
Service Composition Management:

A Risk-Driven Approach

Shang-Pin Ma

(National Taiwan Ocean University, Keelung, Taiwan

albert@ntou.edu.tw)

Ching-Lung Yeh

(National Taiwan Ocean University, Keelung, Taiwan

19957009@ntou.edu.tw)

Ping-Chang Chen

(National Taiwan Ocean University, Keelung, Taiwan

10157026@ntou.edu.tw)

Abstract: How to effectively and efficiently monitor, manage, and adapt web services
in a composite service or a service-oriented application is becoming a significant issue.
In this paper, we argue that it is insufficient to only solve emerging service faults at
the deployment time or runtime; instead, we propose that the prediction of service
faults is equally important. We devised a risk-driven service composition management
(RDSCM) approach including four main phases: (1) preparation, (2) planning, (3)
monitoring and reaction, and (4) analysis. By applying the proposed approach, risky
component services can be removed earlier, and the fault source can be tracked and
identified more easily when a fault occurs. We developed a prototype to realize the
proposed approach, and conducted experiments to verify the approach. The imple-
mentation and experiments demonstrate that the proposed risk-driven approach can
effectively and efficiently ensure the robustness of a service-oriented system.
Key Words: service management, risk management, service composition
Category: D.2, D.2.11

1 Introduction

Service-Oriented Architecture (SOA) has become an important trend in software

engineering for developing loosely coupled applications and integrating legacy

and modern systems. Accordingly, how to effectively and efficiently monitor,

manage, and adapt web services in a composite service or a service-oriented appli-

cation is also becoming a significant issue. Numerous approaches have provided

solutions to perform service monitoring and provide management for improving

various types of quality of service (QoS), such as availability, reliability, and

response time. In these approaches, [Zeng et al. 2004] and [Alrifai et al. 2012]

focused on selecting web services to satisfy user requests according to the QoS

degrees, and [Calinescu et al. 2011] proposed a multiphase lifecycle for service-

based systems (SBS), which can fulfill user demands by using dynamic adap-

tation. [Baresi et al. 2007] presented multiple methods, including retry, rebind,

Journal of Universal Computer Science, vol. 20, no. 3 (2014), 302-328
submitted: 24/3/13, accepted: 4/2/14, appeared: 1/3/14 © J.UCS

reorganize, and changing monitoring rules, to recover service faults during ex-

ecution, and [Friedrich et al. 2010] applied the error chain paradigm to recover

multiple affected services when a fault occurs.

In this paper, we argue that only solving emerging service faults at the deploy-

ment time or runtime is insufficient; instead, we believe that predicting and track-

ing service faults is equally important. Risk analysis is an approach that is com-

monly used in the project management domain [Kwan and Leung 2011]. The po-

tential problems that may hinder the development of a project are called risks. If

problems occur, a project may be bogged in difficulties. Therefore, the risk should

be reduced before project execution. Risk management techniques are currently

used in various domains, such as electricity [Kettunen et al. 2010], wireless net-

work security [Tsai and Huang 2011], medical services [Schmuland 2005], and

software design [Verdon and McGraw 2004]. The risk concept is also applied to

enhance the service-oriented design process for selecting appropriate business

partners [Kokash 2007]. These efforts demonstrate that risk management can

effectively avoid the risk of damage.

Thus, in this study, we apply the risk notion to the web service manage-

ment mechanism to efficiently foresee possible problems or weaknesses in a

service-oriented system. Our proposed risk-driven service composition manage-

ment (RDSCM) approach includes four main phases: (1) preparation, (2) plan-

ning, (3) monitoring and reaction, and (4) analysis. In the proposed approach,

we develop a method to calculate the service risk exposure for estimating the

possible faults that reside in a service composition, and devise a process to con-

struct a service dependency graph (SDG) and fault tracking paths (FTP) to

track service faults and perform appropriate recovery activities. By applying the

proposed approach, risky component services can be removed earlier, and the

fault source can be tracked and identified more easily when any fault occurs.

We believe that the proposed risk-driven approach can effectively and efficiently

ensure the robustness of a service-oriented system. The goals of this study are

twofold: (a) to provide a systematic approach to efficiently predict and monitor

the risks of component services and composite services and supply appropriate

risk mitigation actions; and (b) to furnish a systematic method for effectively

tracking failed services and recovering composite services by performing multiple

recovery actions.

The structure of the paper is organized as follows: Section 2 presents a re-

view of extant research related to web service management. Section 3 introduces

the details of the proposed service composition management approach. Section

4 shows the prototype system, the RDSCM engine (RDSCME), and the experi-

mental setup and results. The final section offers a conclusion.

303Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

2 Related Work

Service management covers a range of activities, such as configuring and collect-

ing metrics, tuning performance, and ensuring QoS (e.g., reliability, availability,

and response time). Here, we introduce various studies that have addressed dif-

ferent issues in service management.

Solving the optimization problem for the service composition is one of major

research tracks in the field of web service management [Liu and Deters 2008].

[Zeng et al. 2004] presented a middleware platform, AgFlow, to enable the qual-

ity driven composition of web services. AgFlow provided two QoS-driven service

selection approaches (local optimization and global planning) to maximize user

satisfaction and an adaptive execution engine that reacts to changes occurring

during the execution of a composite service. AgFlow applied the Simple Addi-

tive Weighting (SAW) technique to select optimal web services and considered

five generic QoS values: price, duration, reputation, success rate, and availabil-

ity. [Alrifa and Risse 2009, Alrifai et al. 2012] presented a hybrid solution that

combines global optimization with local selection techniques to address the per-

formance issue of normal global optimization for service composition. They used

mixed integer programming to find the optimal decomposition of global con-

straints into local constraints and to find the best services that satisfy the local

constraints. Although these efforts can effectively find service compositions with

optimal QoS, they focus on preparation/planning phase in the whole service

management lifecycle and do not supply comprehensive monitoring and reaction

methods. Besides, these approaches need spend considerable computation cost

to perform local selection or global optimization. In our approach, efficient fault

prevention and recovery is our principal goal. Accordingly, we provided an ef-

ficient QoS-driven risk analysis method to avoid utilizing highly risky services,

and furnished a systematic approach to recover service faults.

