
Multilevel and Coordinated Self-management in

Autonomic Systems based on Service Bus

Mohamed Zouari

(CNRS, LAAS 7 avenue Colonel Roche F-31400 Toulouse, France

Université de Toulouse, INSA, LAAS; F-31400 Toulouse, France

mohamed.zouari@laas.fr)

Codé Diop

(CNRS, LAAS 7 avenue Colonel Roche F-31400 Toulouse, France

Université de Toulouse, INSA, LAAS; F-31400 Toulouse, France

code.diop@laas.fr)

Ernesto Exposito

(CNRS, LAAS 7 avenue Colonel Roche F-31400 Toulouse, France

Université de Toulouse, INSA, LAAS; F-31400 Toulouse, France

ernesto.exposito@laas.fr)

Abstract: Modern dynamic distributed systems require to dynamically take into ac-
count at runtime the changes in users’ needs and the execution environment varia-
tions in order to improve the quality of service. The evolution of distributed systems,
through the smart management of their properties and the extension of the exist-
ing integration infrastructures, becomes a necessity. Autonomic computing allows the
self-management of system properties at runtime, according to fluctuations in the envi-
ronment and changes in users’ requirements. However, the mechanisms for parallel and
distributed execution of multiple self-management processes have not been addressed
substantially. It is critical to coordinate the execution of several processes performed
by different autonomic managers, while still guaranteeing specific and global goals
achievement. We address this issue by proposing a software architecture that allows
the coordination of multiple autonomic managers which handle several component-
based and service-oriented collaborative software entities. This architecture offers a
distributed cross-layer self-management solution through orchestration and choreogra-
phy. Using both techniques, autonomic managers running on multiple locations and
different layers will be able to achieve their goals in a consistent and cost-effective way.
In this paper, we present a set of mechanisms intended to coordinate the distributed
execution of a set of self-management processes in one or more layers. We have cho-
sen an use case involving the self-management of autonomic data replication systems
integrated via an autonomic service bus in order to illustrate our approach.
Key Words: autonomic computing, quality of service, enterprise service bus, dis-
tributed and coordinated management
Category: D.2.9, D.2.11, D.2.12

1 Introduction

The management of distributed applications and more generally distributed

systems is a complex and critical process. In fact, these systems run on dis-

Journal of Universal Computer Science, vol. 20, no. 3 (2014), 431-460
submitted: 24/3/13, accepted: 4/2/14, appeared: 1/3/14  J.UCS

tributed infrastructures that are subject to important variations. For instance,

telemedicine applications provide services to ensure remote health care delivery

for patients and the collaboration of remote and mobile caregivers. The execution

environment of these applications is characterized by the diversity of terminals,

changes in computing and communication resources availability, and different

network connection conditions. These kinds of applications imply also users that

have different quality of service (QoS) requirements according to their profiles

and preferences. In this context, the configuration change of application features

(e.g., software components behaviour, their connections and their distribution)

at runtime enables the system to deal with different fluctuations in available

resources, to meet new user requirements, and to improve the QoS.

Moreover, these distributed systems are developed more and more following

a service-oriented architecture (SOA) approach and the Enterprise Service Bus

(ESB) is used to allow the integration of pervasive, distributed and networked

systems, which are a composition of heterogeneous services and software com-

ponents. Consequently, the ESB may integrate a large number of parallel and

concurrent systems. In the context of very active and dynamic environments

where new systems and services can be increasingly deployed within the integra-

tion environment, overload situations for the internal components and resources

of the bus may occur. In such situations, the bus becomes a bottleneck that leads

to QoS degradation. Thus, the bus needs to be able to deal with these issues by

the dynamic reconfiguration and optimization of communication mechanisms.

In this context, the self-management property (i.e. self-configuring, self-op-

timizing, self-healing and self-protecting) represents a solution for software sys-

tems running in fluctuating and heterogeneous environments. In fact, the auto-

nomic computing approach [Huebscher and McCann 2008] accelerates the ac-

complishment of more appropriate system configuration and ensures cost savings

through the reduced dependence on human intervention. In general, an auto-

nomic manager monitors the execution context (resources availability, terminal

capabilities, connection quality, user activity, etc) in order to trigger dynamic

reconfiguration whenever it predicts or detects an undesirable situation. It makes

decisions regarding the target goal and controls the modification of the system

components in order to achieve the appropriate configuration.

A single autonomic manager may satisfy the self-management requirements

when the target application is composed of small number of nearby software

components in homogeneous environments. However, when a decentralized ap-

plication or several inter-dependent applications and services are running in het-

erogeneous environments, distributed management mechanisms are needed to

improve their quality such as efficiency and scalability. The distributed man-

agement leads to the concurrent execution of multiple reconfiguration processes

performed by different autonomic managers. Conflicting decisions and inconsis-

432 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

tent changes may occur if the interdependencies among the applications’ com-

ponents are not considered. Therefore, coordinating the activities of multiple

autonomic managers is critical in order to preserve the overall consistent state

of the applications.

Currently, the self-management mechanisms in existing systems are generally

implemented in ad-hoc way. The existing approaches do not allow to coordinate

the activities of multiple autonomic managers based on distributed coordination.

In addition, it is not possible to easily customize the coordination capabilities.

Furthermore, the existing approaches do not enable to add autonomic capabil-

ities in several layers like the business services layer and the integration layer

with aim of reconfiguring the appropriate entities in one or more layers in a

coordinated and cost-effective way. In order to overcome these problems, we

propose an approach to define a software architecture for distributed and coor-

dinated self-management mechanisms for dynamic software reconfiguration. This

architecture supports both the orchestration and the choreography of multiple

self-management processes.

We define a software architectural model of autonomic managers that allows

the variability of their configuration and provides flexible coordination mecha-

nisms. This model abstracts distributed and coordinated self-management mech-

anisms in a modular way and facilitates their specialization during the devel-

opment process. We use this model to set up several autonomic managers that

manage the business services and the bus communication services. In this way,

it becomes possible to reconfigure dynamically the business services to improve

their QoS and to rely on the autonomic capabilities of the bus in order to opti-

mize and make scalable the communication mechanisms. Our approach permits

to change the configuration of the business services, the bus configuration, or

both of them imposed jointly. Our case study concerns the data management in

medical environments for collaborative remote care delivery.

The remainder of the paper is organized as follows. Section 2 introduces our

case study. Section 3 analyses related work. In section 4, we present our archi-

tectural model of distributed autonomic systems with focus on the coordination

mechanisms. We introduce the approach to develop an autonomic replication sys-

tem and we explain how to make an associated service bus autonomic in Section

5. A scenario of distributed self-management for QoS improvement is described

in Section 6. Section 7 gives an overview of the prototype and its evaluation.

Finally, we conclude and discuss future work in Section 8.

2 Case study

Our case study is related to the healthcare delivery within and across organi-

zational boundaries and the solutions for evolving healthcare systems towards a

433Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

���������	
��
��������

�����	��
����� ��
������

����������	�

��
�����

����������	�

��
�����
�����

��������

�����

�������

��������

��
�����

��������

�	
�������	�

��
�����

�����	��

�
���

�����	��

��	�����	��

�
���

���������	
��
��������

��
�����

����������	�

��
����
����������

������

��������

��
����

��������

�	
�������	�

��
����

Figure 1: Integrated systems for remote collaborative health care delivery

service-oriented architecture using the enterprise system bus middleware technol-

ogy for resolving integration and performance issues. We improve the availability

of data and response times for data requests using data replication systems. We

make the replication systems autonomic to improve their functionalities and

their quality characteristics.

