Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

Rectangles indicate the boundaries of the author and player environment. These
boundaries are debatable. For instance previewing and testing a game could be done
outside of the author environment, but we feel these options should be an integral part
of it. In the next section we elaborate on the development of the platform.

4 Development of the platform

Version 1 of the platform was developed within the EMERGO project (2006-2007)
that was co-funded by SURF foundation, and was intended to be used by all SURF
members. The project had three outcomes: a methodology to support writing the
scenario for scenario-based serious games [Nadolski, 08], a platform for developing
and delivering the games and five games that were used in education. This article will
focus on the EMERGO platform. Version 2 of the platform was one of the outcomes
of the Skills Labs project, also co-funded by SURF foundation, and was released in
2010. The project also delivered four games that were used in education. Version 3
was an outcome of a couple of projects and was released in 2013. The platform is
Open Source and can be found on SourceForge [EMERGO, 13].

The first development step was to choose an application architecture. We choose
for a multi-tier client-server architecture, because one tier can be substituted by
another implementation without affecting the other tiers. To meet requirement F12
(save and persist all student actions) we choose to use a centralized database on a
server so game script, also located on a server, can operate on student actions, and
student data can be shared within multi-role games and is easily available for
evaluation and research. To meet requirements N1 (reliable and stable) and N2
(usable on multiple operating systems), and because we had broad experience with it,
we choose the Java EE platform. To meet requirement N3 (efficient development and
delivery of games), we choose the client to be web-based, requiring no installation of
dedicated client software to develop or play a game and enabling easily updating the
platform and developed games. To meet requirement N1 (reliable and stable) we
choose the Spring application framework [Spring framework, 13], to implement our
domain model and business logic, and the MySQL database server for data
persistence in a centralized database. Both are proven technology and widely used
within the Open Source community. For the client web interface we choose ZK
framework [ZK framework, 13] that runs on all common browsers. ZK framework is
a so called RIA (Rich Internet Application) offering the same interactivity and
responsiveness as a desktop application, and therefore offered the best guarantee to
meet requirements F1 (intuitive and user-friendly author environment) and F11
(intuitive immersive player environment). ZK comes with a very rich set of visual
components, which offered the best guarantee to be able to build our own
components, meeting requirements F3 (common reusable and adaptable components)
and F19 (extend with new components). ZK is very fast and Ajax based, so all
student actions can be saved immediately, meeting requirement F12 (save and persist
all student actions).

The platform was developed by a multidisciplinary team of educational
technologists, interaction designers and programmers. For the development process
we used an agile methodology similar to Scrum, implying always delivering working

567Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

software, short iterations, quick response to change and close cooperation within the
development team.

We started the development process with the design of the platform, which
involved following five steps: (1) Identify needed platform roles; (2) Create a domain
model for the platform; (3) Identify needed common reusable components, meeting
requirement F3 (common reusable and adaptable components); (4) Create a generic
component design, meeting requirement F19 (rather easily extend with new
components); and (5) Design the component for handling game script, meeting
requirement F11 (using game script, the player environment should be adjusted). In
the next section we will present the results of these five design steps.
 Next we started the implementation of the platform. After implementing the
domain model and business logic we could start implementing the use cases in a
certain order. Most use cases depend on each other, e.g., before you can create a
game, you must first be added as a platform user. While implementing the use cases,
we also started implementing components in a certain order, determined by their
mutual dependency and by the priority within the development team. Version 1 of the
platform contained an initial set of common components. This set was extended with
new components in version 2 and version 3.