[Calinescu et al. 2011] introduced a tool-supported framework, QoS manage-

ment and optimization of service-based systems (QoSMOS), for the development

of SBSs that achieve QoS requirements by dynamically adapting to changes.

QoSMOS is realized in four stages: (1) monitor, (2) analyze, (3) plan, and (4)

execute. In the monitoring stage, QoSMOS can discover requirement violations

and trigger adaptation strategies for an SBS. Different from QoSMOS, our pro-

posed approach includes a preparation phase before execution to prepare the

necessary artifacts to perform risk analysis and ease further monitoring and re-

covering actions. Besides, comparing with QoSMOS, our approach can efficiently

remove highly risky services in the early stages.

[Baresi et al. 2007] presented an approach to address faulty behaviors in

service-oriented systems. They proposed several reaction strategies to make com-

positions self-healing when service flow faults occur, including retrying, rebind-

ing, reorganizing, changing the monitoring rules, changing the monitoring pa-

304 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

rameters, callinghandlers,notifying,warning, and stopping. In [Baresi et al. 2010],

authors proposed the concept of self-supervising BPEL processes that can assess

the proper execution behavior and react according to user-defined rules. This ap-

proach leverages the techniques of the separation of concerns to maintain the

actual service composition process and supervision directives separate at the de-

sign time, and intertwines the two elements at runtime. Our approach also covers

monitoring and recovering activities, and applies reaction strategies, which can

be arranged in the planning phase according to the risk analysis results and can

be performed in the monitoring and reaction phase.

[Friedrich et al. 2010] proposed a self-healing approach to handle exceptions

in service-based processes, and repair faulty activities by using a model-based

approach. This approach improves a service process based on a set of design-time

repair actions and rules for applying such repair actions. This approach follows

the error chain paradigm, in which a failure in a running process may be caused

by different faults in the system components. Our approach also emphasizes the

error chain concept, and devises a fault tracking method. Notably, our approach

leverages QoS information, which is missing in Friedrich’s work, to perform risk-

driven fault prevention efficiently.

[El Haddad et al. 2008] proposed a selecting algorithm for composing web

services considering transactional properties and QoS characteristics. They stated

that a web service has three behavioral properties, including a non-transactional

property [the retriable (r) property], and two transactional properties [the pivot

(p) and compensable (c) properties]. Accordingly, the services are divided into

four types: p, c, pr, and cr. They also adopted the risk concept, and defined two

risk levels for a transactional system: The service results can or cannot be com-

pensated for. We propose a different QoS-based risk model, and use the types of

behavioral properties to perform appropriate recovery actions, which are lacking

in El Haddad’s work.

2.1 Analysis and Comparison

To elaborate the contribution of the proposed approach, comparison with other

service management methods along with four dimensions: stages involved in

the service management lifecycle, service selection method, anomaly detection

mechanism, and service recovery mechanism, are provided. The analysis and

comparison is shown in Table 1.

Comparing with these representative works for web service management, RD-

SCM covers all necessary aspects, including preparation, planning, monitoring,

reaction, and analysis, in the management lifecycle, whereas other solutions only

focus on specific stages. Another major difference and advantage of RDSCM is

that all required activities for service management, such as selecting services,

detecting anomalies, and recovering service faults, are accomplished through

305Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Table 1: Comparison with other service management methods

Stages involved
in the service
management
lifecycle

Service selection
method

Anomaly detec-
tion mechanism

Service recovery
mechanism

AgFlow Planning and re-
planning

Local optimization
and global plan-
ning

Detecting the situ-
ation when a ser-
vice is unable to
attain its expected
QoS

Re-planning using the
same global optimiza-
tion method

Alrifai’s ap-
proach

None Global planning
with local opti-
mization

None None

QoSMOS Four stages: mon-
itor, analysis,
plan, and execute

None None None

Baresi’s ap-
proach

Monitoring and
reaction

None Detecting viola-
tion of pre-defined
rules

(1) Reacting based on
pre-defined rules; (2)
Supporting a variety of
recovery actions, such
as re-try, re-bind, re-
organize, change mon-
itoring rule, etc.

Friedrich’s ap-
proach

Process design,
diagnosis, and
repair

None None Performing repair ac-
tions, such as retry,
compensate, and sub-
stitute based on the er-
ror chain paradigm

El Haddad’s
approach

None Service selection
based on transac-
tional properties
and QoS charac-
teristics

None None

RDSCM (Our
approach)

Four phases:
preparation, plan-
ning, monitoring
and reaction, and
analysis

Service substitu-
tion based on risk
analysis

Detecting the situ-
ation when the risk
of a service be-
comes high

Performing recovery
actions, such as retry,
compensation, or sub-
stitution, based on
the generated fault
tracking path

QoS-based risk analysis and tracking. The proposed risk analysis and tracking

method can efficiently prevent possible faults with few computation resources.

3 RDSCM: Risk Driven Service Composition Management

This section describes the proposed approach in detail, including the core con-

cepts and the process of RDSCM.

3.1 Core Concepts for the Proposed Approach

To establish the proposed service composition management mechanism, we in-

troduce the significant concepts first by using the UML (Unified Modeling Lan-

guage) class diagram, and represent each concept as a class (Figure 1). A compos-

ite service is the aggregation of multiple component services that are described

306 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

by service profiles. An SDG (service dependency graph) can be produced based

on the flow of a composite service to ease service fault tracking. The component

service risk consists of risk impact and risk probability, which are calculated

according to the composite service flow structure and the historical QoS data.