We consider a set of services for remote health care delivery. They enable

timely remote access to the health status of patient having chronic disease and

provide him with the appropriate interventions. In addition, they offer means for

the collaboration of caregivers working at different locations (distant hospitals,

mobile emergency team, etc). Successful health care relies on collaborative care

that requires a broad network of collaborative interactions among geographi-

cally distributed caregivers. They may share information from different sources

to treat a patient. Having accurate and timely information is vital to provide

efficient care. Consequently, adding autonomic capabilities to replicated data

management systems may lead to significant improvement of quality of service

in terms of data availability and access latency.

Our goal is to improve the exchange of electronic healthcare information and

sharing information stored in various healthcare systems and hospitals while

preserving specific goals of individual systems and also collaborating for the sat-

isfaction of global health systems’ goals. Figure 1 shows the integrated systems

that provide the remote healthcare services. The ESB infrastructure integrates

healthcare systems, the home patient monitoring system, the replication sys-

tems and the data sources. It provides the basis for the exchange of electronic

434 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

health data and meets the integration needs. The replication system Replica-

tion System 3 on the patient’s home, replicates data provided by the monitoring

system over the WAN. Replication System 1 and Replication System 2 replicate

patient’s data handled by the care givers respectively in hospital 1 and 2.

3 Related work

An important number of research works has been carried out in the area of self-

management in distributed systems and services as well as the coordination in

multi-agent systems.

3.1 Autonomic Computing and ESB

In the last few years, a number of surveys have evaluated the state of re-

search efforts in the autonomic computing field [Salehie and Tahvildari 2005,

Parashar and Hariri 2004, Nami and Bertels 2007, Khalid and al. 2009]. They

provide a review of architectures, frameworks, techniques, and challenges in Au-

tonomic Computing (AC).

One of the first and most important contribution is represented by the AC

approach initially proposed by IBM in order to face the increasing complexity

of manual management of information technologies [Kephart and Chess 2003,

Horn 2001, Huebscher and McCann 2008]. The AC paradigm proposes a spe-

cialized architecture based on a set of well defined components and interfaces

as well as a precise specification of the individual and collective expected auto-

nomic behaviour of the diverse and potentially distributed system components.

The most basic autonomic composition is based on one managed element (ME)

associated with one autonomic manager (AM) in order to build one elementary

autonomic element (AE).

For more complex compositions involving several potentially distributed ME,

a hierarchical management model has been proposed in [Ac 2006] based on:

(1) a single resource management where one AM manages one ME, (2) multi-

properties management of a single resource where several AMs manage the var-

ious properties of one ME (i.e. self configuring, self-optimizing, etc), and (3)

multi-elements management where one AM manages a homogeneous or hetero-

geneous set of MEs. Similarly, at higher levels of an autonomic system, hier-

archical compositions of autonomic elements and autonomic managers can be

defined. In these compositions, each managed AE offers the sensor interface and

implements the effector interface. A higher level AM manages the lower level

AE by implementing the MAPE (Monitor, Analyse, Plan, Execute) functional

phases and communicating with the AE via the touchpoint interface (composi-

tion of both sensor and effector interfaces).These high level autonomic managers

are called orchestrators. At lower or higher levels of an autonomic system, the

435Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

overall self-management functions as well as the MAPE activities performed by

basic autonomic managers orchestrators are fundamentally based on its knowl-

edge base and the policies guiding its autonomic behaviour.

The generic architecture promoted by AC, has also been applied in the area

of networked systems and in particular in the self-management of network re-

sources and technologies. In this area, the autonomic networking (AN) approach

is aimed at reducing the complexity involved on network resources and ser-

vices management face to the increasing diversity of heterogeneous networked

devices, distributed applications, components, services and network technolo-

gies [Strassner and al. 2006, Dobson and al. 2010]. [Exposito 2012] proposes in

this domain 4 levels of autonomic orchestrators in order to provide the basic coor-

dination functionalities required by an Autonomic Transport Layer: stream-level,

application-level, system-level and group-level. For instance, at the application-

level, managers aimed at orchestrating the several streams of the same appli-

cation taking into account the application requirements or preferences. Like-

wise, [Strassner and al. 2009] proposes an autonomic orchestration based archi-

tecture for a Future Internet by mapping business goals to network services in

order to dynamically adjust distributed services and resources. In the context

of ESBs, [Morand and al. 2011] proposes an integration model called Cilia. The

main goal of this approach is to make autonomic the integration process, with the

aim to tackle scalability issues or execution contexts evolutions. The theory of

control is used with a set of state variables and action variables in order to allow

following the state of the integration contexts. Autonomic managers are intro-

duced to adapt the integration process if needed. In [Gonzalez and Ruggia 2012],

authors propose ESB-based solutions that can be applied at runtime to address

some QoS issues in service-based systems. They propose an adaptive ESB in-

frastructure through which, for each mediation service, an adaptive service is

proposed with a dynamic behaviour that depends on the runtime information.

However, the orchestration technique may be not suitable in many cases, espe-

cially when (1) the management processes performed by autonomic managers

may scale to a high number of autonomic managers (2) the opacity of manage-

ment process details is desired in the management of systems belonging to dif-

ferent organizations, (3) the different management processes require their own

customizations performed by experts in many application domains and tech-

nologies, and (4) the different self-management processes are highly dynamic or

goal-seeking.

The choreography and orchestration technology within a SOA is a popular

technique for composing services and ensuring the compatibility of interacting

processes. Some works consider Autonomic Computing together with Web Ser-

vices to avoid manual configuration in the process of composing services into

complex applications. For instance, [Delamer and Lastra 2006] enables to auto-

436 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

mate the composition of service-oriented industrial applications in order to eman-

cipate the factory floor from the timing and monetary constraints of manual pro-

gramming efforts during deployment. Other approaches have focused on generat-

ing a distributed choreographed implementation from a logically centralised or-

chestration specification. [Mostarda and al. 2010] describes an approach where

given a logically centralised service orchestration, it automatically generates a

distributed implementation that correctly enforces the orchestration behaviour.

A similar approach was implemented in CiAN, a choreography-based workflow

engine [Sen and al. 2010]. [Geiger and al. 2011] deals with issues to check the

conformance between ebBP-ST (a subset of ebBP) choreographies and corre-

sponding WS-BPEL based implementations. Unfortunately, such approaches do

not address the problems of distributed and coordinated self-management pro-

cesses. Therefore, their interest for coordinating autonomic managers over het-

erogeneous environments or in several layers is limited.

3.2 Multi-agent negotiation mechanisms

Multi-agent systems have been widely used for the analysis, the modelling and

the development of complex and distributed computer systems. An agent is an

autonomous and intelligent entity that is capable of acting on itself and on

its environment in a multi-universe agent and can also communicate with the

other agents. Its behaviour is the consequence of its observations, its knowl-

edge and the interactions with the other agents [Ferber 1995]. With regard to

the distributed problem solving [Durfee and Lesser 1989], a multi-agent system

is defined as a loosely coupled network of agents working together as a soci-

ety to solve problems that are generally beyond the scope of any single agent.

Recently, a growing number of multi-agent systems have been developed in differ-

ent domains such as TRAINS [Allen and al. 1995], HOMEY [Beveridge 2001],

PARMA [Greenwood and al. 2003], Workflakes [Valetto and Kaiser 2003], etc.

Most of these systems are centralized in the sense that they are based on a me-

diation agent, which can cause a bottleneck. For instance, Workflakes has been

developed as an execution environment for the system reconfiguration within

the autonomous platform Kinesthetics [Valetto and Kaiser 2003]. Workflakes is

constructed as an extension of the agents that execute programs called worklets

which perform local reconfiguration. An engine allows the coordination of the

agents in order to control the execution of the various reconfigurations.