The evaluation of the platform involved measuring if requirements F1 (intuitive
and user-friendly author environment), F11 (intuitive immersive player environment)
and N3 (efficient development of games) were satisfied. The evaluations of the other
requirements were based on our experiences with the users of the platform, ourselves
included. Versions 1 and 2 of the platform were evaluated on the aspects of intuitivity
and user-friendliness for teachers using the author environment to enter data. Both
versions were evaluated on the production ratio for developed games and on student
satisfaction with the user-interface of the player environment. Besides this, version 1
was evaluated on student satisfaction, and version 2 on the aspects of quality,
studiability and effectiveness of developed games as perceived by students. Intuitivity
and user-friendliness as perceived by teachers were operationalized by ‘the capacity
to use the platform components independent without help’ and ‘the simplicity
encountered when using platform components to enter data’, respectively. Intuitivity
and user-friendliness were measured using a questionnaire containing questions, like
‘Were you able to use the component independently?’ and ‘How simple was it to use
the component?’. Production ratio (as main indicator for efficient development) was
measured by comparing development hours (as were recorded in the project
administration) with the estimated or measured study time. Student satisfaction was
operationalized and questioned as the appreciation of the player environment. Quality
and studiability were operationalized in twenty two questions, like ‘Were the
instructions for performing a task clear enough?’ and ‘Did you get enough
background material to perform a task?’. Effectiveness of developed games was
determined by students’ grades, in one case also by comparing them with grades
obtained in classroom education.

568 Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

5 Design of the platform

In this section we present the design of the platform; the platform roles, the domain
model, the implemented common reusable components, the underlying generic
component design and the script component.

5.1 Platform roles

Starting from the use case diagram defined in section three (Figure 2) we identified
five platform roles that should have their own working environment within the
platform: administrator, developer, run manager, tutor and student. The administrator
and run manager platform role are best filled in by user ‘administrator’. The
developer and tutor platform role are filled in by the user ‘teacher’. The student
platform role is filled in by the user ‘student’, or if a teacher has a role within the
game, by the user ‘teacher’. The user ‘programmer’ has no counterpart as platform
role, he has his own development environment to extend the platform.

The administrator platform role manages all users and their platform roles
(requirement F15). Further he can help students who get technically stuck in a game,
by inspecting a student’s progress in the player environment, and adjusting his
progress if necessary (requirement F10). If for instance certain materials don’t
become available for a student, due to a bug, the administrator can make them
available.

Figure 3: Game component content editor showing a dialogue screen to enter a
conversation fragment

569Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

The developer uses the author environment to create and edit games (requirement
F1). Per game he can create and edit game roles (requirement F2) and game
components by selecting components to use and enter their content (requirement F3).
If needed the game owner (the developer who created the game) can assign other
developers as author of certain game components (requirement F4). All game
component content is entered using one editor (see Figure 3). During authoring the
developer can preview the game or a game component in the player environment
(requirement F5). And he can test the game in the player environment from multiple
points within the game script (so in time) (requirement F6) and for every game role,
and even can test with multiple players. Finally he can import and export a game or a
game component as an IMS content package [IMS, 07] (requirements F7 and F8).

The run manager creates and updates runs of developed games (requirement F16)
and he defines run users by assigning users to a run. Further he can run users to a
certain game role and define run teams of run users if appropriate (requirement F17).

The tutor monitors the progress of students (requirement F9). He gets overviews
of tasks students have completed and assignment outcomes they have submitted. If
needed, he can interfere in the game by sending an email as if it is sent by a non-
playing character (requirement F10), so students don’t notice the difference. This way
thresholds can be raised, e.g., to guarantee the quality of students outcomes. Further
he can help students who get stuck in a game by inspecting a student’s progress in the
player environment and instructing how to proceed (requirement F10).

The student sees an overview of games to play and can start the player
environment (see Figure 1) with a chosen game (requirement F11). The player
environment renders all developed games in 2D, and mimics the professional practice
students later have to work in. All student progress is saved and persisted
continuously (requirement F12).