The component service risk can be mitigated by performing replication or sub-

stitution actions. The composite service risk is estimated by accumulating the

values of all the component service risks.

A service flow instance is initiated when the service requester uses a compos-

ite service. When any service failure occurs during the execution of the service

flow instance, we can track the FTP (fault tracking path), which consists of a

service fault source, intermediate nodes, and a service failure occurrence point to

locate the cause of faults and to perform appropriate recovery actions. The FTP

is automatically generated based on the built SDG. Three reaction strategies

are included in this study: “Substitution,” “Compensation,” and “Re-invoke.”

In the following subsections, we elaborate on important concepts, including the

qualities of web service, the service profile, the service risk, and the reaction

strategy.

composite service (service flow)

service flow instancecomposite service risk

component service risk

compensation

substitution

service profile

quality of web service
reaction strategy

service fault

service fault source

service failure occurrence point

component servicerisk impact

risk probability

re-invoke (retry)

intermediate node

fault tracking path

service dependency graph

instantiatecalculate

mitigated by

described by
occur

tracked by

produce

performed along

calculate

is a property of

is a property of

Figure 1: Conceptual model

307Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

3.1.1 Motivating Example: Travel Service

To illustrate the proposed approach, we have provided a motivating example of

an application designed to assist travellers (see Figure 2). This example presents

a composite service comprising 10 component services, including make a flight

reservation, make a hotel reservation, and so forth. Each component service can

be replaced by other interface-compliant services.

S i i t f S i ID# Service interface name Service ID

S1 Search flights SF01

S2 Make a flight reservation MAFR01

SF01

MAFR01S2 Make a flight reservation MAFR01

S3 Generate flight reservation report GFRR01

S4 Generate E tickets GET01

GFRR01

GET01 CTFR014

S5 Cancel the flight reservation CTFR01

S6 Search hotels SH01

GET01 CTFR01

SH01

S7 Make a hotel reservation MAHR01

S8 Generate hotel reservation report GHRR01

MAHR01

GHRR01

S9 Print the hotel information PTHI01

S10 Cancel the hotel reservation CTHR01
PTHI01 CTHR01

Figure 2: Example services associated with travel (travel service)

3.1.2 Quality of Web Service

We consider three generic quality attributes for evaluating component services:

– Response Time. Given a component service s, the response time qt(s) mea-

sures the delay time in seconds between the moment the service s obtains

the input data and the moment the component service s sends the output

data.

– Availability. The availability qav(s) for a component service s is the proba-

bility that the service is accessible. The value of the availability of a service

s is calculated using Equation (1).

qav(s) =
Ta(s)

θ
(1)

where Ta is the total duration in which the service s is available during the

last θ seconds.

308 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

– Reliability. The reliability qre(s) of a component service s is the probability

that a request is responded to correctly. The value of the availability of a

service s is calculated using Equation (2).

qre(s) =
Nc(s)

K
(2)

whereNc is the number of times the service s has been successfully completed

within the maximum expected timeframe, and K is the total number of

invocations.

It is noted that the term “component service” indicates an operation of a

web service component in this study, not the whole service component including

multiple operations.

3.1.3 Service Profile

To efficiently manage component services, we must obtain and store the im-

portant attributes of a component service, including the service name, service

interface, service type, service input, service output, and service provider. The

service name is a unique identifier for a component service. The service interface

plays the role of the specification with which the service is realized. Candidate

failover services should follow the same service interface. Service inputs and out-

puts are used to build the SDG, which aims to ease fault tracking (described in

Section 3.2). The service type can be identified from two viewpoints: Retriable

and Compensable. If a component service guarantees a successful termination

after a finite number of invocations, it is Retriable; otherwise, it is not retriable.

If the component service supports compensable transactions, it is Compensable;

conversely, if the component service execution does not affect the state of the

service, it is Non-compensatory. Therefore, services can be classified into four

types: N (non-compensatory), C (compensable), NR (non-compensatory and

retriable), and CR (compensable and retriable).

3.1.4 Service Risk

In the proposed approach, we use the notion of risk to predict possibility faults

or QoS declines. According to the definitions in [Verdon and McGraw 2004], two

important concepts are relevant: (a) the object of the protection efforts, which

can be a system component, data, or a complete system; and (b) the risk, which

is the probability that an object suffers an event for a given negative impact.

For analyzing the risk of a service composition, two levels of protection tar-

gets may be considered: the service execution engine, which is responsible for

controlling and managing service flow, and the component services, which are

309Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

hosted in distributed web servers. Because the service execution engine is always

embedded in the central service bus, it is most likely constructed with better

hardware resources than individual web servers, and is more likely built with

more mature fault tolerance mechanisms at the operating system or server lev-

els to achieve higher stability. Thus, in this study, we focus on the risk analysis

and tracking of component services. We follow the risk definition specified in

CMMI [CMMI Product Team 2010] to calculate the risk exposure of a compo-

nent service for a service composition by using Equation (3):

Risk = Probability× Impact (3)

Two elements of risk, risk probability and risk impact, are described as fol-

lows.

Risk Probability. Risk probability is a value that estimates the stability

of a component service. We adopt the QoS values of the component service by

using historical data to calculate Equation (4):

P = (1−Wp)× T +Wp ×AR (4)

where Wp is a weight value to represent the importance of an AR value, AR is

the rating of availability and reliability, as shown in Table 2, and T is a value

calculated using Equation (5) to evaluate the stability of the service response

time.

Table 2: Rating rules for availability and reliability

Rule AR Rating

Availability or Reliability is between 0% and 90% 1.0

Availability or Reliability is between 90% and 99% 0.8

Availability or Reliability is between 99% and 99.9% 0.6

Availability or Reliability is between 99.9% and 99.999% 0.4

Both Availability and Reliability are more than 99.999% 0.2

T =
STD(RT)

Mean(RT)
(5)

where STD(RT) is the standard deviation of all records of response time for a

service, and Mean(RT) is the arithmetic mean of all records of response time

310 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

for a service.

