
An Approach for Mapping Domain-Specific AOM
Applications to a General Model

Patricia Matsumoto
(Instituto Tecnológico de Aeronáutica, São José dos Campos, Brazil

patricia.matsumoto@gmail.com)

Eduardo Guerra
(Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil

eduardo.guerra@inpe.br)

Abstract: An Adaptive Object Model (AOM) is a common architectural style for systems in
which classes, attributes, relationships and behaviors of applications are represented as
metadata consumed at runtime. This allows them to be very flexible and changeable at runtime,
enabling their modification by end users without source code modification. Nevertheless, this
flexibility comes with a cost of a greater complexity when developing the system, and therefore
one usually uses a bottom-up approach, adding flexibility only when it is needed. As a
consequence, many AOM components are tied to the specific domain of a single application
and this fact makes it difficult to develop and use generic and reusable AOM frameworks that
properly handle specific requirements of the AOM architecture. This work presents an
architectural model that aims to adapt domain-specific AOM core structures to a common core
structure by identifying AOM roles played by each element through custom metadata
configuration. By doing this, this model allows the integration of domain-specific AOM
applications and AOM frameworks, making it feasible to develop reusable components for the
AOM architecture. This model is evaluated by creating an AOM framework and a case study
based on it, in which is performed a modularity and a performance analysis.

Keywords: framework, metadata, modularity, architecture, adaptive system, decoupling,
Adaptive Object Model.
Categories: D.1.5, D.2.2, D.2.10, D.2.11, D.2.13

1 Introduction

Adaptive Object Model (AOM) is an architectural style that aims to provide the
capacity of adaptation to a system domain model. That allows the introduction of new
domain entities and the modification of existing ones at runtime, without changing the
source code. The Illinois Department of Public Health (IDPH) Medical Domain
Framework [Yoder et al. 2001; Yoder, Johnson 2002] is an example of a real system
in production for more than 10 years that uses this approach. The reference cited
presents only an initial subset of its design.

AOM architecture flexibility is achieved by representing classes, attributes,
relationships, and operations as instances at runtime. The metadata used to represent
the information of actual entities needed by the system, which can be changed by the
application end users. This flexibility allows the domain to evolve as part of the
business. However, this flexibility brings as a tradeoff a complexity in the

Journal of Universal Computer Science, vol. 20, no. 4 (2014), 534-560
submitted: 21/1/14, accepted: 28/3/14, appeared: 1/4/14 © J.UCS

implementation of the system architecture, because it needs to handle common issues,
such as persistence, presentation, and validation, for this flexible model.

The complexity in the implementation of such requirements would generate a
smaller impact on the system development if it were possible to reuse existing
components. However, since the flexibility is introduced in the model only where it is
required, the AOM components are tied to their specific application domain [Ferreira
et al. 2010a]. As a consequence, the components developed for them are hard to be
reused in other applications that adopt the same architectural style.

This research project goal is to enable the reuse of existing components on AOM
architecture, however allowing the application to define its own domain-specific
model. That could potentially reduce the implementation time by reusing existing
components, without losing the proximity of the model to the application domain.

This work presents an architectural model that adapts an AOM core structure
coupled with a specific domain to a common AOM core structure by using metadata
to identify the AOM roles played by classes, attributes and methods in the domain-
specific AOM application. This solution externalizes the AOM core structure from
the application domain and provides a common structure to be used by generic
frameworks that implement AOM common requirements. The Esfinge AOM Role
Mapper framework [Guerra 2012] was developed based on the proposed model. To
evaluate this model, a modularity and performance analysis was performed on a case
study application that used the developed framework. This paper is the extension of a
previous paper published in SBCARS [Matsumoto and Guerra 2012], adding a further
explanation about the proposed model, a performance evaluation and the support for
hybrid models.

This paper is organized as follows: Section 2 gives an overview of AOMs;
Section 3 presents the motivation for the creation of the architectural model presented
in this work; Section 4 presents the architectural model proposed in this work; Section
5 presents the Esfinge AOM Role Mapper framework, which implements the model
presented in Section 4; Section 6 introduces hybrid models and how they can be
implemented with the framework; Section 7 presents a case study which assessed the
impact of the proposed solution in system modularity and performance; Section 6
presents related works; and Section 9 presents the main conclusions and future work.

2 Adaptive Object Models

In a scenario in which business rules are constantly changing, implementing up-to-
date software requirements has been a challenge. Currently, this kind of scenario has
been very common and requirements usually end up changing faster than their
implementations, resulting in systems that do not fulfill the customer needs and
projects that have high rates of failure.

According to [Ferreira et al. 2010a], while software engineering methodologies,
like Agile Software Development, try to increase the ability of adapting to changes,
they consider each outcome of an iteration to be the last one, although it is not.
Opposed to this approach, AOMs are developed to be incomplete by design [Garud et
al. 2008].

In the AOM architectural style, classes, attributes, relationships and behaviors are
represented using metadata [Yoder et al. 2001; Yoder, Johnson 2002], and

535Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

represented at runtime as instances. This allows the model to be changed at runtime
and makes it possible to empower end-users to change the system according to their
necessities, potentially reducing the time-to-market for modification in the domain
model.

AOM architectures are usually made up of several smaller patterns, such as TYPE

OBJECT, PROPERTY LIST, TYPE SQUARE, ACCOUNTABILITY, STRATEGY, RULE

OBJECTS, COMPOSITE, BUILDER and INTERPRETER. Besides those, there are many
other patterns that are used when creating an AOM application. These patterns form a
pattern language for AOMs that is divided into six categories: Core, Process, GUI,
Creational, Behavioral and Miscellaneous/Instrumental [Welicki et al. 2007a].

The Core category includes patterns that are present in basic implementations of
AOMs and guides this architectural style. This work has focused on a subset of the
Core category patterns composed by TYPE SQUARE (TYPE OBJECT and PROPERTIES)
and ACCOUNTABILITY. These patterns are used for developing the structural part of an
AOM core design and are described in the following sections.

2.1 Type Object

The TYPE OBJECT pattern [Johnson and Wolf 1997] is used in situations in which the
number of subclasses that a class may need cannot be determined at development
time. This pattern solves the situation by representing the subclasses that are unknown
at development time as instances of a generic class that represents the object type.

Fig. 1 depicts the solution of the TYPE OBJECT. The unknown subclasses are
represented as instances of the EntityType class. The Entity instances, which
represent the actual instances of the system, refer to the EntityType instance that
represents their class.

Figure 1: Type Object Structure.