5.2 Domain model

The resulting domain model (see Figure 4) shows all entities of the platform and how
they are related. Components are the most important concept of the platform.
Components are used to build and play a game. Programmers maintain the set of
components and can extend it. Users of the EMERGO platform can get multiple
platform roles. As an administrator, a User can manage Users and give them platform
roles. As a developer, a User can manage multiple Games and is the owner of the
Games he creates. Per Game he is the author of multiple Game Roles and Game
Components. He can make other developers author of his Game Components. The
Game itself is not much more than a container for Game Roles and Game
Components. Components can have multiple Game Component instances and a
certain Game Component can be used by multiple Game Roles. As a run manager, a
User manages Runs. A Game can have multiple Runs. The run manager allocates
Users to a Run as Run Users. He also can create Run Teams of Run Users. As a tutor,
a User can monitor Runs. As a student, a User can participate in multiple Runs as Run
User and can be member of multiple Run Teams. A Run User has Run User Progress
within a Run and a Run Team has Run Team Progress. Note that both type of
progress can be present in one Run. Progress is related to a Game Component.

570 Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

Figure 4: Domain model of the platform

5.3 Common platform components

Based on our experience in developing scenario-based serious games over the years,
we have identified a number of components that represent common functionalities for
this kind of games. Students are always placed in an environment with multiple
locations where they can interview people, and have a virtual tablet with apps to help
them with their assignments. Table 2 lists all components that we have implemented
and in which version of the platform.

571Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

Component Function Version
Locations Navigate through the game and stage setting 1
Navigation More naturally navigate through the game, using

hyper regions on location backgrounds and the
parallax effect (see Figure 1)

3

Conversations Interact with non-playing characters on location,
using video

1

Alerts Provide popup instructions 1
Notepad Make contextualized notes. Available on every

location
1

Memo
recorder

Record parts of interviews. Available on every
location

3

Profile See each other’s profile and scores defined in the
‘Scores’ component. Available on every location

3

Chat Chat in game. Available on every location 3
Tablet Provide available apps. Available on every location 1
Assessments Enable in game assessment, using items defined in

‘Items’ component. App on tablet
1

Directing Examine an interview using different camera
angles. App on tablet

3

Email Enable in game email, e.g., for providing predefined
assignments to students and sending in assignment
outcomes by students. App on tablet

1

Google Maps Enable showing maps with markers. App on tablet 2
Logbook Provide overview of notes made with the ‘Notepad’

component. App on tablet
2

Memo player Look back interview recordings. App on tablet 3
Resources Provide background material. App on tablet 1
Tasks Provide tasks overview or to do list. App on tablet 1
Video manual Explain the player environment interface. App on

tablet
3

Items Provide item bank of multiple choice and multiple
answer questions to be used in the ‘Assessments’
component

1

States Enable defining game properties that can be read
and changed in game script

3

Scores Enable defining scores to be shown in the ‘Profile’
component

3

Script Enable dynamical adjustment of the player
environment using game script

1

Relations Store relations between content of different
components

1

Table 2: Common components, their function and in which version of the platform
they were implemented

572 Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

The last two components don’t represent game functionalities, but are added
because they are common in every game. The Script component is used by developers
to enter the game script. The Relations component is used by the platform to store
relations between content of different game components, e.g., which items belong to a
certain assessment.

5.4 Generic component design

To be able to meet requirement F19 (rather easily extend with new components), we
wanted the domain model to remain unchanged if we extend the platform with a
component. We therefore choose to store all component related content in XML. It
concerns the component itself, the game component content entered by developers
and the game component progress of students, as can be seen in the domain model.

To be able to meet Requirement F19 (rather easily extend with new components),
we had to come up with a generic design for components, so components could be
added in the future too. We choose to define every component by an XML definition
(see example in Figure 5), that includes:
1. component properties (e.g., a component is present for a student or not);
2. relations with other components (e.g., the Logbook component will show all notes

entered in the Notepad component);
3. possible content elements, that make up the content of a component (e.g.,

locations, folders, resources, interviews, questions);
4. mutual hierarchy of content elements, indicating which content element must be

part of another one (e.g., questions are part of an interview);
5. relations with other content elements (e.g., an item belongs to an assessment);
6. content to be entered by a developer (e.g., the text of a question to be asked or a

reference to a video stream to be played);
7. content to be entered by a student, e.g. (an email text or attachments)
8. content elements’ properties (e.g., an email is sent);
9. the type of the properties;
10. the default values of the properties;
11. which property values can initially be changed by developers; and
12. which property values can be read and/or changed by game script.