The reason why applying only one rating for availability and reliability is

because either low availability or low reliability should be treated as high risk

probability, thus, a service is regarded as with low risk probability only when

it is with both high availability and high reliability. Accordingly, we devised a

set of rating rules (shown in Table 2) to address the above concerns by consid-

ering availability and reliability simultaneously. Currently, the value ranges of

availability/reliability in these rules are pre-defined and the rating is derived by

normalizing the popular 1-to-5 rating scale to the scale between 0 and 1. These

rules can be adapted by the system administrator for fitting different contexts

in different service domains.

To illustrate how to compute T , we take the QoS data shown in Table 3 as

an example. After calculation, the value of AR is 0.8, and the value of T is 0.2.

If wp = 0.7, the value of risk probability P is 0.62. Risk probability would be

calculated when the service flow starts, and could be continuously updated in

the following phases.

Table 3: Examples for the rating of response time

Attribute Value

Arithmetic mean of response time 8.20

Standard deviation of response time 1.64

Availability 99.60%

Reliability 98.25%

Probability 0.62

Risk Impact. Risk impact is a value that indicates possible damage when a

component service in a composite service malfunctions. In this study, we calcu-

late risk impact by extending the method proposed in [Ma et al. 2010] because,

if a component service is more important, the damage is greater when this ser-

vice cannot operate correctly. In this study, the risk impact value is aggregated

by the Importance Point (IP) assigned by the user and the analysis results of

execution path analysis. The user can assign an IP to each node, ranging from

1 to 10, with a higher score indicating that the corresponding component ser-

vice is more important than others. We then convert all scores to reduce their

sum to 1, to derive Iu. On the back side, we leverage the basis path-testing

method [Hutcheson 2003] to retrieve all possible representative execution paths

311Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

for the composite service, and assign an Execution Point (EP) score to each

service node based on their probability of emergence by applying Equation (6).

We then convert all scores to reduce their sum to 1, to derive Ie. Finally, we can

calculate the risk impact through Equation (7).

EP (Sn) =
BP (Sn)

BP
(6)

where BP (Sn) is the number of basis paths that include service node n, and BP

is the number of all basis paths.

I =
(1− wi)× Ie + wi × Iu

Imax
(7)

where Iu is the converted score assigned by users, Ie is the converted score ana-

lyzed from the execution path, wi is the weight for representing the importance

of Iu in this equation, and Imax is the maximum of all I values for all component

services.

For the motivating example, we can calculate the impacts of all component

services as follows. We define S = {S1, S2, S3, S4, S5, S6, S7, S8, S9, S10}
to represent the composite service. Since booking airline tickets and reserving

hotel rooms is the ultimate goal of this composite service, the importance point

assigned by the user UP = {1, 2, 1, 1, 1, 1, 2, 1, 1, 1}, and the weight wi = 0.7 to

lay more stress on the user’s viewpoint. Three execution paths {S1−S2−S3−S5,

S1 − S2 − S3 − S4 − S6 − S7 − S8 − S9, S1 − S2 − S3 − S4 − S6 − S7 − S8 − S10}
are in the flow; therefore, the execution points are calculated through execution

path analysis EP = {1, 1, 1, 2
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 ,

1
3 ,

1
3}. After this computation, the

value of set Iu = {0.083, 0.167, 0.083, 0.083, 0.083, 0.083, 0.167, 0.083, 0.083,
0.083 }, Ie = {0.15, 0.15, 0.15, 0.10, 0.05, 0.10, 0.10, 0.10, 0.05, 0.05 }, and I =

{0.7368, 1, 0.7368, 0.5789, 0.4211, 0.5789, 0.8421, 0.5789, 0.4211. 0.4211 }.

3.1.5 Reaction Strategy

As mentioned, three reaction strategies are included in this study: Substitution,

Compensation, and Re-invoke. “Substitution” is a strategy that attempts to

select another failover service with the same interface as the faulty one. The

interface of a service is recorded in its service profile. “Compensation” is used

to restore the correct object states that were correct, in case these were affected

by a fault. Only compensable services should be compensated for, whereas non-

compensatory services are not required to perform compensation. “Re-invoke”

re-executes the same service invocation with the same parameters and contracts.

312 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

3.2 Risk-Driven Service Composition Management Process

Based on these concepts, we devised a management process, RDSCM, which

includes four sub-processes: preparation, planning, monitoring and reaction, and

analysis.

Service
flow Service

dependency graph
Preparation

Process risk
l i d t

Planning
Service
profile

depe de cy g ap

Historical
data

analysis data

Monitoring
l

Monitoring &
R tiAnalysis

Reaction
record

planReactionAnalysis
Monitoring

record

Figure 3: Risk-Driven Service Composition Management Process

As shown in Figure 3, in the preparation phase, RDSCM calculates the risk

impact of each component service based on the service flow, and computes the

risk probability of each component service according to historical QoS data.

The risk exposure values can be determined by aggregating the impact and

probability data. In addition, RDSCM also analyzes the service flow and service

profiles of all component services in the flow to generate the SDG. In the planning

phase, RDSCM produces a monitoring plan based on the SDG, and processes

risk analysis data. In the monitoring and reaction phase, RDSCM monitors the

composite service according to the monitoring plan. If any fault occurs, RDSCM

selects the appropriate recovery actions specified in the monitoring plan. Finally,

in the analysis phase, RDSCM analyzes all execution records and updates the

historical QoS data, which influence the risk analysis results of other instances

of the same composite service or other composite services.