2.2 Property

In situations in which instances of the same class can have different types of
properties, to create an attribute to represent each of these properties in the class
might not be the best solution. For instance, in a medical system one may create a
class called Person to store information on patients, such as height, weight and blood
type.

One solution would be to add an attribute to the Person class for each type of
information that is necessary for the patient. However, if a hospital has different
departments that need different kinds of information, one would probably need a great
number of attributes in the Person class and just a few of them would effectively be
used by an instance of this class (only those needed by the department in which the
patient is being treated).

536 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

PROPERTY [Fowler 1996] solves this problem by representing the properties of an
entity with a class and making this entity to have a collection of instances of this
class. Applying the solution to the example, a Measurement class could be created to
represent data from the patient. With this change, the attributes of the Person class
could be replaced by one collection of Measurements, which would contain all and
only the necessary measurements needed from one patient. Fig. 2 depicts the solution.

Figure 2: Property pattern applied to the example (adapted from [Fowler 1996]).

2.3 Type Square

In the AOM architectural style the TYPE OBJECT and PROPERTY patterns are usually
used together, resulting in the TYPE SQUARE [Yoder et al., 2001]. In this pattern, the
TYPE OBJECT is used twice – once for representing the entities and entity types of the
system; and once for representing the properties and property types. Fig. 3 depicts the
TYPE SQUARE structure.

Figure 3: Type Square Structure (adapted from [Yoder et al., 2001]).

In this pattern, the EntityType and PropertyType classes represent the model and
through their association it is possible to determine what kinds of properties are
applicable to a given type of entity. The Entity and Property classes are related to the
representation of the actual instances of the system. Each instance of Entity refers to
an instance of EntityType that represents its type.

For each PropertyType in an entity’s type, a Property is created to store the value
of the property type in the entity. The class PropertyType defines the allowed
properties for a given EntityType, and can also define some constraints such as its
data type and allowed values.

With the TYPE SQUARE new types of entities with different types of properties can
be created. Likewise, existing types of entities can be changed at runtime since
modeling is done at instance level.

537Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

2.4 Relationship Representation

In an entity there are usually two kinds of properties: those that refer to primitive data
types (attributes) and those that refer to relationships between entities (associations).
In the AOM architectural style there are different ways to separate attributes from
associations [Yoder et al., 2001]: (a) Create two lists of PROPERTY on the class, one
for attributes and other for associations; (b) Make two subclasses of a Property class –
Attribute and Association; (c) Check the type of the value of a Property object: a
Property whose value is an Entity represents an association, while a Property whose
value is a primitive data type is an attribute; (d) Use ACCOUNTABILITY [Fowler 1996]
to represent the association.

While any of these options can be used for developing an AOM application,
relationships are frequently represented by ACCOUNTABILITY in AOM core design
diagrams.

ACCOUNTABILITY [Fowler 1996] allows the relationship between entities to be
represented by an object (usually an instance of an Accountability class). Each
Accountability object is associated to an AccountabilityType object, which represents
the type of the relationship. Since the associations between entities are represented at
the instance level, types of entity relationships can be created or modified at runtime,
which makes this pattern suitable to the AOM architectural style.

2.5 Adaptive Object Model Core Design

The core design of an AOM system is depicted in Fig. 4. The diagram is divided in
two parts – the operational level and the knowledge level [Fowler 1996].

Figure 4: AOM Core Design (adapted from [Yoder et al., 2001]).

The instances of the classes in the operation level store the system’s data and day-to-
day events of the domain, while the instances of the classes in the knowledge level
contain the representation of the system model. The behavioral level is responsible for
handling business rules in the architectural style and usually uses STRATEGY [Gamma

538 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

et al. 1994] and RULE OBJECT [Arsanjani 2001]. The behavioral level was left out of
the scope in the current stage of this work.

2.6 Other Concerns in AOM Applications

The flexibility provided by AOMs comes with a cost of a higher complexity when
developing the application. Besides the fact that in AOMs metadata is used to
represent the actual model of the system, developers also have to consider how to
handle some implementation issues [Yoder and Johnson, 2002], such as:

(a) Persistence: not only should the actual data of an AOM be persisted, but also the

representation of the model (described using metadata) should be stored in a
database. The evolutionary nature of this model makes relational databases not the
most appropriate type of storage. Another point to consider is how the system will
be able to read information stored in the database and populate the AOM with the
correct configuration of instances. Patterns like AOM BUILDER [11] should be
considered when developing this issue.

(b) GUI: due to the dynamic nature of AOMs, user-interfaces have to be developed to
be able to automatically adapt to changes in the model. In order to implement that,
rendering patterns for AOMs [Welicki et al. 2007b] should be considered.

(c) Model Maintenance Tools: AOMs generally need tools and support GUIs to
define and evolve the types in the system. These tools would be used for
describing and maintaining the business rules of the application.

(d) Version Control: in order to support the evolution of the model in AOMs there is
a need to implement a version control mechanism. Data of objects in the
operational level must comply and be consistent with the model in the knowledge
level. There is also a need to implement mechanisms to avoid the model to be
broken due to partial updates.

Besides the issues presented above, there are many other points to be considered,

such as security, instance validation, etc. All implementations, including business
rules, related to the application domain must be based on metadata, because the
system model is in the instance level and is not available at compile time.

3 Motivation

As mentioned in the previous section, there are some common concerns that should
be handled when developing an AOM application. For a great number of these
concerns there are patterns that help the development of the system. The solution
presented by these patterns usually considers the core structure of AOMs (formed by
the patterns TYPE OBJECT, TYPE SQUARE, PROPERTY and ACCOUNTABILITY) and
could be implemented with a more generic AOM framework. However, since the core
structure of AOM applications is usually coupled with the domain of the problem they
solve, applications are not easily integrated with generic AOM frameworks.

In order to illustrate this issue, two systems that were modeled using AOM are
considered in this example: the Illinois Department of Public Health (IDPH) Medical
Domain Framework [Yoder et al. 2001; Yoder, Johnson 2002] and a banking system

539Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

for handling customer accounts [Riehle et al. 2000]. This example shows that
although both systems share some common structures and needs, code cannot be
reused among them because their core structures are coupled with their specific
domains.

The IDPH Medical Domain Framework was developed in order to manage
common information that was shared between applications used by the IDPH. This
common information consists of observations made about people and relationships
between people and organizations. Examples of these observations are blood pressure,
cholesterol, eye color, height and weight.

In order to avoid the need for development and recompilation of the system
whenever a business rule changed or a new type of observation was added, the
application was developed using AOM. The resulting system model is depicted in
Fig. 5. The design considers situations in which one observation is composed by other
observations and also considers different types of observations (range values and
discrete values).