Properties have different purposes. There are properties that determine visibility
or accessibility in the player environment (requirement F11). These properties
typically can change during the game and are set by developers, initially or by using
game script. Other properties determine the adaptability of a component (requirement
F3) in either functionality or layout, and are initially set by developers. Most
properties are used to handle progress within the game and are set triggered by
student actions (e.g., opening a resource), game script (e.g., sending a predefined
email) or the platform itself (keeping game time). We have defined over thirty
properties. Table 3 lists properties that are used most often.

573Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

Figure 5: Simple example of an XML definition: the Alerts component

Property Type Purpose Example
Present Boolean Does a student see a

component or content
element?

A tablet app is present or
not

Accessible Boolean Can a student access a
component or content
element?

A door is locked or not

Expandable Boolean Can a student expand a
content element?

A resource folder can be
expanded or not

Expanded Boolean Is a content element
expanded by a student?

A resource folder is
expanded or not

Opened Boolean Is a component or content
element opened by a
student?

A door is opened

Started Boolean Is a component or content
element started by a
student or the platform?

A video stream is started
by the platform

Finished Boolean Is a component or content
element finished by a
student or the platform?

An assessment is
finished by a student

Sent Boolean Is a content element sent
by a student or the
platform?

An email is sent by a
student or the platform

Table 3: Most used properties and their purpose

All game component content entered by game developers and all game component
progress of students is stored in XML, in a structure defined by the XML definition of

574 Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

the corresponding component. Progress is formed by all property changes in time and
possibly associated content like an email text and attachments entered by a student.
Some components allow a developer to set properties that enable students to create
and share user generated content (requirement F14). This content is saved within
progress too.

The generic component design assures that adding new components has a minimal
effect on the author environment. Only if a new component demands a new content
format, a corresponding input element has to be added in the game component content
editor. This however does not account for the player environment. It has to be
extended with an embedded player for the component.

5.5 The Script component

By using the Script component a developer enters the dynamics of the game scenario,
thus determining how the player environment should be adjusted according to the
actions and progress of a student. Conditions and actions are entered using dialogues
that require no programming (requirement F1). A condition and its related actions
resemble an ‘if-then’ statement in a programming language (see Figure 6).

Figure 6: An example of script (entered for the game described in section two).
Conditions and actions are added using dialogue screens

A script condition enables the developer to check whether properties have been set
to certain values, e.g. if a student has opened a location then its opened property is set
true. A condition can be built up by sub conditions using logical operators. Conditions
are triggered by events, either by student actions or timer events, resulting in a
property change. If the condition becomes true its related actions will be executed.

A script action enables the developer to set a property to a certain value, e.g., a
new conversation can be made available by setting its present property to true. When
a property is set, the execution of a script action can result in other conditions being
triggered. A special kind of script action is the definition of a script timer. If its
‘parent’ condition becomes true, the timer will start. Another condition then can be
used to check if the timer fires. Timers have a certain delay, can be defined to be
repetitive, and can measure game-time or real-time.

575Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

Conditions and actions themselves have properties too. One of them is the present
property. By setting its value to true or false a developer can switch conditions and
actions on and off, meaning the working of the script itself can be changed too. The
Script component only allows conditions and actions to be defined on existing content
entered by developers, not on user generated content entered by students.

In the next section we present the evaluation of the platform and its relation to
other work.

6 Evaluation of the platform and related work

6.1 Evaluation of the platform

The EMERGO platform has been used in various projects with both internal and
external partners. In seven years, twenty two games were developed, which were used
in education by nearly 4000 students in total. Games were developed for six content
domains, had a broad variety in scenarios and structure and differed both in
complexity and study load, ranging from 2 to 30 hours. Twenty games were single
user games and two games were multi-role games that involved collaboration between
students. The platform currently is being used by five educational institutions.