3.2.1 Preparation Process

As shown in Figure 4, in the preparation phase, the risk of the component

services that are in the composite service is analyzed. If the risk of a component

service is higher than a given threshold, RDSCM attempts to select another

service with the same service interface, to replace the risky one. The substitute

strategy, such as selecting the service with the best QoS or selecting the service

313Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Substitute service
Historical

data

Analyze risk C t i

High

Low Process riskAnalyze risk
level

Component service
risk levelService

flow

Process risk
analysis data

N b tit tBuild service
dependency graph Notify

No substitute

Service
fil Serviceprofile Service

dependency graph

Figure 4: Preparation Process

used most frequently, can be chosen in advance. If the risk of the substitute

service is still too high, RDSCM stops the process and shows an alert message

to the user.

Building the Service Dependency Graph. In the preparation phase, the

SDG is built according to Algorithm 1. Opposite to the service flow showing the

execution sequence, the SDG represents the dependency relationship among the

component services for a composite service. For constructing the dependency

graph, we extract the data flow among the component services (i.e., the source

and the target of the service data), and invert the service flow.

In the motivating example, the input and output data among component

services are analyzed first (shown in Figure 5). The dependency graph of the

travel service is generated based on Algorithm 1 (shown in Figure 6). In this case,

because service MAFR01 accepts input data O1 from service SF01, we can assert

that MAFR01 depends on SF01, and the edge representing this dependency

relationship in the SDG is connected from source MAFR01 to target SF01.

By following these graph construction rules, a complete SDG can be generated

automatically.

3.2.2 Planning Process

In this phase, RDSCM automatically produces a monitoring plan document,

which can be modified by the manager. The plan includes four parts, as follows:

1. Monitoring Attribute. This part specifies the QoS attributes the manager

plans to monitor. In default mode, the SDG monitors the execution time,

availability, and reliability.

314 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Algorithm 1 Building the Service Dependency Graph

1. retrieve the list of component services which are in the composite service cs
and generate an array css

2. declare a graph g
3. for each service si in css do
4. for each service sj in css do
5. if output of sj is a part of input of si then
6. add sj to the si ’s pre-service list si .slt
7. end if
8. end for
9. end for
10.for each service si in css do
11. for each service sk in si.slt do
12. add an edge from si to sk in graph g
13. end for
14.end for
15.return g

o

SF01

GET01
o0

o6
o9

MAFR01

GHRR01o1
o3

SH01
o2

o7

o10

GFRR01

MAHR01

PTHI01

o4

7

o11
CTFR01

CTHR01

4

o5

o8
o11

o12

Figure 5: The Dataflow for the Travel Composite Service

2. Monitoring Threshold. This part sets the threshold for high risk or medium

risk.

3. Monitoring Frequency. In the preparation phase, the risk degree is computed

and classified into three types: high, medium, and low. The highly risky

service is substituted immediately, but the services with medium or low risk

require careful monitoring. Thus, this part arranges the monitoring frequency

(i.e., the cycle time of the QoS probe). The frequency of services with medium

risk is generally more intensive than services with low risk.

315Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Termination

SF01

MAFR01

CTFR01CTHR01

MAFR01

GFRR01 GET01

SH01

MAHR01

GHRR01PTHI01

Figure 6: The Service Dependency Graph for the Travel Composite Service

4. Substitution Policy. This part determines the procedure to swap the faulty or

risky service. The available substitution policies include choosing the most

used services, choosing the service with the best QoS, and choosing the

service with the lowest risk.

3.2.3 Monitoring and Reaction Process

In this phase, RDSCM monitors the execution of the composite service based on

the monitoring plan. This phase has two main tasks: the first is collecting the

execution data with all service instances or additional service-probing records

according to the monitoring frequency setting, and the second is detecting and

recovering the service faults. We can define an emerging service fault when a

component service suffers the following situations: (1) The component service

is malfunctioning or missing; (2) The component service cannot satisfy the re-

quirements or returns data with the wrong format; and (3) The component

service becomes highly risky because of low availability/reliability or instability

of performance.

As shown in Figure 7, in the monitoring and reaction phase, RDSCM enters

the waiting state to wait for an instance to be instantiated. If an external fault

(a fault outside the current service flow instance) occurs during this time, it

affects all instances of this composite service. Therefore, RDSCM increases the

risk probability of the component service if faulty instances occur, and inspects

its risk degree to determine if it is higher than the threshold. When an instance

is instantiated, RDSCM runs the instance. If the instance is faulty, RDSCM

316 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Monitoring
plan

Monitoring
record

yes yes

no

Enter the
waiting state

yes
External fault Increase

risk probability
Exceed high risk
threshold or not Substitute

yes

no
Run the service

flow instance

Occur any fault Generate faultyes ReactionEnter the serviceOccur any fault
or nor

Generate fault
tracking path

y

no

Reaction
record

Enter the service
recovery process

Frequency of
risk update

no

yes
Update

database

y

Figure 7: Monitoring and Reaction Process

generates an FTP. Based on the FTP, RDSCM enters the service recovery process

to recover the instance. Finally, RDSCM bases the configuration property of the

risk update frequency to update the QoS database. In the following subsections,

we discuss generating the FTP and the service recovery process.

Generating the Fault Tracking Path. If an instance reveals faults, RD-

SCM uses the SDG to produce an FTP, and selects reaction strategies and

performs recovery actions for the component services in the FTP. Following the

error chain paradigm, an FTP includes the failure occurrence point, the fault

source, and zero or more intermediate services. In addition, zero or more non-

failure services precede the fault source in the service flow. For example, in the

motivating example (shown in Figure 8), if service SH01 is the failure occurrence

point that reveals the fault, the possible longest FTP SH01-GFRR01-MAFR01-

SF01 is established first because any of these four services may be the fault

source. If service SF01 is confirmed as the fault source, the actual FTP is also

SH01-GFRR01-MAFR01-SF01, and service GFRR01 and MAFR01 are assigned

as intermediate services. If service GFRR01 is determined as the fault source,

the FTP is SH01-GFRR01 without any intermediate service.

317Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Termination

SF01

MAFR01

CTFR01CTHR01

MAFR01

GFRR01 GET01

SH01

MAHR01

GHRR03PTHI01

Figure 8: The Fault Tracking Path for the Travel Composite Service

Service Recovery Process. When the fault source is determined, the

RDSME conducts the service recovery process to fix the flow instance. First,

the RDSME increases the risk of the fault source (and updates the risk value

into the database), and derives the service type (described in Section 3.1) of the

fault source for further processing. Depending on the type, RDSCM performs

the recovery actions to recover the source. For example, if the service type of

the fault source is CR, RDSCM compensates for this service first, and then re-

invokes it and tests if the service is workable. If the service is still malfunctioning,

RDSCM selects another interface-compatible service according to the substitu-

tion policy to substitute for the faulty service. RDSCM may then compensate

for intermediate services or the failure occurrence point first (if the service is

compensable) because the incorrect data may affect the business state of these

services, and then RDSCM re-invokes the service (if the service is retriable).

The reaction strategy of service substitution is unnecessary for non-fault-source

services because these services are functioning. By following these steps, all ser-

vices in the FTP are recovered in the inverse sequence of the FTP, and the faulty

composite service is then recovered.

4 Implementation and Experimentation

This section presents a prototype system, RDSCME (RDSCM Engine), and the

experimental setup and results.

318 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

4.1 System Prototype: Risk-Driven Service Composition

Management Engine

In this subsection, we demonstrate the prototype system RDSCME1 that imple-

ments the proposed RDSCM approach. At the beginning of use, the RDSCME

retrieves the profiles of all component services to generate a service flow rep-

resenting the composite service. In this case, the composite service flow is a

travel service that includes 10 component services, such as booking flight tickets

and reserving hotels. Second, if any component service is judged too risky from

the analysis of its risk probability and risk impact, the system automatically

substitutes another interface-compatible service for the risky service. Third, the

system generates the SDG. The system provides a user interface to display the

service flow by choosing Label 1, service attributes by choosing Label 2, the SDG

by choosing Label 3, and the service recovery flow by choosing Label 4.

The fundamental functionality of the RDSCME is producing a service flow

graph (Figure 9) by retrieving the description of the composite service and the

profiles of component services. Vertices represent the component services, and

the edges represent the execution sequence. By pressing the “Analysis” button,

the user can browse the attributes of all the component services in the table

shown in Figure 10. In this table, if the risk level of any component service

is higher than the threshold, the corresponding row is displayed in red to em-

phasize the risky situation. The user can then press the “Substitute” button to

replace the highly risky service by another service according to the predefined

substitution policy. In this case, Service GHRR03 is the substitute of Service

GHRR01, based on the substitution policy. When all the component services in

the composite service are not highly risky, the RDSCME can generate the SDG.

For simulating the process of service fault tracking and recovery, the user can

first press the “Service Dependency Graph” button to browse the SDG. In the

graph, the vertices are the component services, and the edges are the dependency

relationships. The RDSCME provides a simulation function to allow the user to

simulate the fault tracking. The user can select a failure occurrence point, and

then RDSCME generates a chain to express the path from the failure occurrence

point to the root in the SDG. One of the services in this path is the fault source.

The user can select a fault source in this chain, and RDSCME splits the chain

into three sections. The failure occurrence point is in purple, the intermediate

nodes are in blue, and the fault source is in red (shown in Figure 11).

According to the proposed service recovery process, the RDSCME can gen-

erate the recovery plan: a new service flow (Figure 12). In this case, the fault

source is identified as the first component service: Search Flight Service SF01;

five new activities are inserted after the failure occurrence point: Search Hotel

1 The system prototype can be accessed via http://resrv-
92.se.ntou.edu.tw:8080/RDSCM/prototype/RDSCME-prototype.zip

319Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Figure 9: Service flow GUI

Figure 10: Service attribute table

Service SH01. If SF01 does not operate well temporarily, we can compensate

and re-invoke SF01 (the first activity) to perform a recovery; otherwise, the sub-

stitute service SH02 is invoked (the second activity) to assume the SH01 task.

Services MAR01, GFRR01, and SH01 should be compensated for and re-invoked

sequentially (the third, fourth, and fifth activities) to complete the recovery flow.

4.2 Experimentation

This section describes the verification of the proposed approach. The goal of the

experiments2 is demonstrating the ability of the proposed process to efficiently

and effectively enhance the robustness of the composite services. We devised two

2 Experimental setup and results can be accessed via http://resrv-
92.se.ntou.edu.tw:8080/RDSCM/experiments/RDSCM-experiments.zip

320 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Figure 11: Displaying the Fault Tracking Path (FTP) in the Service Dependency

Graph (SDG)

experimental scenarios: (1) Simplified travel composite service using real web ser-

vices; and (2) Complex travel composite service using large-scaled QoS data of

virtual web services. For both experiments, we compared our approach with the

traditional service execution method without applying any service management

methods, and the widely-used service optimization method, SAW (Simple Ad-

ditive Weighting techniques) [Ye and Mounla 2008], which can effectively find

service combinations with good QoS. Notably, the SAW method is utilized by

AgFlow [Zeng et al. 2004], a widely-cited approach. In the SAW-based service

selection method, the QoS values are normalized by scaling them to a value be-

tween 0 and 1. The total QoS score of a service is the summation of values of

all QoS factors. Component services can be selected according to the calculated

QoS score before the execution of the composite service. Comparing with SAW-

based service selection, RDSCM only swaps component services for highly risky

ones without actively selecting component services.