Figure 5: AOM Core Design (adapted from [Yoder et al., 2001]).

The example given in [Riehle et al. 2000] consists of a banking system for
handling customer accounts. The fact that the number of types of accounts in the bank
can increase significantly is taken into consideration and in order to avoid a subclass
and attributes explosion the TYPE SQUARE pattern is used. The basic design for the
system is shown in Fig. 6.

Notice the similarities between the structures used in the systems outlined above,
such as the usage of the TYPE SQUARE pattern. Both systems present concerns like a
persistence mechanism, a GUI, a version control for the object model and support
tools for allowing end user development in the systems.

Although the systems share some common core patterns and have common needs,
a framework developed for IDPH cannot be used for the banking system and vice
versa, because each application is focused on solving the problems in their specific
domains. As an example, a persistence framework developed for the IDPH system
would be coupled to the medical domain and therefore it could not be used for
handling persistence in the banking system.

540 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

Figure 6: Basic design for the banking system [Riehle et al. 2000].

4 An Approach for Mapping AOM Models

In order to solve the integration problem presented in Section III, this work proposes
an architectural model for a metadata-based framework that adapts the domain-
specific AOM core structures to a common AOM structure. For the sake of clarity,
this framework is referred as the integration framework and any client of this
framework (i.e. generic AOM frameworks and client applications) is referred as
client.

In the solution proposed by this work, the integration framework provides a
common AOM core structure that can be referred by generic AOM frameworks. The
framework also provides classes that adapt the domain-specific AOM core structures
to this common AOM structure. Since these classes implement the ADAPTER pattern
[Gamma et al. 1994], they are referred as the adapter classes in this work.

In order to be able to adapt domain-specific AOM core structures, the integration
framework only needs to identify at runtime the roles that classes, methods and
attributes of domain-specific classes play in the AOM architecture. Examples of these
roles are Entity, Entity Type, Property and Property Type. This identification is
accomplished by the use of metadata resources. The inference of the roles can be
possible in some scenarios, but since different kinds of implementation are possible,
that is not always the case.

Fig. 7 shows the representation of the solution applied to the IDPH and Banking
System examples given in Section III. In the figure, the metadata used for identifying
the AOM roles are Java annotations. As depicted, the domain-specific classes are
marked with specific annotations that are consumed by the adapter classes, which
implement the interfaces that define the common AOM core structure. When a
method is called in an adapter object, it is able to know which exact method to call in
the adapted object due to the AOM role annotations. The generic AOM frameworks
only need to refer to the interfaces of the common AOM core structure provided by
the integration framework.

541Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

Figure 7: Representation of the solution for the examples given in Section 3.

542 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

With this approach, domain-specific applications can be integrated with generic
AOM frameworks only by identifying the AOM roles played by its classes, attributes
and methods in the AOM core structure, using the metadata provided by the
integration framework. All the responsibility for the integration is left outside the
domain-specific applications and the generic AOM frameworks. Notice that the only
change to the domain-specific applications is the inclusion of metadata to identify the
AOM roles. Therefore, the applications can continue using their domain-specific
AOM core structure without any change to the solution’s architecture.

The use of metadata for identifying the AOM roles allows the integration
framework and the domain-specific applications to be completely decoupled if
external metadata, like XML, is used or loosely coupled if metadata such as
annotations and custom attributes are used. Besides, notice that the domain-specific
AOM applications only depend on the metadata provided by the integration
framework for identifying the AOM roles of their classes, methods and attributes.
Additionally, generic AOM frameworks only have to refer to the common AOM core
structure provided by the integration framework.

4.1 Core Components

The main components for developing an integration framework are the following: (a)
Metadata Handler is responsible to retrieve metadata from the application classes. It
implements metadata reading patterns [Guerra et al. 2013a] to decouple metadata
handling operations from the rest of the framework; (b) AOM Core API includes a
set of interfaces that represent the common AOM core structure provided by the
framework; (c) AOM Core Implementations contains implementations of the
interfaces defined by the AOM Core API component. There are two types of
implementations in this component: a basic and general implementation of the AOM
core structure and an implementation that adapts domain-specific AOM core
structures using the Metadata Handler component; (d) Model Manager is responsible
to instantiate the model and manage the instances of the AOM Core API created by
the framework.

Fig. 8 depicts the relationship between the main components in the integration
framework. In this representation, the component Client represents the clients of the
proposed framework.

The client uses the Model Manager component to perform operations over the
model, such as loading and saving elements of the architecture. The client and the
Model Manager components are able to perform operations on the AOM Core
Implementation objects through the AOM Core API component interfaces. When an
operation is performed over an adapter object of the AOM Core Implementation
component, this object gets information on the domain-specific AOM core structure
metadata by using the Metadata Handler component. This way, the adapter object is
able to perform the corresponding operation on the adapted domain-specific AOM
application object.

543Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

Figure 8: Relationship between the components in the integration framework.

4.2 Rationale

As shown in the previous sections, the architectural model proposed in this work is
able to integrate domain-specific AOM applications and generic AOM frameworks by
adapting the domain-specific AOM core structures to a common AOM core structure
defined by the AOM Core API component.

The only information needed for adapting the domain-specific AOM core
structure is the AOM roles played by the elements in the structure. These roles are
identified through metadata that is consumed at runtime by the integration framework,
using the Metadata Handler component. Notice that there is only a weak dependency
between the domain-specific AOM applications and the integration framework. The
applications only have to mark their core structures with the metadata provided by the
framework. If external metadata is supported, there is no need of changes in the
domain-specific applications’ code. Otherwise, only minor changes, such as inserting
an annotation to the code, is required in order to make the application be adaptable by
the integration framework.

In the generic AOM frameworks perspective, no knowledge related to domain-
specific applications is needed. These frameworks simply make use of the
components provided by the integration framework (AOM Core API and Model
Manager) in order to be applicable to any domain-specific application that is
configured to be adaptable by the integration framework.

As a consequence, with this architectural model, generic AOM frameworks and
domain-specific AOM applications can be integrated, even though being completely
decoupled. Due to this possibility, generic AOM frameworks can be developed
without being tied to any specific domain and can be applied to different AOM
applications, allowing reuse of code and design.

544 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

5 Esfinge AOM Role Mapper Framework

The Esfinge AOM Role Mapper integration framework [Guerra 2012] was developed
in order to evaluate the proposed model. Besides the functionality of adapting existing
domain-specific AOM core structures to a common structure, the framework also
allows the creation of an AOM application from scratch. Despite this framework is
implemented in Java; the model can be considered language-independent and could
be built to other platforms. The following sections give an overview of the framework
components.