We evaluated requirements F1 (intuitive and user-friendly author environment),
F11 (intuitive immersive player environment) and N3 (efficient development of
games) for nine developed games, five running on version 1 of the platform and four
on version 2. All nine games were of the same type as described in section 2. The
teachers developing with version 1 were different from the ones developing with
version 2. Teachers originated from two educational institutions and had a
background in Environmental Sciences. Nadolski et al. [Nadolski, 08] evaluated
version 1 of the platform and found that teachers only had trouble using the Script
component independently (one out of three) and that the Script and Conversations
components were most difficult to use. They also found that students (n = 8) were
very satisfied with the user interface of the platform and with the developed games.
Furthermore they found an average production ratio of 1:25 (1 hour study load costs
25 hours development time) four five developed games, compared with average
production rates of 1:100 and higher found before [Alessi, 01]. Version 2 of the
platform was evaluated in the Skills Labs project (for evaluation results see
http://dspace.ou.nl/handle/1820/2385). Again teachers only had trouble using the
Script component independently (one out of four), and found the Script and
Conversations components most difficult to use. Students (n = 40) were satisfied with
the user interface of the platform. The average production ratio for four developed
games was 1:30. Version 2 was also evaluated regarding quality and studiability, and
effectiveness of developed games. Students (n = 40) judged quality and studiability of
the four developed games as sufficient (three games) or good (one game).
Effectiveness was determined by student’s grades. The average grade was sufficient
to good, only two students out of forty scored insufficient. For one game grades were
compared with grades obtained in classroom education, and were slightly better.
Evaluation of the other requirements is based on our own experiences with the users
of the platform, ourselves included.

576 Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

Below we discuss if the functional and non-functional requirements were satisfied.
 F1 (intuitive and user-friendly author environment) was partly satisfied. All

teachers could author all components independently, except for the Script
component. The Script and Conversations component were quite difficult to use.

 F2 (multiple game roles) was satisfied, but only used in two games.
 F3 (common reusable and adaptable components) was satisfied. One component

can be used in multiple games and game components can be imported and exported.
The generic component design assures that components can be defined to be
adaptable.

 F4 (several teachers working together on the same game) was satisfied.
 F5 (preview games and game components) was satisfied. It was an indispensable

option while developing games and new platform components.
 F6 (test games) was satisfied. It was an indispensable option for fast development

of games and new platform components.
 F7 (import and export games) was satisfied. It turned out to be very handy for

distribution of games to other platform instances.
 F8 (import and export game components) was satisfied.
 F9 (monitor progress) was satisfied.
 F10 (interfere in a running game) was satisfied. In some games this option was

predesigned in the game scenario. However, the option was mostly used by
administrators to help students who were stuck in a game.

 F11 (intuitive immersive player environment) was satisfied. Students were satisfied
or very satisfied with the player environment.

 F12 (save and persist all student actions) was satisfied. Students almost never lost
data and could always continue a game the next session. A first scientific article
based on the logging data is in preparation [Westera, 14].

 F13 (send in outcomes) was satisfied. Outcomes are sent in as an attachment of an
in-game email.

 F14 (enrich running game with user generated content) was satisfied. It was
implemented for the Resources and Google Maps components.

 F15 (manage platform users) was satisfied.
 F16 (manage game runs) was satisfied.
 F17 (manage game teams) was satisfied.
 F18 (extend with languages) was satisfied. Currently supported languages are

English, Dutch and Spanish.
 F19 (rather easily extend with new components) was satisfied. In version 2 and 3,

the platform was extended with new common components. The generic component
design assures no or very little adjustment of the author environment, although
adjustment of the player environment still is time consuming.

 F20 (extend with skins) was satisfied. In version 3, the platform was expanded with
the ability to support multiple skins. The current platform has three skins and new
skins can be added rather easily.