The researchers agree on the purpose of the negotiations which is the re-

sult to a satisfactory common agreement. There are many similar definitions

in this area. One of the most basic and succinct is made by Bussman and

Muller [Muller 1996]: ”Negotiation is the communication process of a group of

agents in order to reach a mutually accepted agreement on some matter”. All

mechanisms for negotiation are based on the exchange of offers. Agents make

437Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

offers that they find acceptable and respond to offers proposed to them. Sev-

eral works have been proposed [Jennings and al. 2001, Rahwan and al. 2004,

Ramchurn and al. 2003, Amgoud and al. 2004] in order to provide agents with

the ability to hold such dialogues. The approaches rely on the game theory and

the heuristics and are mainly focused on the numerical estimation of offers in

terms of utilities. An important limitation of these works is that the utilities or

preferences of agents are usually assumed to be fully characterized before the

interaction. Thus, an agent is assumed to have a mechanism by which it can

allocate and compare two proposals. In addition, it is hard to change the set of

issues under negotiation, and goals of the agents are assumed to be fixed.

3.3 Synthesis

Distributed and multilayer systems with autonomic capabilities require decen-

tralized coordination of their self-management processes, with local coordination

rules between autonomic managers.

To the best of our knowledge, no systematic study has been performed on

the choreography of several autonomic managers in order to provide the coor-

dination function, in particular by enhancing AC architecture with the required

components and logic to allow distributed self-management based on both or-

chestration and choreography. There is no clear view on what methods could

be used to provide the self-management on distributed and multilayer systems

without a central control actor.

Moreover, the configuration variability of collaborative autonomic managers

were not considered. Consequently, there is a need for reducing the efforts of

design, implementation and customization of mechanisms to support collabora-

tive self-management processes involving multiple choreographed or orchestrated

autonomic managers and especially their interactions seen from a global perspec-

tive.

4 Architectural model for distributed self-management

processes

Our approach aims at facilitating the building of autonomic distributed systems.

We design generic self-management mechanisms in a modular way and we permit

their specialization according to the target application. We provide an architec-

tural model that specifies types of software components composing the system,

the variation in system configuration and constraints to be respected by all auto-

nomic managers. It is difficult to identify all types of constraints that developers

would have to respect. Nevertheless, we express several constraints enforcing ar-

chitectural styles, design patterns and modelling rules. The constraints concern

438 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

mainly the authorized connections among components, the exchanged data and

the way to customize them.

An administrator who is expert in the autonomic management, provides a

description of the autonomic managers architecture in keeping with the model.

The description specifies the instances of autonomic managers with the values

of their configuration parameters, the connections among them, and the connec-

tions with the managed elements. This section gives a global view of our model

and details the mechanisms for the execution of self-management process and

for the coordination of autonomic managers activities: on one hand the orches-

tration/choreography of distributed decision making processes and on the other

hand the choreography of the distributed reconfiguration control processes.

4.1 Overview of cooperative autonomic manager architecture

A software system can be seen as a set of collaborative components providing

services. Some components may expose control interfaces that provide primitive

operations to observe and reconfigure them (e.g. read/modify a configuration pa-

rameter value). The autonomic managers are connected with the system trough

these interfaces.

In the original AC architecture [Horn 2001], an Autonomic Manager is a com-

posite that implements 4 major functions: monitor, analyse, plan and execute.

Our architectural model specifies the types of autonomic manager’s components

necessary to guarantee an efficient distributed management. A software system

may include several instances of autonomic manager. The scope of every man-

ager activity is limited to a subset of system components. A subset consists of

components that collaborate with each other in order to provide one or several

specific services and/or are placed close geographically. Our model supports the

orchestration and choreography of self-management processes. For this purpose,

we define interfaces and components to ensure the coordination of autonomic

manager activities with homologous components. Figure 2 presents the archi-

tectural model of this type of component. For clarity, it does not show all the

dependences among components and the connections to the knowledge base.

As a consequence, self-management processes are created from composite ser-

vices performed by these components. Orchestration represents control from one

party’s perspective and tracks the message exchange in specific process that an

autonomic manager executes. This process can interact with external services

performed by other autonomic managers. The interactions occur at the message

level. They include management logic and task execution order. They can span

applications and organizations to define a long-lived, transactional, multistep

process model. This differs from choreography, which is more collaborative and

allows each involved autonomic manager to describe its role in the interaction.

439Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

Actually, the management is expressed in choreography as a direct communi-

cation between services provided by autonomic managers without any central

actor, making it scalable.

Our model specifies the types of sub-components for the system management:

Monitor, Decider, Planner, Executor and Knowledge Base. An autonomic man-

ager is a composite that contains a single instance of each type. In fact, aMonitor

collects, interprets and aggregates some contextual data. The data is stored in

the Knowledge Base. The collected information is about the application and its

runtime environment and is provided by physical sensors (e.g. a camera to locate

a patient at home) and the control interfaces of application components (e.g. an

interceptor to calculate the data access frequency). The Decider is responsible

of decision making (the analyse phase) and it returns a reconfiguration strategy

(the goal). The strategy specifies the appropriate changes to the actual applica-

tion configuration (e.g. changing the replica placement algorithm). As described

below, the choice of strategy may involve other deciders and negotiators or not.

A publish/subscribe mechanism ensures asynchronous interaction: a Decider

subscribes to symptoms that may need reconfiguration (SubscribeItf interface)

and the Monitor notifies the subscriber when an appropriate change of con-

text is detected (NotifyItf interface). Moreover, a decider can query a monitor

for specific contextual information in request/response mode (MonitorItf in-

terface). For instance, a monitor in a patient home could notify the symptom

����������	����
���

��
����
����

	�����������

��������������������������

�������

	�����������

���������� ����������

	����
���

���	
��
	�

�������

�������
����������

����������

�
�����

������� ����

�����������������

�����
���

��
�������

����������

��������

�����
	�

��������

������������������������

�		�����
	�

�����������������

��
�������

�	
����
�

��������
�

�	��
	�

����������
�

�	��
	��
�

������ �!��"��

#�	$
���� %���

#��&���'�

Figure 2: Architectural model of a cooperative autonomic manager

440 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

”EmergencyEvent” (notify operation) to a subscribed decider in the event that

a patient is in need of emergency medical help (see Figure 3). In such a case, the

���������

�������

	
���
���

���
�

���������

�������

�����������������	���

��������
����������

�
������	�������������

���������	�������

������

������
���

������
�

��������
����������

�����	������� ��������

�����	�����������
�

���������

���������������

�����	�����������
�

�����

Figure 3: Example of reconfiguration strategy adopted when an emergency oc-

curs

decider may choose (analyse operation) a strategy type that defines reconfigura-

tion strategies for a component managing the placement of replicas (Figure 4).

In this type, it is possible to define the name of the placement algorithm and

its configuration parameters as well as the node that hosts the component in-

stance. A reconfiguration strategy for applying a random placement algorithm

with 10-fold replication, requires to initialize the attribute placementAlgorithm-

Name with RandomPlacementStrategy and the attribute algoParams with 10.

ReplicaPlacementAdaptationStrategyReplicaPlacementAdaptationStrategy

r algoParams :�Set

l Al i h N S ir placementAlgorithmName :�String

hostName : Stringr hostName :�String

Figure 4: UML class representing a type of strategies for replica placement com-

ponent

441Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

The achievement of the strategy is ensured by a Planner and an Executor.

The first identifies a sequence of reconfiguration actions (e.g. replace a compo-

nent, switch to new algorithm, allocate new resource, etc) in the form of a plan

to apply the strategy chosen by the Decider. The second one controls the appli-

cation of the plan that it receives (ExecuteItf interface). For that, it interacts

with effectors associated with the managed elements through the touchpoints.

For instance, a planner may select and configure a plan (determinePlan opera-

tion) that modifies the algorithm implemented by a placement component in a

replication system (see Figure 3). Figure 5 shows this plan. It comprises a first

adaptation action modifyPlacementAlgorithm to modify the algorithm and a sec-

ond action configureParameters that configures its parameters (for example, the

attribute that specifies the desired number of replicas).