This framework was created in the context of the Esfinge project
(http://esfinge.sf.net), which is an open source project that comprises several
metadata-based frameworks for different domains. Examples of other frameworks
developed in this project were Esfinge QueryBuilder [Guerra 2014] for generating
database queries based on method signatures, Esfinge Guardian [Silva et al. 2013] for
access control and Esfinge SystemGlue [Guerra et al. 2013b] for application
integration. The development of these projects is also used in a research focusing on
identifying models, patterns and best practices for metadata-based frameworks.

5.1 Metadata Handler Component

The Metadata Handler component implements some of the patterns of the pattern
language presented in [Guerra et al. 2013a] and can be divided in the following parts:

(a) Descriptors: implements the METADATA CONTAINER pattern. Each role in an

AOM architecture is represented by one descriptor which contains references to
get/set/add/remove Method objects for each relevant field

(b) Metadata Readers: implements the METADATA READER STRATEGY pattern.
Currently, the framework only supports annotations for determining the AOM
roles of elements in domain-specific applications, but since the METADATA

READER STRATEGY pattern was implemented, it supports extensions related to the
support of other types of metadata.

(c) Metadata Repository: implements the METADATA REPOSITORY pattern,
providing an in-memory cache of the metadata already retrieved.

(d) Annotations: contains the Java annotations that allow the identification of the
AOM roles of the elements in the domain-specific AOM applications. The names
of some annotations created for the framework are similar to some JPA’s
annotations, but they are completely unrelated. The annotations in Esfinge AOM
Role Mapper are used to map elements of domain-specific AOM applications to
the generic AOM core structure.

5.2 General AOM Model Implementation and API

The common AOM core structure provided by the framework consists of the
following interfaces: IEntityType, IEntity, IPropertyType and IProperty. These
interfaces are implemented by classes in two different packages – one that contains
implementations related to the adaptation of domain-specific AOM core structures to
the common core structure provided by the framework; and another that contains
generic AOM classes that can be used for creating a new AOM application using the

545Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

framework. The framework provides factory classes that are able to decide what class
to instantiate according to parameters passed to the creation methods.

Although these two types of core structure implementations are available, this
paper focuses on the implementation of the ADAPTER classes, which differentiates this
approach from the other existing frameworks. The ADAPTER core structure is
composed by five classes: AdapterEntityType, AdapterEntity, AdapterPropertyType,
AdapterProperty and AdapterFixedProperty. Each of these classes contains an
attribute for storing the domain-specific AOM application object that they adapt.

By considering the example of a domain-specific class annotated with the
metadata provided by the Esfinge AOM Role Mapper framework depicted in Fig. 9,
when an AdapterEntity object is created to adapt an Account object, the Metadata
Handler component is used to get the descriptor for the Account class. This descriptor
will contain the Method objects for getting and setting the account’s account type,
among other data. Using the information provided by the descriptor, the
AdapterEntity object is able to invoke methods over the Account object.

@Entity
public class Account {
 @EntityType private AccountType accountType;
 public AccountType getAccountType() {
 return accountType;
 }
 public void setAccountType(AccountType accountType) {
 this.accountType = accountType;
 }
}

Figure 9: Example of a domain-specific application class with annotations.

Fig. 10 shows an example of how the getEntityType() method is adapted by an
AdapterEntity object. When the Client calls the getEntityType() method, the
AdapterEntity object obtains the Method instance (from Reflection API) that gets the
Entity Type of the adapted entity from its metadata descriptor. Then, it invokes this
method using reflection and obtains the domain-specific Entity Type instance for the
adapted Entity.

The getEntityType() method must return an IEntityType object and, therefore, it
calls the getAdapter() static factory method of the AdapterEntityType class, passing
the domain-specific Entity Type object as a parameter.

This method queries an internal map in the AdapterEntityType class, which
relates a domain-specific object to the AdapterEntityType instance that adapts this
object. The use of this map avoids the creation of more than one object to adapt the
same domain-specific object – if an AdapterEntityType object was already created for
adapting a determined domain-specific Entity Type object, the getAdapter() method
only returns the previously created object; otherwise, it creates a new instance of
AdapterEntityType, puts it into the map and returns it. Finally, the object returned by
the getAdapter() method is returned to the Client.

546 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

Figure 10: Sequence diagram showing how domain-specific objects are adapted.

547Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

The adaptation process described above is the overall solution used for the
adapter classes of the Core Implementations component (i.e. AdapterEntityType,
AdapterEntity, AdapterPropertyType, AdapterProperty).

5.3 Mapping Annotations

Domain-specific AOM applications need to have the elements in their core structures
marked with the metadata provided by the Esfinge AOM Role Mapper framework.
Currently, the only metadata type supported by the framework is Java annotations,
however it provides a hotspot on the metadata reader making possible to extend it to
support other approaches for metadata definition, such as code conventions, XML
files or database. The following list describes the annotations defined by the
framework and the classification of the annotation as “type”, “field” or “method”
refers to each kind of element it can be associated:

 @EntityType: Type and field annotation, which allows the identification of classes

that play the Entity Type role in the AOM architecture and also the field in Entity
classes which points to the corresponding Entity Type.

 @Entity: Type annotation, which allows the identification of classes that play the
Entity role in the AOM architecture.

 @PropertyType: Type and field annotation, which allows the identification of
classes that play the Property Type role in the AOM architecture. It also allows the
identification of the field in Property classes which points to the corresponding
Property Type and the field in the Entity Type classes which points to the Property
Types defined for the Entity Type.

 @EntityProperties: Type and field annotation, which allows the identification of
classes that play the Property role in the AOM architecture and also the field in
Entity classes which points to the Properties of the Entity.

 @EntityProperty: Field annotation, which allows the identification of fixed
properties in Entity classes.

 @Name: Field annotation, which allows the identification of the field that
determines the name of an Entity Type or a Property Type.

 @PropertyTypeType: Field annotation, which allows the identification of the field
that determines the type of a Property Type.

 @PropertyValue: Field annotation, which allows the identification of the field that
determines the value of a Property.

 @CreateEntityMethod: Method annotation, which allows the identification of the
method in the Entity Type classes that handles the creation of an Entity object. If a
method marked with this annotation is not present in an Entity Type class, it is not
possible to create an entity using the createNewEntity method of the
AdapterEntityType class, because the framework will not be able to know which
Entity class should be created.