 N1 (reliable and stable) was satisfied. It is demonstrated by the many games
developed and many students playing them.

 N2 (usable on multiple operating systems) was satisfied. The platform currently
runs on Windows and Linux servers.

577Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

 N3 (efficient development and delivery of games) was satisfied by our choice for a
web client, and the abilities to update developed games in case of bugs and to help
students who are stuck. Production ratios are better than before.

 N4 (backward compatible) was satisfied. Games developed seven years ago still run
on the platform.

 N5 (be integrated with institutional infrastructures) was satisfied. The platform was
integrated with the ELO of the Open University to enable single sign-on.

6.2 Related work

During the last decade there were a lot of initiatives to get serious game development
on a higher level, strongly supported by the European Commission.

The ELEKTRA project (2006 - 2008) for instance, was a research project that
focused on bridging the gap between computer science and pedagogy. The project
delivered a 3D game on physics meant to engage youngsters for the subject. In-game
feedback of these youngsters was used to fine tune the game. The game is analogue to
the EMERGO platform in being able to adapt the player environment according to
player progress, but differs on being an offline 3D game and not an online
development and delivery platform of multiple games.

The 80days project (2008 – 2010, http://www.eightydays.eu/) was a follow-up of
the ELEKTRA project and focused on game adaptation to individual learners, their
prior knowledge, abilities, preferences, needs and aims (adaptive personalized
learning). On a micro level by giving feedback or hinting in specific learning
situations, and on a macro level by sequencing and pacing of learning situations
tailored to the individual learner. The project delivered a 3D game on geography
which was developed using the StoryTec framework [Göbel, 08], an authoring tool
for the development of story-based, process-oriented, interactive 3D applications. It
resembles EMERGO in enabling authors to develop games without or with minor
programming skills. The Story Editor within StoryTec has some resemblance with the
Script component of EMERGO in being able to enter conditional transitions within
the game, to go from one scene to another, and to enter actions on content elements.
And both platforms enable adaptive personalized learning. But while StoryTec
focuses on highly graphical oriented 2D/3D games to be developed and played on a
client computer, EMERGO focuses on lesser graphics, use of video and web-based
development and delivery. This different focus is related to different customer
demands for both platforms.

The ImREAL project (2010 – 2013, http://www.imreal-project.eu/), was a
European research project focusing on the development of a suite of learning services
which extract their data from the real world and can be plugged into virtual
environments to augment these environments and enhance self-regulated learning.
The learning services were developed by the participating universities. Two existing
commercial products were extended to make use of these services. In a first use case
an existing role-play simulation environment, developed by EmpowerTheUser
(http://www.etu.ie/), was extended to use services related to cultural variations in
interpersonal communication, to user generated content, to user profiles (extracted
from user activity on the Social Web) and to supporting learners in understanding and
improving how they learn. In a second use case another role-play simulation
environment, developed by Imaginary (http://www.i-maginary.it/en/), was extended

578 Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

with a story boarding environment for collecting and structuring content for
simulations, and same services as in the first use case. Both commercial simulation
environments require no programming, like is the case with EMERGO, and offer rich
immersive user experiences, but are not freely available. They support web-based
delivery, although it is unclear if all student actions are persisted, but they don’t
support web-based development. It would certainly be interesting to explore if
EMERGO could be extended with the ImREAL learning services.
 Another related initiative is the eAdventure project (http://e-adventure.e-ucm.es/),
a research project of Universidad Complutense de Madrid that delivered the
eAdventure authoring tool for the creation of point-and-click adventure games for
educational purposes. Developed games can be exported as SCORM package and
therefore can be integrated with Learning Management Systems, enabling exchange
of adaptation and assessment data. In this respect it is more mature than EMERGO.
eAdventure is more focussed on decision making and influencing or adapting certain
behaviour, while EMERGO focuses on acquiring complex cognitive skills. Games
can be developed on multiple platforms and can be deployed on these platforms and
on the web too, although then not all student actions are persisted. It has an easy-to-
use game editor, which requires no programming, just like EMERGO, but it does not
support multi-role or multi-user games or sharing of content between students.