Finally, the Knowledge Base stores all relevant information about the prob-

lem domain and provides the components with a solid basis of knowledge. For

instance, it contains the measured monitor values (e.g. the network status, the

performance indicators of the running services, the patient activity), the poli-

cies that customize the autonomic manager behaviour, parametrizable data ex-

changed between sub-components like the strategies and the plans, etc. The

base offers basic querying capabilities. It exposes an interface to read, write,

update, and delete the different types of data. This interface is used by each

sub-component of the considered manager. The contextual dataset is captured

by the sensors and then managed by the monitors. The monitored data is stored

in the base. This data can be interpreted to generate more significant information

and is accessed when necessary like during the evaluation of execution context

to choose the reconfiguration strategy. In addition, the knowledge base is used to

record history data about reconfiguration processes such as negotiation failure,

detected symptom or reconfiguration delay. This data enables further processes

to make more intelligent decisions or to manage events resulted from the self-

configuration activities. On the other hand, a reconfiguration expert stores at

deployment time the different policies and defines the possible strategies, plans,

AdoptNewReplicaPlacementBehaviorPlanAdoptNewReplicaPlacementBehaviorPlan

r actionsList :�Sequence

+ modifyPlacementAlgorithm(�modifyPlacementAlgorithm(����

placementAlgorithmName)

+�configureParameters(�parameters)g (p)

Figure 5: UML class representing an adaptation plan for replica placement com-

ponent

442 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

and contracts. Then, the components access to them at runtime. For instance,

the analyse process necessitates to interpret the reconfiguration policy. The de-

cision making resulted in the instantiation of the appropriate type of strategy

and the customization of the instance (defining the attributes values).

We notice that the monitoring mechanisms are not detailed in this paper

since there is no need for coordination during this phase even if the monitoring

is distributed.

Concerning the coordination capabilities, this architectural model supports

the coordination of autonomic managers’ activities: the decision making (Analyse

feature) and the control of the configuration modifications (Execute feature).

First, the coordination of decision making aims to enable a group of autonomic

managers to make a collective decision in order to ensure non-conflicting and

complementary decisions. Our architectural model defines specific interfaces for

the component Decider and a new component type Negotiator so to enable

a decider to take part in a coordination process. Second, the plan execution

coordination addresses the problem of applying several plans in parallel by a

group of autonomic managers when plans contain dependent reconfiguration

actions. In such a case, the execution control of these plans must be coordinated

in the sense that a specific sequence of their actions execution must be performed

to achieve a consistent configuration of the managed elements. Each autonomic

manager must include an additional sub-component called Coordinator and the

Executor has optional interfaces to interact with its associated coordinator.

Some of these components expose configuration parameters. In fact, an ad-

ministrator specializes the behaviour of the components Decider, Planner, Ne-

gotiator, and Coordinator by giving a value to parameter that references a

management policy. Actually, we adopt a policy-oriented approach where the

management logic is described as external policies separated from the services

implementation. These policies are stored in the knowledge base.

Decoupling the analyse feature (resp. the execute feature) into two compo-

nents can result in a number of residual benefits. First, the responsibility and

dependencies of each component may be well defined and easily understandable.

Second, the singularity of purpose of each component renders the overall system

easier to customize by different policies and to evolve. Third, the focus on a single

purpose leads to components that can be implemented differently in several con-

texts and managed by disparate development teams (e.g. a decider implemented

as a learning system and a negotiator based on a heuristic solution).

The components type Monitor, Decider, Planner and Executor are designed

as mandatory elements. However, the components type Negotiator and Coordi-

nator are optional components. They are not instantiated if there is no need for

the autonomic manager to coordinate its activities with other managers. Each

managed entity is controlled by a single autonomic manager. The autonomic

443Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

manager does not handle multiple self-management processes at the same time.

As a consequence, the analyse process begins by a new detected symptom after

the achievement of reconfiguration plan executed by the previous reconfiguration

process.

In the following sections, we will focus on the coordination mechanisms of

decision making activities.

4.2 Mechanisms of decision making coordination among autonomic

managers

Making decisions collectively results in the determination of a global strategy.

We define a global strategy as a set of strategies that are chosen and applied

by several autonomic managers. The decision must be relevant to the current

global situation and has to predict the effect of reconfiguration strategies to

avoid anomalous situations.

Coordinated decision making is performed in three steps: (1) retrieve the re-

quired context information, (2) choose a reconfiguration strategy, and (3) initiate

a coordination process. We assume here that one manager triggers the coordina-

tion process. It is called the coordination initiator. Step 3 involves the deciders

of other managers called the participants. During this stage, deciders may need

to retrieve context information and make a reasoning to determine the definitive

global strategy.

The deciders can interact with each other. The interface CoordinateItf allows

a decider to communicate messages for an arbitrary number of other deciders.

The reconfiguration policy must define when the interaction occurs, the involved

deciders and the message content. Moreover, an optional component type Ne-

gotiator can be instantiated and interconnected with the decider to allow the

negotiation of strategy. The Decider and the Negotiator components enable the

autonomic manager to apply three coordination patterns described below.

• The master-slave pattern: Within this pattern, the coordination initiator

can behave as a master, and considers the participants as slaves which fol-

low its orders. The master chooses individually a strategy. Then, it assigns

the task of applying a specific strategy to each participant. The externally

and internally message exchanges of each slave as well as its internal state

are not visible to the master. The coordination leads to the peer to peer

externally observable interactions that happen between the master and the

slaves during a decision making phase.

• The strategy publishing pattern: This pattern is based on the notification by

the initiator to the participants of the strategy it chooses for itself. Once a

participant notified, it analyses its environment and selects an appropriate

444 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

strategy, taking into account the decision made by the initiator. The chosen

strategy must be consistent and complementary with the initiator strategy.

• The strategy negotiation pattern: In this case, a decider can initiate a negoti-

ation using the interface type NegotiateItf. The components type Negotiator

included in different autonomic managers are connected each other through

interfaces type ProposeItf. During the negotiation process, the negotiator

interacts with homologous components included in the involved autonomic

managers (the participants) by exchanging contracts. A negotiation policy

specializes the behaviour of the component by specifying the participants

and control rules of the progress of each negotiation process.

In fact, when a decider requests the negotiation of a strategy, the negotia-

tor creates an adaptation contract and initiates the negotiation with a set of

participants. The contract is an object that specifies the initiator, the partic-

ipants and global strategy to be negotiated. This is specified as parameters

where each parameter specifies a local strategy, the manager responsible for

applying it and negotiators involved in the negotiation (see Figure 6).

Contract

r initiatorName :�String

ti i t N S tr participantsNames :�Set

r contractParameters : SetcontractParameters :�Set

Figure 6: UML class representing the attributes of a negotiated contract

The diagram presented in Figure 7 describes the sequence of messages for

negotiation of a contract between an initiator and participants. For clarity

sake, only one participant is shown.

The initiator decider chooses a reconfiguration strategy. Next, it uses its

NegotiateItf interface and asks the negotiator to negotiate the strategy that

it has chosen. This negotiator constructs the contract. The initiator uses

the appropriate ProposeItf interfaces to offer each participant the contract

concerning it, in parallel.

Each participant negotiator receives the contract and interprets its policy to

reason on its applicability. It can then accept, refuse or offer/request a con-

tract modification and then, it responds to the initiator. When the initiator

445Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

������������	

���������	

������	��
������

���������	

�����	�������	�
���

�	������
���	�
��

����
�������	������

����	������	��
��������

���������
������
���	�
��

��
���	��
������

��
���	

�	�����������
������
���	�
��

	������
���	�
��

��
���������	

��
���	

����	� �
���	�
��

��
���
���	�
��

�	�����������
������
���	�
��

���	�
�

�����	�

���������
������
���	�
��

���	�
�

���������
������
���	�
��

�

��� �
���	�
��

	������
���	�
��

	������
���	�
��

Figure 7: Sequence diagram of the negotiation between two managers

receives all the responses, it reasons on the acceptance and/or applicability

of the modifications requested or proposed. When all participants accept

the contract, the negotiation succeeds. In the opposite case, it detects and

resolves the conflicts, and can then itself propose/request a contract modifi-

cation. The negotiation process is stopped if a negotiator refuses a contract

or if a stopping condition is verified. This condition can be related to the

maximum negotiation time authorized, or the maximum number of negoti-

ation rounds.