5.4 Model Manager Component

The Model Manager component’s responsibility is to orchestrate the instances created
by the Esfinge AOM Role Mapper framework. The main class of this component is
the ModelManager, whose instance is unique. All the operations involving the

548 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

manipulation of the model, including model persistence, loading and querying, should
be done through this class. For accessing the database, the ModelManager makes use
of the IModelRetriever interface, which can be implemented by persistence
frameworks.

In order to get the instance of IModelRetriever to be used, the ModelManager
class uses the Service Locator functionality that is available in the standard Java API.
The advantage of using Service Locator is that the implementation of the
IModelRetriever interface becomes totally decoupled from the framework, allowing
great flexibility. It also allows services to be dynamically changed using decentralized
configuration.

One of the main responsibilities of the ModelManager class is to guarantee that a
logical element is not instantiated twice in the framework. In order to control that the
ModelManager contains two Map objects – one for storing the loaded Entities by their
IDs and one for storing the loaded Entity Types by their IDs. Whenever a method that
loads an Entity or an Entity Type is called, the ModelManager checks whether the ID
of the instance to be loaded is already found in the corresponding map. If so, it returns
the previously loaded object. Otherwise, it calls the IModelRetriever object for
loading the object into the memory and saves it into the map.

6 Hybrid Models

In real applications that use AOM as the architectural style, usually the flexible
domain model is implemented only in entities where it is a requirement. Other entities
often follow a static model adopted by the target programming language, containing
fixed attributes and accessor methods. Even in AOM entity types, for instance, there
can be static properties that should be present in all entities. The present paper defines
a model that contains static classes, AOM entities and other intermediate solutions as
Hybrid Model.

The implementation of components for domain-specific hybrid models is
straightforward because they can have specific code to handle the static properties and
classes. Indeed, the existence of these exceptions to the “pure” AOM model is a core
factor that disables its component reuse in other contexts.

In order to support hybrid models, fixed properties are adapted by Esfinge AOM
Role Mapper framework using AdapterFixedProperty objects, which hold an object
that plays the Entity role in the domain-specific application. This approach is different
from the AdapterProperty objects that hold a corresponding Property object in the
domain-specific application. The get/set methods for the adapted attribute are invoked
in order to obtain and set the value for the AdapterFixedProperty object.

Another characteristic of the AdapterFixedProperty objects is that the property
type objects they refer to are instances of the GenericPropertyType class, which is the
non-adapter implementation of the IPropertyType interface in the framework. Since
fixed properties are standard attributes in the domain-specific Entity class, there is no
corresponding Property Type object to be adapted by the framework. Therefore, a
GenericPropertyType object must be created in order to represent the type of the
property, with the name of the field and the type of the field.

Since the AdapterFixedProperty class implements the IProperty interface, the
differences between this class and the AdapterProperty class are internal to the

549Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

framework. As a result, for the frameworks that handle the properties of an entity
type, it is transparent if the property is defined statically or dynamically in the
domain-specific model. The main difference is that the framework does not allow
fixed properties to be added or removed.

In Fig. 11, an example of a domain-specific class with a fixed property is shown.
Notice that when an instance of AdapterEntityType for adapting an AccountType
object is created, it must have a reference to the GenericPropertyType object that is
related to the accountNumber fixed field.

@Entity
public class Account {
 @EntityType private AccountType accountType;
 @EntityProperty private int accountNumber;
 public int getAccountNumber() {
 return accountNumber;
 }
 public void setAccountNumber(int accountNumber){
 this.accountNumber = accountNumber;
 }
}

Figure 11: Example of a domain-specific class with a fixed property.

In Fig. 11, an example of a domain-specific class with a fixed property is shown.
Notice that when an instance of AdapterEntityType for adapting an AccountType
object is created, it must have a reference to the GenericPropertyType object that is
related to the accountNumber fixed field.

The class with only fixed properties can be considered the worst case for AOM
adaptation, because it does not provide any flexibility to change the domain model.
However, there were other intermediary scenarios, where there is some flexibility, but
it is not a complete TYPE SQUARE implementation yet. Figure 12 presents some
possible paths for evolving an AOM application from a static model to the complete
TYPE SQUARE implementation.

Esfinge AOM Role Mapper considered that in a hybrid model several stages of an
AOM implementation could be implemented, which includes all the steps presented
in the evolution path. Tests were performed considering every step on Figure 12, to
make sure that in a domain model, several stages of flexibility could be present on
different entities. This support also allows the refactoring of the application towards
an AOM allowing the framework to understand the model in every step of this
evolution.

550 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

Figure 12: AOM evolution path supported by Esfinge AOM Role Mapper.

7 Evaluation

The goal of this section is to describe the analysis performed to evaluate the approach
proposed regarding the performance overhead and the decoupling provided. The next
subsections present the evaluation goal, its approach, the software artifacts developed,
the analysis performed and its threats to validity.

551Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

7.1 Evaluation Goal

The evaluation has two different goals: (a) to verify if by following the proposed
approach it is possible to have AOM frameworks decoupled from the AOM domain-
specific models; (b) to measure the performance overhead introduced by the
framework AOM adapters.

The decoupling verified by the first goal is a requirement to enable the reuse of
AOM frameworks in different models. Despite the fact that the achieved reuse is not
measured, the decoupling of two components of an application suggests that one can
be changed without affecting the other, allowing them to be used on other contexts.
The second goal aims to measure the performance price paid for the flexibility
provided by the proposed approach usage.

7.2 Evaluation Approach

In this evaluation two distinct domain-specific AOM models taken from the literature
were implemented. Additionally, two distinct frameworks to handle different
concerns were also created. Based on these implementations and using the Esfinge
AOM Role Mapper, applications were instantiated. As a requirement, the applications
should be able to create new types and new instances based on the AOM model.

After that, considering the software artifacts used to create the applications, a
modularity analysis was performed. This analysis was based on a Dependency
Structure Matrix (DSM) [Steward 1982; Yassine 2004], which shows the package
dependencies between all the jar files involved. The evaluation is considered
successful if the application works as expected and if the modularity analysis does not
find any dependence between the frameworks and the AOM models.

By using the two models developed as reference, a performance measurement
was performed considering the original classes and the classes adapted by the
framework classes to the AOM Core API. The overhead found reveal the performance
price for using the proposed approach.

7.3 Software Artifacts Developed

All the artifacts used in the evaluation are available as free software on Esfinge AOM
Role Mapper repository (https://github.com/EsfingeFramework/aomrolemapper).
Considering the evaluation approach described in the previous section, the following
describe the frameworks and the AOM structures implemented:
 Domain-Specific AOM Structures: There were developed two domain-specific

AOM core structures for the case study: one for a banking system and one for a
medical system. It is important to state that these structures are based on examples
referenced by other works [13, 1]. The domains of the systems are similar to the
examples shown in Section III. Both structures were mapped by using the Esfinge
AOM Role Mapper framework annotations.