For both two experiments, we compared three alternatives: traditional service

execution, RDSCM, and SAW-based service selection, from three viewpoints:

fault occurrence, preparation time and the rate of service utilization. The prepa-

ration time is the time spent (before service execution) to select services in the

SAW-based service selection method or the time spent to perform risk analysis

and swap services in RDSCM. Obviously, there is no preparation time for the

traditional service execution method. The rate of service utilization is the pro-

321Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Figure 12: The flow of recovery actions

portion of selected and utilized component services to all candidate component

services.

Regarding the experimental environment, all experiments were conducted in

a desktop computer with the following configuration: Intel i7-2600 3.4GHz with

4G RAM, 500G hard disk, and Windows 7 (32 bit). In next two sub-sections,

we discuss these two scenarios in detail.

4.2.1 Experimentation for Real Web Services

In the first experimental scenario, we devised another relatively small process

(shown in Figure 13) which offers travel service by comprising three abstract

component services: HBS (Hotel Booking Service), HN2LLS (HotelName to Lat-

itude/Longitude Service), and LL2AS (Latitude/Longitude to Address Service).

Each abstract component service can bind five real web services provided by

Google, Bing, EzTravel, LionTravel, etc.. Historical QoS data for these 15 web

services were retrieved through probing all services twice per minute by using

Apache JMeter3, a Java-based performance measurement tool.

We set the high-risk threshold as 0.6 and conducted this experiment 125

times for visiting all service combinations. For the risk probability, we set the

weight of A/R (i.e., wp in Equation 4) as 0.7 to lay emphasis on the importance

3 http://jmeter.apache.org/

322 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

HBS (Hotel Booking Service)

HN2LLS (HotelName to LatLng Service)HN2LLS (HotelName to LatLng Service)

LL2AS (LatLng to Address Service)

Figure 13: Simplified travel composite service

of availability/reliability. For the risk impact, we also set the weight of the user

assignment (i.e., wi in Equation 7) as 0.7 to stress on the importance of the

user viewpoint, and assigned the IP of the “hotel booking service” as 2, and the

other two services as 1.

Figure 14, 15, and 16 show the experimental results. Regarding the effect of

fault prevention, approximately 95% of the faults (comparing with the traditional

service execution method) are avoided through the proposed risk-driven man-

agement approach. Although the SAW-based service selection method shows the

same performance of fault prevention with RDSCM, it needs more preparation

time (122.86% of RDSCM) and relies on a small number of component services

with high QoS score (it utilized 20% of all candidate component services); Con-

trarily, RDSCM can efficiently prevent possible service faults by spending less

preparation time and decentralizing loads to higher proportion of component

services (RDSCM utilized 55.33% of all candidate component services). Dis-

tributing loads can help avoiding degradation of QoS for the services with high

QoS score.

4.2.2 Experimentation for Large-Scaled Virtual Web Services

The second experimental process is based on the motivating example: the travel

composite service, comprising 10 abstract component services to perform a large-

scaled verification. For each component services, we prepared 500 corresponding

virtual services with QoS values that are normally distributed. We set the high-

risk threshold as 0.3. For the risk probability, we set the weight of A/R as 0.7 to

emphasize the importance of availability/reliability. For the risk impact, we set

the weight of the user assignment as 0.5 to balance the importance of the user

assignment and basis path analysis, and assigned the IP of both the “make a

flight reservation” service and the “make a hotel reservation” service as 2, and

the others as 1.

For simulating service faults during the execution of a composite service,

323Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Figure 14: The experiment results for real services: faults occurred

Figure 15: The experiment results for real services: preparation time

we generate faults according to the risk probability of each component service.

Initially, we generate a random number γ ranging from 0.0 to 1.0. In general

cases, if the risk probability of a component service is larger than γ, a fault is

generated by our simulator. However, to simulate the situation of “the higher

the risk probability is, the more easily a fault occurs,” we separate the services

into five levels according to risk probability. For the services with higher risk

probability, we lower the chance to generate faults. Through this method, we

can simulate service fault occurrences similar to actual cases.

We simulate the execution of travel composite services 1,000 times for the

three methods, and then repeat this experiment five times. In other words, we

have five sets of experimental results including 1,000 data items of service ex-

ecution. Figure 17, 18, and 19 show the experimental results. The experiment

results are similar to the experiment for real services. Regarding the effect of

324 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Figure 16: The experiment results for real services: rate of service utilization

fault prevention, approximately 84% of the faults (comparing with the tradi-

tional service execution method) are avoided by using the proposed risk-driven

management approach. In this experiment, although the SAW-based service se-

lection method also shows almost the same performance of fault prevention with

RDSCM, it still needs more preparation time (average 127.6%) and relies on a

few component services with high QoS score (it only utilized 0.2% of all candi-

date component services). In a nutshell, RDSCM can efficiently prevent likely

service faults by spending less preparation time and distribute loads to higher

proportion of candidate component services (RDSCM utilized about 72% of all

candidate component services). Besides, the faults occurred can be recovered

since RDSCM can perform appropriate recovery actions to heal faulty compos-

ite services.

5 Conclusion

This paper presents a risk-driven approach to manage composite web services.

The objective of this study is to reduce the probability and damage from service

faults. The implementation and experiments demonstrate that the proposed risk-

driven approach can effectively and efficiently ensure the robustness of a service-

oriented system. The proposed approach offers the following key contributions:

1. Integrates the risk management mechanism with the web service manage-

ment techniques.

2. Provides a method to calculate the service risk exposure for estimating the

possible faults that reside in a service composition.

325Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Figure 17: The experiment results for virtual services: faults occurred

Figure 18: The experiment results for virtual services: preparation time

3. Furnishes a systematic approach to construct an SDG (service dependency)

and an FTP (fault tracking path) to efficiently track service faults and re-

cover the faulty composite service.

Our future research plan is to further analyze all execution records, to de-

termine the common causes of service faults and establish service fault patterns

for further preventing fault occurrences.