If the negotiation succeeds, the initiator negotiator returns the contract re-

sulting from the negotiation to the initiator decider and sends also the final

contract to each participant negotiator. Upon receiving this contract, the

participant negotiator uses the NotifyItf interface to request the decider to

apply the strategy resulting from the negotiation. In the opposite case, the

initiator decider and the participants are informed of the failure of the ne-

gotiation. It is possible to consider that the reconfiguration strategy is not

applicable and to stop the decision making process. Another alternative con-

sists in considering this failure as a new symptom. So, a new management

process is launched to find more relevant strategy. The choice of solution is

done during the definition of policies that customize the behaviour of the

components according to considered execution context. In general, there is

a need to start a new management process if the modification of the current

446 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

configuration is critical.

During the customization phase, specific roles (master, negotiator, etc) are

assigned to autonomic managers through the specified policies. The manager

may have a single role in all the self-management processes or may play multiple

roles depending on the context changes and the selected reconfiguration strate-

gies. The responsiveness of autonomic managers and the use of computing and

network resources may be critical criteria to be considered when defining the

different roles.

5 Mechanisms for self-management of distributed and

integrated systems

5.1 Self-management mechanisms at the business level

We have designed an architectural model of replication systems that defines the

types of components composing a data replication system, the message flows be-

tween them, their configuration parameters, and the control interfaces to observe

a system and modify its configuration. The component-based approach leads to

modular and evolvable software entities. So, the replication system enables fine-

grained management operations. Moreover, the service orientation brings ad-

ditional flexibility since components can be dynamically loaded, unloaded and

interconnected. It is also possible to rely on the bus to reconfigure legacy repli-

cation systems by intercepting the data flows and make transformations or redi-

rections. This approach facilitates the configuration management of such system

and gives high flexibility. The same approach may be followed to manage other

types of systems.

Our architectural model defines five component types for building a replica-

tion system (Figure 8). A replication system includes one instance of each type.

First, the PlacementManager manages the replica placement. It receives requests

from users for the creation/deletion of data. For each request, the component

determines the replication scheme (number of replicas and nodes where the repli-

cas are placed) and generates the necessary requests for the creation/deletion

of replicas. Second, the Repository manages information on replicas metadata

and makes them available to other components of the replication systems. It

enables to store, retrieve, modify, and remove metadata. For instance, the place-

ment manager stores the fixed replication scheme in the repository then, may

modify or remove it. Third, the AccessController has two roles. The first one is

related to replica management. It performs services to create/remove replicas,

read/write replicas, and to apply updates. The second one deals with concur-

rency control. Fourth, the UpdatePropagationManager ensures the propagation

447Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

of updates among replicas. It does not modify the replicas but is responsible for

triggering the update and transporting the update requests. In fact, this compo-

nent is notified about the data access attempts. Depending on the consistency

protocols, such notifications can trigger the update of the selected replica be-

fore performing a read or a write operation. The component stores changes and

decides when to send them to the other replicas of the data. Finally, the Re-

questEngine implements the data query function. It provides a service to receive

the data access requests from the users. Then, it selects replica(s) to be used

to answer these requests. The access operations as well as the update operation

are transmitted to components of type AccessController that will apply them

on the selected replica.

Each component of the replication systems includes some elements that are

common to all replication systems and variation points. The values are fixed

to these points during the deployment phase by an administrator. Moreover,

these values may be modified at runtime by the autonomic managers. Each

component is accessed and controlled through an associated touchpoint. The

touchpoint is a building block that implements sensor and effector behaviour for

the component. Each component has two variation point types: the algorithm

applied by the component and the configuration parameters of the algorithm

(e.g. the replica update frequency). In order to change the attributes values,

the internal structure of a component is defined as the design pattern Strategy.

This pattern allows defining a family of algorithms that are encapsulated in

the same component and interchangeable according to the current execution

context. The reconfiguration in this case is simpler and less expensive than a

component replacement. We note here that there is no relation between this

PoliciesPolicies

Context ModelsContext Models

Strategies –Strategies –h
P

o
in

t

T
o

u
c
h

P
o

in
t

h
P

o
in

t

T
o

u
c
h

P
o

in
t

h
P

o
in

t

AdministratorAdministrator
Update

Propagation

Manager

Access
Controller

RequestPlacement
Repository Strategies –

Plans-Contracts
Strategies –

Plans-Contracts

Autonomic Service Bus

T
o

u
c
h

T
o

u
c
h

T
o

u
c
h

Request
Engine

Placement
Manager

Repository

Autonomic
Manager

Figure 8: Architectural model of autonomic replication system

448 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

pattern which is a standard design in the field of software architecture and the

reconfiguration strategy that represents the output of the analyse process. The

aim of our approach is not to define new replication methods but to enable

several interchangeable implementations of methods proposed in existing works.

As a consequence, these mechanisms provide several ways to change the data

replication strategies [Goel and Buyya 2006]: the placement method (placement

manager), (2) the method for the selection of accessed replica (request engine),

and (3) the consistency protocol (access controller and propagation manager).

The autonomic manager supervises and reconfigures the various replication

system components. It observes the data management at specific business ser-

vices using the sensor interfaces. It elaborates a runtime representation of the

replication system processes, including information about the managed data, the

replication management strategies and the performance indicators. Based on this

information, the decider sub-component may choose to dynamically modify the

replication system configuration in order to obtain an overall behaviour that

more closely corresponds to its high-level QoS goals. For that, the decider in-

terprets the reconfiguration policy provided by the administrator. For example,

an update propagation manager component identified as faulty or inefficient can

be dynamically replaced by an alternative component. As another example, the

placement manager can switch from random replica placement algorithm to new

algorithm that limits the replica access delay.

5.2 Self-management mechanisms at the integration layer

The high dynamicity of existing SOA environments requires more efficient ESB

solutions to ensure a performance level consistent with user expectations. Our

approach tackles the two main challenges confronting the world of performance

guaranties. One is the scalability management of an ESB at the IT level in an

autonomic way in order to cope with pervasive service integration. The second is

related to the way an ESB can take into account the non-functional requirements

of service consumers for the purpose of autonomously guarantee them when the

service provider cannot do it.

The Autonomic Service Bus (ASB) [Diop and al. 2012] is an extended ESB

with the required knowledge and abilities to achieve scalability and QoS man-

agement. This management can be done during the initial service integration

or dynamically based on observed bus condition. Figure 9 presents the architec-

ture of the ASB. The autonomic message router is used for synchronous and

one to one communications and the autonomic message broker enables asyn-

chronous communications or publication of messages that can be accessed by

many subscribers. Traditional ESB components (binding components, service

engines, message broker, messaging router) are extended with an interceptor,

the needed QoS-oriented mechanisms and the required touchpoints in order to

449Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

become managed elements. These managed elements are monitored and con-

trolled by the Autonomic Manager via the touchpoints. The Semantic Service

Repository contains the semantic characterisation of deployed services and QoS-

oriented mechanisms. This semantic is expressed in terms of both functional and

non-functional properties (e.g. performance, dependability, security, accuracy,

trust, etc.). The Context Models describe well known execution environments

and behaviour and the Management Policies represents rules to be applied in

order to trigger actions implementing the self-management functions and the

autonomic behaviour of the ASB according to the context. When a new request

comes from a consumer for a specific provider, the request is intercepted and the