 Persistence Framework: For validating the concept presented in this work, a
persistence framework that implements the IModelRetriever interface was
developed. This framework is called AOM Mongo Persistence framework. The
database used for implementing the persistence framework was MongoDB
[Membrey et al. 2010], which is a document-oriented storage and is more suited for
dealing with the dynamic nature of AOMs than SQL databases.

552 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

 Console-based User Interface: The second framework developed for this
evaluation is a simple console-based interface which shows menus for: loading the
model into memory; saving the model; adding / removing / changing Entity Types;
adding / removing / changing Entities; and showing Entities and Entity Types. It can
be considered a framework because it contains hotspots to be adapted to any
mapped AOM model, such as a different AOM implementations and different entity
structures.

7.4 Executable Application

To execute the application, the Console-based User Interface framework was
configured to work with both banking and medical system without the need to change
any code. Additionally, the AOM Mongo Persistence framework was used as the
persistence framework.

The list below shows the jar files that were used in the analysis:
(a) aomrolemapper.jar: Contains the Esfinge AOM Role Mapper framework; (b)
aompersistence.jar: Contains the AOM MongoDB Persistence framework; (c)
bankingexample.jar: Contains the domain-specific banking AOM model; (d)
medicalexample.jar: Contains the domain-specific medical AOM model; (e)
aomtest.jar: Contains the Console-based User Interface framework.

When running the client application, the aomrolemapper.jar and
aompersistence.jar must be included in the classpath. If the banking system is the one
that needs to be adapted, the client application only has to include the
bankingexample.jar file into the classpath. Similarly, if the medical system is the one
to be adapted, the client application only has to insert the medicalexample.jar file into
the classpath. It is also possible to adapt both systems simultaneously and use the
client application without any changes to the code.

7.5 Modularity Analysis

In order to analyse the modularity of the AOM models and frameworks developed for
the evaluation, a Dependency Structure Matrix [Yassine 2004] that shows the package
dependencies in all the jar files involved was generated using the Lattix tool and it is
presented in Fig. 13. The modules involved can be easily identified through the
different colors. The ‘X’ character indicates that the module represented in the line
depends on the module represented by the column. Any reference from one module to
another (e.g. invocation of a method or the use of an annotation) is considered a
dependency.

Notice that the domain-specific applications, represented by 21 and 22, only
depend on the annotations package of the Esfinge AOM Role Mapper framework,
represented by 13. This package only contains the definitions of the annotations
provided by the framework.

Analyzing the dependency of the AOM Mongo Persistence framework package
(1), it is possible to observe that the framework depends on the api (4) and exceptions
(5) packages of the Esfinge AOM Role Mapper framework. The first package
contains the IModelRetriever interface, which is implemented by the persistence
framework; and the Model Manager and AOM Core API component interfaces. The

553Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

second package contains the exceptions thrown by the Esfinge AOM Role Mapper
framework.

Figure 13: DSM generated from the result application.

Notice that the domain-specific applications, represented by 21 and 22, only
depend on the annotations package of the Esfinge AOM Role Mapper framework,
represented by 13. This package only contains the definitions of the annotations
provided by the framework.

Analyzing the dependency of the AOM Mongo Persistence framework package
(1), it is possible to observe that the framework depends on the api (4) and exceptions
(5) packages of the Esfinge AOM Role Mapper framework. The first package
contains the IModelRetriever interface, which is implemented by the persistence
framework; and the Model Manager and AOM Core API component interfaces. The
second package contains the exceptions thrown by the Esfinge AOM Role Mapper
framework.

Notice that the persistence framework only depends on information exposed by
the interfaces of Esfinge AOM Role Mapper framework. It does not depend on the
specific implementation of this framework and nor on any information related to the
domain-specific applications. The fact that the persistence framework only depends
on the Esfinge AOM Role Mapper framework makes it applicable to any application
that can be adapted by the Esfinge AOM Role Mapper framework.

Similarly, the console-based user interface (20) dependency analysis shows that it
only depends on information exposed by the Esfinge AOM Role Mapper framework.
It depends on the api (4), exceptions (5), manager (6), and model.factories (8)
packages of the framework. The first two packages contents were previously

554 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

explained. The third package contains the ModelManager class and the forth one
contains the factory classes for the common AOM core structure classes.

7.6 Performance Overhead Analysis

To evaluate the overhead brought with the AOM adapters, several tests were
performed measuring the time necessary to execute actions, with and without the
AOM adapters. The bank account domain-specific AOM model was used for these
tests. The time measurement was performed in nanoseconds using the virtual machine
method System.nanoseconds(). The time was measured executing the test a 1000
times and dividing the final time by 1000. Each test was performed 12 times and the
value registered in a spreadsheet. Table 1 present the average value from these
measurements.

Table 1: Time measured from the tests on the AOM model.

Test performed Time without
adapter (ns)

Time with
adapter (ns)

Entity type creation 12227 409469
Property type creation 5991 24166
Entity creation of an entity type with 1000
properties

154519 1250243026

Setting a property in an entity type with 1000
properties

37409 1513474

Due to the small time for the creation of a domain-specific AOM model, the

performance overhead is large in the scenario. However, absolutely, the numbers are
small, in the order of nanoseconds. On the one hand, considering information systems
that deal with database access and network communication, these values can be
considered insignificant. On the other hand, this overhead can be significant if an
algorithm repeats it several times.

The largest overhead was measured in the creation of an entity type, because a
wrapper should also be created for all 1000 properties. It is important to highlight that
it is not usual to have such high number of entity attributes. However, in future
versions a lazy loading mechanism can be used to workaround this initial overhead.

7.7 Threats to Validity

This section presents some threats to validity that can compromise the results of this
evaluation. The issues described here were considered in the analysis of the results
and will be considered and addressed in further works.

The first issue that should be considered is the small size of the AOM models
used. To avoid being tendentious for building the models, the authors choose to use
existing models described by different papers in the literature, namely the Illinois
Department of Public Health (IDPH) Medical Domain Framework [Yoder et al. 2001;
Yoder, Johnson 2002] and a banking system for handling customer accounts [Riehle
et al. 2000]. The models, as presented in these papers, are small and may not reflect
the needs of realist software. However, they represent only the initial AOM

555Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

architecture of such systems, which surely have more complex requirements and
solutions. Additionally, since the frameworks developed perform usual tasks, such as
user interface and persistence; the application functionality does not contain complex
scenarios in which the proposed model may not be enough for a decoupled
implementation. A more complete evaluation could be done if medium or large-scale
applications were used.