7 Conclusions and future work

7.1 Conclusions

We demonstrated how to design and develop a generic platform that enables fast and
flexible development and delivery of a wide variety of scenario-based serious games
which enable complex cognitive skills acquisition.

The platform is generic in the sense that it enables a broad variety of game
scenarios to be authored, to be played and to be monitored. It offers a set of common
reusable components a teacher can pick from to develop a game. The components and
their content can be reused in other games. One player environment delivers the
variety of scenarios to students and saves and persist all student actions continuously,
fostering TEL research on all games.

The platform is fast in the sense that teachers can use it mostly independent, can
draw on already developed components and can preview and test a game during
development and from any point in the scenario, which results in more cost-effective
development, as indicated by better production ratios than before. Web-based delivery
assures fast and easy delivery of games, updates of games and the platform itself.

The platform is flexible in the sense that a game can have multiple authors, a
teacher can adjust already deployed games in case of bugs and can interfere in a
running game, and the platform provides tooling to help students who are stuck. The
platform can be extended rather easily with new components and languages, and skins
for the player environment. Developed games can be easily distributed to other
platform instances.

Nineteen out of twenty functional requirements were fully satisfied. Requirement
F1 (intuitive and user-friendly author environment) was partly satisfied. Entering
game script turned out to be too difficult. We could improve its interface, but

579Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

scripting still requires more technical skills so probably better could be entered by a
programmer. Another way to improve could be using predefined templates or game
patterns e.g. collaboration scripts (see next subsection). Although requirement F19
(rather easily extend with new components) was satisfied, we expect that extending
the player environment can be improved by constructing it using interface building
blocks based on macros or templates. All non-functional requirements were satisfied.

7.2 Future work

Collaboration scripts have been scarcely implemented in serious games so far.
Therefore we have built and evaluated two games using online collaboration
[Hummel, 11; Hummel, 13]. We will use this experience to extend the EMERGO
platform with components that support collaboration. This will involve adding new
components for rating, voting and negotiation, and extending the script component to
enter and handle collaboration script. We also consider integrating an online
conferencing system as an alternative for chat.

We would like to extend the platform with real-time elements (known as
augmented virtuality) like web services for presenting real-time data, real-time video
with non-playing characters met in video, and sensor data for better support. With
regard to the latter option, at the Open University research is done and software is
developed for real time emotion recognition using visual and auditory sensors
[Bahreini, 12]. To enable research on the learning benefits of real time emotion
recognition in serious games, we will integrate this software with the EMERGO
platform, so the player environment can be adjusted according to the student’s
emotions.

We are involved in some projects where the EMERGO platform will be used in
developing countries e.g. Kenia, Colombia. In these countries connectivity is a
problem, so we will make the platform better suitable for low bandwidths. The
platform will buffer game content when sufficient bandwidth is available, to account
for low connectivity later on. We consider developing a mobile client app for the
player environment in case of no connectivity at all. We then could extend the
platform to make use of the capabilities of mobile devices like GPS positioning, and
making pictures, video and audio.

We already experimented with integrating the Unity Web Player and the
EMERGO platform, by playing a Unity game embedded in the platform and
exchanging data between player and platform. The platform then could support
students playing an existing Unity game. We would like to further explore this
promising possibility.

Acknowledgements

We wish to thank SURF foundation for co-funding the development and scaling-up of
the EMERGO platform. We also thank all developers, teachers and students of the
institutions contributing to the initial development and extension of the platform.

580 Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

References

[Aldrich, 05] Aldrich, C. (2005) Learning by doing: the essential guide to simulations,
computer games, and pedagogy e-learning and other educational experiences. San Francisco,
CA: John Wiley & Sons

[Alessi, 01] Alessi, S. M., & Trollip, S. R. (2001). Multimedia for learning: Methods and
development. Needham, MA: Allyn & Bacon.