Autonomic Manager is notified. This one using the knowledge base will check

if the provider can satisfy the required non-functional properties or not. Two

cases are considered. If the provider satisfies the non-functional requirements,

the interceptor releases the request, which is directly routed. Otherwise, the Au-

tonomic Manager of the ASB enforces the most adequate mechanism to deal with

them. Once the integrations are established, the ASB needs to control the states

of the communications, to collect the context information and to analyse them to

predict or to detect anomalies or improvements. In the case of failures prediction

and/or detection, corrective actions are performed. The goal is, for instance in

best-effort service models, to react in front of congestion that can occur both on

Service
Provider

Service
Consumer

Publisher Subscriber

Interceptor
QoS

Mechanism
Touchpoint

Interceptor
QoS

Mechanism
Touchpoint

Interceptor
QoS

Mechanism
Touchpoint

Interceptor
QoS

Mechanism
Touchpoint

Management
policies

Management
policies

Context ModelsContext Models

AdministratorAdministrator

Messaging
Router

Messaging
Broker

Orchestration
Engine

Transformation
Engine

Touchpoint
QoS

Mechanism
Interceptor

Touchpoint
QoS

Mechanism
Interceptor

Touchpoint
QoS

Mechanism
Interceptor

Touchpoint
QoS

Mechanism
Interceptor

Autonomic Manager
Semantic service

repository
Semantic service

repository

Strategies-Plans
Contracts

Strategies-Plans
Contracts

Figure 9: Autonomic Service Bus Infrastructure

450 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

service providers and on the internal bus components. Differentiated or guaran-

teed QoS-oriented models can be implemented by mechanisms able to manage

priorities between service consumers or providers if needed. The ESB resolves

prioritization based on semantic characterization of the client requirements and

the request tags. For instance we offer a best effort service by avoiding that the

ESB becomes a bottleneck. We manage its scalability at the IT level by taking

advantage of the rapid elasticity concept of cloud computing. A virtual machine

is created on a server and the capabilities of this machine are elastically provi-

sioned. We provision or release CPU attributed to this virtual machine according

to the traffic through the ESB. The resources allocated to the virtual machine

are extended when the ESB meet scalability issues. When the limit of exten-

sion is reached, a new ESB instance is deployed on another virtual machine to

have a highly available networked service bus. ESB instances will be dynamically

clustered and a load balancer is used to share the mediation requests according

to the load of each one. The Autonomic Manager, dealing with the CPU usage,

evaluates the available resources during the monitoring phase. The Monitor com-

ponent observes both the ESB performance and the CPU of the machine hosting

it. It measures the Key Performance Indicators as the CPU load, computes the

values and compares them to two defined thresholds (maxUsageCPUThreshold

and minUsageCPUThreshold). These thresholds will guide the reconfiguration.

When the maxUsageCPUThreshold value is reached, the Monitor component

sends a degradation alarm to the Decider. The optimization alarm means that

the CPU usage is lower than the fixed minUsageCPUThreshold. Once the De-

cider receives the alarm, it selects an adjustment of the CPU resource strategy.

It sends the strategy to the Planner that defines the plan which is sent to the

Executor component. Finally, the Executor enforces the new plan that achieves

reconfiguring the virtual machine resources. Similarly, other QoS attributes are

considered like the heap memory and the number of concurrent requests.

6 A scenario of self-distributed management processes in

integrated healthcare systems

In this section, we present a self-management scenario of the integrated sys-

tems presented in Figure 1. The autonomic system includes several autonomic

managers (AMs) since the managed elements are running in heterogeneous and

distant environments. An AM is associated with each replication system and

is specialized differently depending on the environment specificities. Thus, each

AM manages a specific network domain: hospital 1, patient’s home, and hospi-

tal 2 (Figure 10.A). In addition, an AM is associated with the bus to manage

the communication and integration services. These AMs coordinate their ac-

tivities in order to reach their goals in consistent and cost-effective way. For

451Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

instance, during the management of changes in the behaviour of update propa-

gation managers, the autonomic managers may negotiate the data consistency

protocol. Each one includes a component type Negotiator connected to others.

The implementation of the components is described in Section 7.

Lets consider the configuration of the replication system where an optimistic

protocol [Goel and Buyya 2006] (propagate the updates in background, discov-

ers conflicts after they happen, and reach an agreement on the final content) is

chosen for a particular data group. We will present a reconfiguration scenario

to switch to a pessimistic protocol [Goel and Buyya 2006] (synchronous replica

update). When an emergency occurs, AM3 detects this context change. Its mon-

itor, in the patient home network notifies the symptom to the subscribed decider.

This decider interprets the reconfiguration policy and finds that a pessimistic

protocol should be adopted. This strategy should then be accepted by deciders

associated with the other replication systems by negotiation. The autonomic

managers AM1, AM2 and AM3 play the role of negotiator in this coordination

process (Figure 10.B).

The initiator starts the negotiation process by proposing the chosen strategy

in form of a contract to the two participants. The contract specifies the strategy

(i.e. the name of strategy as well its parameters: the protocol name ”primary

copy protocol” and the concerned data group ”group1”) and that the coordina-

tion process involves AM1, AM2 and AM3. The negotiator associated with AM1

Patient’s Home Hospital1

Integration &
communication

components

Integration &
communication

components

Autonomic
Manager 4

Replication
System 1

Autonomic
Manager 3

Autonomic
Manager 1

Replication
System 3

MASTER &

NEGOTIATOR

MASTER &

NEGOTIATOR

Autonomic
Manager 3

Autonomic
Manager 1

(B)

Coordination roles of

the autonomic managers

Hospital2

Replication
System 2

Autonomic
Manager 2

Business layer

Integration layer

SLAVE

Autonomic
Manager 4

Autonomic
Manager 2

MASTER &

NEGOTIATOR

(A)

Distribution of the

autonomic managers

Figure 10: Distribution and coordination roles of the autonomic managers

452 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

proposes another protocol (”quorum based protocol”) for performance reasons.

A second round of negotiation begins and both AM2 and AM3 accept the mod-

ification of contract. The negotiation succeeds and each negotiator notifies the

final contract to the decider associated with it. Each decider informs the planner

about the strategy. The planner constructs the plan and inserts the appropriate

coordination actions since it detects that the same strategy will be adopted by

the other updates managers.

Figure 11 shows the reconfiguration plan built by each planner. The UML

class defines the possible actions (the operations that the class can take) and

some attributes that are necessary to parameterize a plan. The planner cre-

ates an instance and configures its attributes using the planning policy and the

information included in the reconfiguration strategy.

��������	
���������

������
���	�������	��

� ����������� ���
��
��

� �����������
 ��������

� �����
�
�� ���
�

� ������������ ���
�

����

�
�������
���
� ��
!"

����#��
���$
�����!"

����������	
���������

������
���	�������	���

����������� %�

&'��

�
�������
���
� ��
'(�

'��#��
���$
�����'(�

'��
�)*�#$
�����+�#��
'(�

'��#���
������
���	�������'(�

'��
�)*�#	�������,�#���������'(�

-
��
��
�
�
�

�
�.

����#��
���$
�����!"

����
�)*�#$
�����+�#��
!

������������"

����#���
������
���	�������!

�����������
(������
�
��"

����
�)*�#	�������,�#���������!

������������"

���
������������
���
� ��
!

#���/����"

'��
�)*�#	�������,�#���������'(�

'�
������������
���
� ��
'0

�����������
%�'�������1��
#�

��������'

������������%&'�,2'('�,3'(

'�,4'0

Figure 11: UML class of adaptation plan and its instance

The plan for this scenario contains four composite adaptation actions and

is applied concurrently by the involved executors. Firstly, the action ”freeze-

DataAccessService” activates the interception and the process of freezing data

access requests received by the components type AccessController into the auto-

nomic managers ”sphere of control”. Then, the ”updateAllReplica” action forces

the update of all replicas that are managed by the components type UpdateProp-

agationManager controlled by the adaptation manager. Indeed, the missing up-

dates and the potential conflicts between updates will not be manageable by

the new behaviour of the update propagation managers after reconfiguration.