Another threat to validity is related to the measurement strategy. The DSM
showed that it is possible to decouple the frameworks from the domain-specific AOM
model, providing evidence that it is possible to reuse the framework in different
contexts. However, no measurement was performed to evaluate the reuse itself, to
access potential impacts on quality and team productivity.

Finally, since the Esfinge AOM Role Mapper framework only implements
mapping for the basic AOM patterns, other elements that include the behavioral level
were not included on the model. These new model elements may bring different
consequences the application. This kind of model was considered out of scope and the
conclusions should be considered restricted to the implementation of the core AOM
patterns.

7.8 Evaluation Conclusions

In this evaluation, it was possible to verify that no code changes were needed in order
to make the frameworks work with both domain-specific AOM models. The only
actions needed were to change configuration files and to put the proper domain-
specific application jar into the classpath.

The metrics depicted by the DSMs shows that the domain-specific models only
depend on the annotations defined by the Esfinge AOM Role Mapper framework,
which means that the domain-specific applications can still be used without the
generic AOM frameworks and applications. The DSM also shows that the persistence
framework and the console-based user interface only depend on information that is
externalized by the Esfinge AOM Role Mapper framework, which means that they
can be reused among different domain-specific AOM core structures.

These results show that the proposed architectural model accomplished its goal to
decouple the core structure of AOM applications from their specific domains,
providing a way to allow reuse of design and code of generic AOM frameworks and
applications among different domain-specific applications. The performance
measurements showed that the performance overhead is usually acceptable for
information systems requirements. However, these conclusions are based on simple
models that only implement the core AOM patterns, and further evaluations should be
performed on more complex models.

8 Related Work

Dynamic languages are easily extensible and allow the addition of new members in a
class, such as methods and attributes. While this functionality is straightforward to be
used programmatically, the management of application entities is not ready to be
performed by users such as proposed by the AOM architecture. Because of that, even
in dynamic languages, such as Ruby and Javascript [Bhati 2009], an AOM structure

556 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

can be used to represent a dynamic domain model. Because of that, this section
focuses on works that put effort on enabling reuse of AOM implementations.

In [Yoder and Johnson, 2002], many examples of systems that use the AOM
architectural style are presented. While these systems aim at solving specific issues in
specific domains, other frameworks, such as Oghma [Ferreira et al. 2009; Ferreira
2010], ModelTalk [Hen-Tov et al. 2009] and its descendant, Ink [Acherkan et al.
2011] aim at providing generic AOM frameworks for easing the creation of adaptive
systems, mainly through the use of a Domain-Specific Language (DSL).

Oghma is an AOM-based framework written in C#, which aims to address several
issues found when building AOM systems, namely: integrity, runtime co-evolution,
persistence, user-interface generation, communication and concurrency [Ferreira et al.
2009]. The modules that handle each of these concerns reference the AOM core
structure of the framework, which was developed to be self-compliant by using the
EVERYTHING IS A THING pattern [Ferreira et al. 2010b].

Oghma allows a client program to instantiate a model for its domain by simply
calling the constructor of the MetaModel class of the framework, passing as argument
an XML model configuration file that contains the Entities descriptions. After this
model is created, the aforementioned AOM requirements implemented by the
framework are readily available.

ModelTalk and Ink are AOM frameworks that rely on a DSL interpreter to add
adaptability to the model. At runtime, instances of DSL classes are instantiated and
used as meta-objects for their corresponding Java instances through a technique called
model-driven dependency injection [Hen-Tov et al. 2009]. Developers are able to
change the model by editing the ModelTalk/Ink configuration in an Eclipse IDE plug-
in specially developed to handle the framework DSL. When changes in the model are
saved, the plug-in automatically invokes the framework’s DSL analyzer, performing
incremental cross-system validation similar to background compilation in Java.

What the Esfinge AOM Role Mapper framework presented in this work has in
common with Oghma and ModelTalk/Ink is the fact that it is an AOM framework not
tied to any specific domain and is intended to ease the development of AOM-based
systems. However, instead of considering that the entire infrastructure for building
AOM systems must be inside the framework, the Esfinge AOM Role Mapper
provides a standard AOM core structure that can be used by different AOM related
frameworks, such as persistence, GUI and version control frameworks.

Beside this fact, the Esfinge AOM Role Mapper framework is able to adapt the
core structure of domain-specific AOM applications to the common structure it
provides. As a consequence, this framework can be used for integrating generic AOM
frameworks to existing domain-specific AOM applications. The Oghma and
ModelTalk/Ink frameworks do not provide this functionality, which requires the
applications to be created from scratch, coupling the AOM model to the framework.

Finally, even though the Esfinge AOM Role Mapper adapts the domain-specific
core structures, these structures remain logically unchanged and can still be used in
the system. This means that behavior can still be added through the application code,
which brings simplicity to the system. But with Oghma and ModelTalk/Ink, the
development of the system is limited to the expressiveness provided by those
frameworks.

557Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

9 Conclusions

The Adaptive Object Model is an architectural style that provides great flexibility by
representing classes, attributes, methods and relationships as metadata. The tradeoff
of this architectural style is the higher complexity when implementing AOM systems.
Therefore, AOM application developers tend to use bottom-up approaches, adding
flexibility only where it is necessary. As a consequence, there are many AOM
systems that are tied to the specific domain for which they were developed and this
makes it difficult to create generic AOM frameworks that can be applied to any AOM
application.

This work presented an architectural model to solve this issue by adapting the
domain-specific AOM core structures to a common core structure by using metadata
to identify AOM roles of elements in the domain-specific application. The code and
design of generic AOM frameworks that use the common core structure can be reused
by different AOM applications, even though they are tied to different domains. This
work also presented the AOM Role Mapper framework, which implements the
proposed model in Java and uses annotations as metadata. Although the proposed
solution API seems similar to other mapping frameworks, such as ORM, the internal
solution is very different from these frameworks since it has to cope with two models
that can be dynamically changed.

The modularity analysis made over the case study in this work showed that the
domain-specific AOM applications have a weak dependency on the Esfinge AOM
Role Mapper framework. The analysis also showed that the AOM generic framework
and the Client application created for the case study only depended on the Model
Manager component and the common AOM core structure provided by the Esfinge
AOM Role Mapper framework. No information related to the specific implementation
of the framework or the domain-specific applications was needed by the generic
AOM framework and the Client application.