326 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

Figure 19: The experiment results for virtual services: rate of service utilization

Acknowledgement

This research was sponsored by National Science Council in Taiwan under the

grant NSC 102-2221-E-019-024.

References

[Alrifa and Risse 2009] Alrifai, M., Risse, T.: “Combining global optimization with
local selection for efficient QoS-aware service composition”; Proc. 18th Int. Conf.
on World Wide Web (WWW ’09), Madrid, Spain (2009), 881-890.

[Alrifai et al. 2012] Alrifai, M., Risse, T., Nejdl, W.: “A hybrid approach for efficient
web service composition with end-to-end QoS constraints”; ACM Transactions on
the Web, 6, 2 (Jun 2012) 7:1-7:31.

[Baresi et al. 2007] Baresi, L., Ghezzi, C., Guinea, S.: “Towards self-healing composi-
tion of services”; Contributions to Ubiquitous Computing, volume 42 of Studies in
Computational Intelligence, Springer Berlin Heidelberg (2007) 27-46.

[Baresi et al. 2010] Baresi, L., Guinea, S., Nano, O., Spanoudakis, G.: “Comprehensive
monitoring of BPEL processes”; IEEE Internet Computing, 14, 3 (May 2010) 50-57.

[Calinescu et al. 2011] Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R.,
Tamburrelli, G.: “Dynamic QoS management and optimization in service-based sys-
tems”; IEEE Transactions on Software Engineering, 37, 3 (May 2011) 387-409.

[El Haddad et al. 2008] El Haddad, J., Manouvrier, M., Ramirez, G., Rukoz, M.:
“QoS-driven selection of web services for transactional composition”; Proc. Int.
Conf. on Web Services (ICWS ’08), Beijing, China (2008), 653-660.

[Erradi et al. 2007] Erradi, A., Maheshwari, P., Tosic, V.: “WS-Policy based monitor-
ing of composite web services”; Proc. 5th Euro. Conf. on Web Services (ECOWS
’07), Halle, Germany (2007), 99-108.

[Friedrich et al. 2010] Friedrich, G., Fugini, M., Mussi, E., Pernici, B., Tagni, G.: “Ex-
ception handling for repair in service-based processes”; IEEE Transactions on Soft-
ware Engineering, 36, 2 (Mar 2010) 198-215.

[Hutcheson 2003] Hutcheson, M.: “Software Testing Fundamentals: Methods and Met-
rics”; Wiley, New York, USA, 2003.

327Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

[Kettunen et al. 2010] Kettunen, J., Salo, A., Bunn, D.W.: “Optimization of electricity
retailer’s contract portfolio subject to risk preferences”; IEEE Transactions on Power
Systems, 25, 1 (Feb 2010) 117-128.

[Kokash 2007] Kokash, N.: “Risk management for service-oriented systems”; Proc. 7th
Int. Conf. on Web Engineering (ICWE’07), Como, Italy (2007), 563-568.

[Kwan and Leung 2011] Kwan, T.W., Leung, H.K.N.: “A risk management method-
ology for project risk dependencies”; IEEE Transactions on Software Engineering,
37, 5 (Sep 2011) 635-648.

[Liu and Deters 2008] Liu, D., Deters, R.: “Management of service-oriented systems”;
Service Oriented Computing and Applications, 2, 2-3 (Jul 2008) 51-64.

[Ma et al. 2010] Ma, S.P., Kuo, J.Y., FanJiang, Y.Y., Tung, C.P., Huang, C.Y.: “Op-
timal service selection for composition based on weighted service flow and genetic
algorithm”; Proc. Int. Conf. on Machine Learning and Cybernetics (ICMLC 2010),
Qingdao, China (2010), 3252-3256.

[Maamar et al. 2005] Maamar, Z., Mostefaoui, S.K., Yahyaoui, H.: “Toward an agent-
based and context-oriented approach for web services composition”; IEEE Transac-
tions on Knowedge and Data Engineering, 17, 5 (May 2005) 686-697.

[Moser et al. 2008] Moser, O., Rosenberg, F., Dustdar, S.: “Non-intrusive monitoring
and service adaptation for WS-BPEL”; Proc. 17th Int. Conf. on World Wide Web
(WWW ’08), Beijing, China (2008), 815-824.

[Papazoglou and van den Heuvel 2005] Papazoglou, M.P., van den Heuvel, W.-J:
“Web services management: A survey”; IEEE Internet Computing, 9, 6 (Nov 2005)
58-64.

[Schmuland 2005] Schmuland, C.: “Value-added medical-device risk management”;
IEEE Transactions on Device and Materials Reliability, 5, 3 (Sep 2005) 488-493.

[CMMI Product Team 2010] CMMI Product Team: “CMMI for development, version
1.3”; Technical report, Software Engineering Institute (SEI), Carnegie Mellon Uni-
versity, USA (2010).

[Tsai and Huang 2011] Tsai, H.Y., Huang, Y.L.: “An analytic hierarchy process-based
risk assessment method for wireless networks”; IEEE Transactions on Reliability,
60, 4 (Dec 2011) 801-816.

[Verdon and McGraw 2004] Verdon, D., McGraw, G.: “Risk analysis in software de-
sign”; IEEE Security and Privacy, 2, 4 (Jul 2004) 79-84.

[Ye and Mounla 2008] Ye, X., Mounla, R.: “A hybrid approach to QoS-aware service
composition”; Proc. Int. Conf. on Web Services (ICWS ’08), Beijing, China (2008),
62-69.

[Zeng et al. 2004] Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam J.,
Chang, H.: “QoS-aware middleware for web services composition”; IEEE Transa-
tions on Software Engineering, 30, 5 (May 2004) 311-327.

328 Ma S.-P., Yeh C.-L., Chen P.-C.: Service Composition Management ...