The ”modifyConsistencyProtocol” action changes the behaviour of the access

453Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

controller and the update propagation manager that are into the autonomic

managers ”sphere of control”. The action switches the algorithm applied for the

concerned data. Finally, ”restartDataAccessService” action reactivates the data

access service and launches the processing of the waiting data access requests. In

addition, two composite coordination actions are required. The action ”check-

EndReplicaUpdate” coordinates the end of the update of all the replicas since it

needs the collaboration of the update propagation managers before switching to

the new behaviour. The action ”checkEndProtocolModification” allows each ex-

ecutor to verify that all the update managers and the access controllers have been

modified. We will go into details on how this second coordination action is ex-

ecuted. When an executor reaches the ”checkEndProtocolModification” coordi-

nation action, it uses the interface type PublishItf to execute a first primitive ac-

tion publish (subject=”endProtocolModificationConfirmation”, content=”true”).

This action enables to broadcast the information specifying that the local pro-

tocol modification has finished. A request is sent to the coordinator which

transmits this information to the involved coordinators. Then, a second primi-

tive action coordinate (subject=”endProtocolModificationCoordination”, partici-

pants=”all”) is launched using the interface type CoordinateExecItf in order to

ask the coordinator to manage the achievement of the protocol modification. A

delay is specified for each primitive reconfiguration action. Once the delay has

expired, the reconfiguration is cancelled and the states of the managed entities

are restored.

In addition, the policy of AM3 specifies that an additional coordination pro-

cess is needed. AM3 communicates with AM4 since the situation requires to

reduce the delay of the patient information transfer. AM3 will play the role of

master and AM4 will be the slave (Figure 10.B). AM3 sends to AM4 an order

with the goal to assign high priority to the message flows related to the patient.

In this case, AM4 selects the actions plan that consists of configuring the media-

tions components to manage the concurrent and parallel requests with different

priorities as they share the ESB communication resources (Differentiated service

model). In this way, the QoS offered to the urgency exchange and more specif-

ically to requests coming from the patient home is improved. The management

process is achieved successfully. Few minutes later, the new applied protocol and

the use of the ESB by other systems generate communication overload. AM4

detects the change and new management process starts. In this case, the decider

chooses a strategy that does not requires coordination processes. In fact, an elas-

ticity mechanism will be applied to add a new CPU and to allow the ESB to

support the load.

454 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

7 Implementation and evaluation

A first prototype has been developed focusing on the self-management mecha-

nisms. An experimental application was used for simulating the health delivery

services. The application was implemented to supervise a patient home and

notify caregivers when an urgency situation is detected. Several sensors are em-

ployed for capturing the patient activities and its health status.

For the communication infrastructure, we deploy and enhance a set of WSO2

products [WSO2 2013]. We have implemented the replication components based

on the Fractal component model [Bruneton and al. 2006]. This model has been

chosen since it provides flexible and extensible control capabilities that make

easy the touchpoint implementation. Proxy services that define virtual services

are hosted on the ESB that can accept requests, mediate them, and deliver

them to replication services. These proxy services perform transport or interface

switching and expose different semantics than the actual service, i.e., WSDL,

policies and QoS aspects. Endpoints are used as specific destination for messages

when designing proxy services.

The WSO2 ESB implementation is used and interconnected to the WSO2

Business Activity Monitor (WSO2 BAM) for the monitoring purpose. WSO2

BAM is a tool designed to perform Business Activity Monitoring. Data col-

lected during the monitoring phase, are processing using WSO2 Complex Event

Processor (CEP). Once expected events are predicted or detected, a Decider im-

plemented as Event-Condition-Action (ECA) engine, uses an ontology to infer

the reconfiguration strategy. Similarly, the Negotiator, Planner and Coordinator

are implemented as ECA engines. The reconfiguration actions involve web ser-

vices deployed on the ESB so as to change the configuration of this one and the

configuration of the mediations strategies deployed on it. The actions may be

sent to the services exposed by touchpoints to manage replication services. Each

AM becomes aware of other AMs by interpreting the policies that customize

its behaviour. Is is envisaged to use a protocol dedicated for the discovery of

other managers in dynamic way. This is suitable especially when the number

of managers is high and new managed entities may become involved in coor-

dinated self-configuration processes since the systems could evolve (e.g. adding

new component, defining new requirement, etc.). Moreover, such a mechanism

could make easier the customization of the managers. In addition, we are study-

ing approaches to deal with interruptions and latency in communication in order

to avoid stopping or cancelling the self-configuration when a problem occurs.

We focus here on experiments that are intended to measure the impact of

distributing the decision making on performance, and more precisely, its respon-

siveness. To this end, we used the reconfiguration scenario of the consistency

protocol described in the previous section to evaluate the negotiation overhead.

We measured the time between the reception of the symptom and the choice of

455Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

��

���

���

���

���

���

���

�
�
	

�
�

�
�
��
�
��

�

��

��

��

��

� � � � � � � � � �� �� �� �� �� �� �� �� �� �� ��

�
�
�

�

�
�

������ �������� !�" ���
�#
 $�����
���

Figure 12: Distributed decision making time

the reconfiguration strategy including context information retrieval. We varied

the number of the analysed context parameters to increase the complexity of

the decision process. Figure 12 shows the decision making time. We notice that

the distributed decision-making process gives an additional time due to the time

spent in the two rounds of negotiation. However, the distribution and parallel

execution of context evaluation gives performance improvement when the num-

ber of parameters becomes high. This proves that the negotiation pattern may

be appropriate especially when the analysis of context parameters is costly.

The second experiment concerns the execution time of the plans. In this

case, we measure the time between the reception of the plan and the end of

its execution. We increase the number of replicas to update in order to increase

the number of reconfiguration actions to perform. We note that these actions are

costly in time compared to other actions such as switching to another algorithm.

Clearly, the distributed management of execution results in faster execution de-

spite the coordination overhead thanks to the parallelism in the plans execution

and the decrease of communication latency between each executor and the effec-

tors it controls. In this experiment, the average of time with distributed execution

management is 700 milliseconds without high variation despite the number of

replicas increase. The distribution of execution management is suitable for costly

adaptation plans that contain actions requiring high execution time and which

necessitate intense interactions between the executor and the effectors.

456 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

Concerning the determination of one plan, fast execution of the process hap-

pens since the planners do not need to interact together. In fact, it turned rapidly,

spending less than 20 milliseconds for all the considered reconfigurations in the

scenario.

Regarding the experiments related to the scalability of the ESB, we focus on

the way to trigger the self-management process in order to manage the scalability

of the ESB. It is driven by the number of concurrent requests handled by the

ESB. Using an emulator, we get offline the maximum of concurrent requests that

the ESB is able to handle for a specific configuration (Figure 13). It is possible to

have information about this number and to allocate at runtime more resources

when the ESB gets near reaching it. The Figure 13 shows that when we configure

����������	
����	�

�
	�

�
�
��
��
�
�

�
�
�
�
�
�
�

�

����
�
��������

�����

�����

����

����

����

�
�
�
�
�
��
�
	�

�

� ��� ��������� ������

	���

����

�

Figure 13: Scalability of the service bus

our ESB in a pass through mode with 1 Gb of memory, the maximum number

of concurrent requests is less than 12000.

The execution times of analyse, planing, and execution processes are stored

in the knowledge base. As a consequence, the history of execution time can

be taken into account during the analyse phase in order to determine if the

reconfiguration cost in terms of time is acceptable or not.