[Bahreini, 12] Bahreini, Kiavash, Nadolski, Rob, Qi, Wen, Westera, Wim (2012) FILTWAM -
a Framework for Online Game-Based Communication Skills Training - Using Webcams and
Microphones for Enhancing Learner Support. Proceedings of The 6th European Conference on
Games Based Learning, 39-47

[de Freitas, 10] de Freitas, S., Rebolledo-Mendez, G., Liarokapis, F., Magoulas, G., &
Poulovassilis, A. (2010). Learning as immersive experiences: Using the four-dimensional
framework for designing and evaluating immersive learning experiences in a virtual world.
British Journal of Educational Technology, 41(1), 69–85.

[EMERGO, 13] EMERGO project page. (2013) http://sourceforge.net/projects/emergo/

[Göbel, 08] Göbel, S., Salvatore, L., Konrad, R., Mehm, F. (2008). A Digital Storytelling
Platform for the Authoring and Experiencing of Interactive and Non-linear Stories. In
Spierling, U., Cavazza, M., Peinado, F., Aylett, R., Swartjes, I., Kudenko, D., Young, R.,
Tychsen, A., Pizzi, D., El-Nasr, M. (eds.) Interactive Storytelling 2008. LNCS, vol. 5334, pp.
325-328. Springer, Berlin / Heidelberg (2008)

[Herrington, 07] Herrington, J., Reeves, T.C., and Oliver, R. (2007). Immersive learning
technologies: Realism and online authentic learning. Journal of Computing in Higher
Education. 19 (1), 65-84.

[Hummel, 11] Hummel, H. G. K., Van Houcke, J., Nadolski, R. J., Van der Hiele, T., Kurvers,
H., & Löhr, A. (2011). Scripted collaboration in serious gaming for complex learning: Effects
of multiple perspectives when acquiring water management skills. British Journal of
Educational Technology, 42(6), 1029–1041.

[Hummel, 13] Hummel, H., Geerts, W., Slootmaker, A., Kuipers, D., & Westera, W. (2013).
Collaboration scripts for mastership skills: online game about classroom dilemmas in teacher
education. Interactive Learning Environments, 1–13.

[IMS, 07] IMS Content Packaging Information Model. Version 1.2 Final Specification.
Retrieved March 01, 2007, from
http://www.imsglobal.org/content/packaging/cpv1p2pd2/imscp_infov1p2pd2.html

[Nadolski, 08] Nadolski, R.J., Hummel, H.G.K., Van den Brink, H.J., Hoefakker, R.,
Slootmaker, A., Kurvers, H., Storm, J. (2008). EMERGO: methodology and toolkit for efficient
development of serious games in higher education. Simulation & Gaming 39(3), 338-352.

[Nadolski, 12] Nadolski, R. J., Hummel, H. G. K., Slootmaker, A., & Van der Vegt, W. (2012).
Architectures for Developing Multiuser, Immersive Learning Scenarios. Simulation & Gaming,
43(6), 825–852.

[Spring framework, 13] Spring framework. (2013) http://www.springsource.org/

[Westera, 01] Westera, W. (2001). Competences in education: a confusion of tongues. Journal
of Curriculum Studies, 33(1), 75–88.

581Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

[Westera, 08] Westera, W., Nadolski, R.J., Hummel, H.G.K., & Wopereis, I. (2008). Serious
Games for Higher Education: a Framework for Reducing Design Complexity. Journal of
Computer-Assisted Learning, 24(5), 420–432.

[Westera, 14] Westera, W., Nadolski, R.J., Hummel, H.G.K. Serious Gaming Analytics: What
Students´ Log Files Tell Us about Gaming and Learning, in preparation, 2014.

[ZK framework, 13] ZK framework (2013) http://www.zkoss.org/

582 Slootmaker A., Kurvers H., Hummel H., Koper R.: Developing ...