Although it was possible to show that the proposed architectural model solved
problems related to the integration of AOM generic frameworks and domain-specific
AOM applications, there is still a great research field in this area. This work focused
on the creation of the initial version of this integration framework, only supporting the
adaptation of a basic AOM core structure and its variations. In order to have a
framework that fully adapts domain-specific AOM applications, there is still need for
research in matters such as inheritance and behavior representation. The analysis of
factors such as reuse cost, regarding quality and productivity, were also left for future
works. The authors are currently looking for large or medium scale AOM applications
where this model can be applied.

We thank for the essential support of FAPESP (Fundação de Amparo à Pesquisa
do Estado de São Paulo) to this research.

References

[Arsanjani 2001] Arsanjani, A.: “Rule Object: a pattern language for adaptive and scalable
business rule construction”; Proc. of 8th Conference on Pattern Languages of Programs (PLoP)
(2001).

558 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

[Acherkan et al. 2011] Acherkan, E., Hen-Tov, A., Lorenz, D. H., Schachter, L.: “The ink
language meta-metamodel for adaptive object-model frameworks”; in Proc. of 26th ACM
International Conference Companion on OOPSLA Companion (2011).

[Bhati 2009] Bhati, S.: “Applying Adaptive Object Model using Dynamic languages and
Schema-less Databases”, Posted at 16 Nov 2009, Accessed at 12/11/2013 on
http://weblog.plexobject.com/?p=1667.

[Ferreira et al. 2010a] Ferreira, H. S., Correia, F. F., Aguiar, A., Faria, J. P.: “Adaptive Object-
Models: a research roadmap”, in International Journal on Advance in Software, 3, 1 (2010) 70-
89.

[Ferreira et al. 2010b] Ferreira, H. S., Correia, F. F., Yoder, J., Aguiar, A: “Core patterns of
object-oriented meta-architectures”; in Proc. of 17th Conference on Pattern Languages of
Programs (PLoP) (2010).

[Fowler 1996] Fowler, M.: “Analysis patterns: reusable object models”; Addison-Wesley
Professional (1996).

[Gamma et al. 1994] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: “Design Patterns:
elements of reusable object oriented software”; Addison-Wesley (1994).

[Garud et al. 2008] Garud, R., Jain, S., Tuertscher, P.: “Incomplete by design and designing for
incompleteness,” in Organization studies as a science of design, 29, 3 (2008) 351-371.

[Guerra 2012] Guerra E. M. et al., “Projeto Esfinge” available on: http://esfinge.sf.net/,
accessed in: 12 apr. 2012.

[Guerra et al. 2013a] Guerra, E., Souza, J. T., Fernandes, C.: “ Pattern Language for the
Internal Structure of Metadata-based Frameworks” in Transactions on Pattern Languages of
Programming, 3 (2013) 55-110.

[Guerra et al. 2013b] Guerra, E., Buarque, E., Fernandes, C., Silveira, F.: “A Flexible Model
for Crosscutting Metadata-Based Frameworks”; in Lecture Notes in Computer Science,
Computational Science and Its Applications – ICCSA 2013, 7972 (2013) 391-407.

[Guerra 2014] Guerra E. M., “Designing a Framework with TDD: A Journey”. IEEE Software,
v. Jan/Fe, p. 9-14, 2014.

[Ferreira 2010] Ferreira, H. S.: “Adaptive-Object Modeling: Patterns, Tools and Applications”;
PhD Thesis, Faculdade de Engenharia da Universidade do Porto (2010).

[Ferreira et al. 2009] Ferreira, H. S., Correia, F. F., Aguiar, A.: “Design for an Adaptive Object-
Model framework: an overview”; Proc. of 4th Workshop on Models@Run.Time (2009).

[Hen-Tov et al. 2009] Hen-Tov, A., Lorenz, D. H., Pinhasi, A., Schachter, L. : “ModelTalk:
when everything is a domain-specific language”, in IEEE Software, 26, 4 (2009) 39-46.

[Johnson and Wolf 1997] Johnson, R., Wolf, B.: “Type Object,” in Pattern Languages of
Program Design 3, Addison-Wesley (1997) 47-65.

[Matsumoto and Guerra 2012] Matsumoto, P. ; Guerra, E. M.: “An Architectural Model for
Adapting Domain-Specific AOM Applications”. In: SBCARS- Simpósio Brasileiro de
Componentes, Arquitetura e Reutilizacação de Software, 2012, Natal.

[Membrey et al. 2010] Membrey, P., Plugge, E., Hawkins, T.: “The Definitive Guide to
MongoDB: The NoSQL Database for Cloud and Desktop Computing”; Apress (2010).

[Riehle et al. 2000] Riehle, D., Tilman, M., Johnson, R.: “Dynamic Object Model”; Proc. of
7th Conference on Pattern Languages of Programs (PLoP) (2000).

559Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

[Silva et al. 2013] Silva, J., Guerra, E., Fernandes, C.: “An Extensible and Decoupled
Architectural Model for Authorization Frameworks”; in Lecture Notes in Computer Science,
Computational Science and Its Applications – ICCSA 2013, 7974 (2013) 614-628.

[Steward 1981] Steward, D. V.: “The Design structure system: A method for managing the
design of complex systems”, IEEE Transactions on Engineering Management, vol. 28 (1981)
pp. 71-74.

[Welicki et al. 2007a] Welicki, L., Yoder, J. W., Wirfs-Brock, R., Johnson,R. E.: “Towards a
pattern language for Adaptive Object-Models” Proc. of 22th Object-Oriented Programming,
Systems, Languages & Applications (2007).

[Welicki et al. 2007b] Welicki, L., Yoder, J. W., Wirfs-Brock, R.: “A pattern language for
Adaptive Object Models - rendering patterns”; Proc. of 14th Conference on Pattern Languages
of Programs (PLoP) (2007).

[Yassine 2004] Yassine, A. A.: “An introduction to modeling and analyzing complex product
development processes using the Design Structure Matrix (DSM) method”; in Quaderni di
Management (Italian Management Review), 9 (2004).

[Yoder et al. 2001] Yoder, J. W., Balaguer, F., Johnson, R.: “Architecture and design of
Adaptive Object-Models”; In Proceedings of the 16th Object-Oriented Programming, Systems,
Languages & Applications (2001).

[Yoder, Johnson 2002] Yoder, J. W., Johnson, R.: “The Adaptive Object-Model architectural
style”; Proc. of 3rd IEE/IFIP Conference on Software Architecture: System Design,
Development and Maintenance (2002).

560 Matsumoto P., Guerra E.: An Approach for Mapping Domain-Specific AOM ...