Moreover, the management policies could be not easy to develop, particu-

larly if they require different skills (several systems, layers, services, etc). Our

approach makes possible the participation of several experts in the underlying

managed software components and services in order to define appropriate data

to be collected, relevant analysis processes, and suitable actions to be performed.

457Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

Nevertheless, there is a possibility of failures due to undesirable circumstances

(connection failures, errors, etc) in case of complex choreography. In such con-

text, a choreography should support exception handling.

Finally, the autonomic capabilities of both business services and service bus

enable in some situations to minimize the management cost in terms of time

to take a decision, stopped-time delay of services necessary for configuration

modification, and resource consumption for reconfiguration achievement.

8 Conclusion

We presented in this paper the basic concepts related to our service-oriented

approach to the management of distributed autonomic systems. The service-

oriented architecture enabled us to reconsider the way we design and implement

autonomic systems. Our main contribution is to define an approach for build-

ing distributed and coordinated self-management mechanisms. We were partic-

ularly interested in the definition of an architectural model and of a flexible and

generic set of mechanisms for coordinating self-management processes performed

by several autonomic managers. The flexibility of our model allows to specialize

the behaviour of collaborative autonomic managers based on orchestration and

choreography techniques. Our approach offers several ways to coordinate the de-

cisions making and the execution plans made collectively by several managers. In

particular, the negotiation of strategies enables distributed and parallel decision

making, the automatic resolution of conflicts among managers and the guarantee

of their scalability. Moreover, we enable the QoS management at several layers

in a coordinated and optimized way.

There are several possible directions for future work. We are studying ap-

proaches to deal with interruptions and latency in communication in order to

avoid stopping or cancelling the entire self-reconfiguration process when a prob-

lem occurs. A solution will be defined in the near future. We are also interested

in facilitating more the customization of the self-management processes. Cur-

rently, human actors may spend considerable efforts to make decision related

to the deployment strategy of the autonomic managers and to provide manage-

ment policies. There is a need for new techniques to help experts identify and

generate the appropriate deployment strategy and the policies. Moreover, we are

exploring the connections between SOA and Cloud Computing. Our vision is to

generalize our approach for distributed autonomic platforms in the Cloud (i.e.

at Platform as a Service level).

References

[Ac 2006] An Architectural Blueprint for Autonomic Computing; IBM white paper,
June, 2006

458 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

[Allen and al. 1995] Allen, J., F., Schubert, L., K., Ferguson, G., Heeman, P., Hwang,
C., H., Kato, T., Light, M., Martin, N., G., Miller, B., W., Poesio, M., Traum, D.,
R.: The TRAINS Project: a case study in building a conversational planning agent.
Journal of Experimental and Theoretical Artificial Intelligence, 7-48, 1995.

[Amgoud and al. 2004] Amgoud, L., Prade, H.: Reaching agreement through argu-
mentation: A possibilistic approach. Proceedings of the 9 th International Confer-
ence on the Principles of Knowledge Representation and Reasoning, KR2004, 2004.

[Beveridge 2001] Beveridge, M., Milward, D.: Definition of the high-level task specifi-
cation language, Technical report, Deliverable D11, EU HOMEY Project, 2001

[Bruneton and al. 2006] Bruneton, E., Coupaye, T., Leclercq, M.: The FRACTAL
component model and its support in java; Softw, Pract. Exper, 1257-1284, 2006.

[Delamer and Lastra 2006] Ivan Delamer, M., Jose Martinez Lastra, L.: Self-
Orchestration and Choreography: Towards Architecture-Agnostic Manufacturing
Systems: Proceedings of AINA, 573582, 2006.

[Diop and al. 2012] Diop, C., Exposito, E., Chassot, C., Jlidi, D.: QoS-aware and
ontology-driven autonomic service bus; Proceedings IEEE WETICE 2012, France,
417422, 2527 Juin, 2012.

[Dobson and al. 2010] Dobson, S., Sterritt, R., Nixon, P., Hinchey, M.: Fulfilling the
Vision of Autonomic Computing; IEEE Computer, 43, 1, 2010.

[Durfee and Lesser 1989] Durfee, E., H., Lesser,V.: Negotiating task decomposition
and allocation using partial global planning, In L. Gasser and M. Huhns, editors,
Distributed Artificial Intelligence Volume II, Pitman Publishing: London and Mor-
gan Kaufmann: San Mateo, CA, 229-244,1989.

[Exposito 2012] Exposito, E.: Advanced Transport Protocols: Designing the Next Gen-
eration; Wiley-ISTE Ltd, ISBN: 9781848213746, 320, 2012.

[Ferber 1995] Ferber., J.: Les systmes multi-agents. Vers une intelligence collective.
InterEditions, Paris, 1995.

[Geiger and al. 2011] Geiger, M., Schnberger, A., Wirtz, G.: Towards Automated
Conformance Checking of ebBP-ST Choreographies and Corresponding WS-BPEL
Based Orchestrations; Proceedings of SEKE, 566571, 2011.

[Goel and Buyya 2006] Goel, S., Buyya, R.:Data Replication Strategies in Wide Area
Distributed; In Qiu R (ed), Enterprise Service Computing: From Concept to De-
ployment. Hershey, United States, 211241, 2006.

[Gonzalez and Ruggia 2012] Gonzalez, L., Ruggia, R.: Addressing QoS Issues in ser-
vice Based Systems through an Adaptive ESB Infrastructure; Proceedings of ACM
MW4SOC, Lisbon Portugal, 12 Dec, 2011.

[Greenwood and al. 2003] Greenwood, K., Bench-Capon, T., McBurney, P.: Towards
a computational account of persuasion in law, Proceedings of the Ninth International
Conference on AI and Law (ICAIL-03), USA, 2003

[Horn 2001] Horn, P.: Autonomic Computing: IBMs Perspective on the State of Infor-
mation Technology, IBM Research; 15 October, 2001.

[Huebscher and McCann 2008] Huebscher, M., McCann, J.: A survey of autonomic
computing – degrees, models, and applications; ACM Comput. Surv. 40, 3, 2008.

[Jennings and al. 2001] Jennings, N., R., Faratin, P., Lomuscio, A., R., Parsons, S.,
Sierra, C., Wooldridge, M.: Automated Negotiation: prospects, methods and chal-
lenge, International Journal of Group Decision and Negotiation (GDN), Vol 10,
99-215, 2001.

[Kephart and Chess 2003] Kephart, J., Chess, D.: The Vision of Autonomic Comput-
ing; IEEE Computer Magazine; 36, 1, 2003.

[Khalid and al. 2009] Khalid, A., Abdul Haye, M., Jahan Khan, M., Shamail, Sh.:
Survey of Frameworks, Architectures and Techniques in Autonomic Computing;
Proceedings of ICAS09, 220225, 2009.

[Morand and al. 2011] Morand, D., Garcia, I., Lalanda, P.: Autonomic enterprise ser-
vice bus; Proceedings of IEEE 16th conference on ETFA, 59 Sept, 2011.

459Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

[Mostarda and al. 2010] Mostarda, L., Marinovic, S., Dulay, N.: Distributed Orches-
tration of Pervasive Services: Proceedings of AINA, 166173, 2010.

[Muller 1996] Muller, J., H.: Negotiation Principles, Foundations of Distributed Arti-
ficial Intelligence, John Wiley and Sons, 211-229, 1996

[Nami and Bertels 2007] Nami, M.R., Bertels, K.: A survey of autonomic computing
systems; Proceedings of ICAS07, 26, 2007.

[Parashar and Hariri 2004] Parashar, M., Hariri, S.: Autonomic Computing: An
Overview; UPP, Springer, 257269, 2004.

[Rahwan and al. 2004] Rahwan, I., Ramchurn, S., D., Jennings, N., R., McBurney, P.,
Parsons, S., Sonenberg, L.: Argumentation-based negotiation, 2004.

[Ramchurn and al. 2003] Ramchurn, S., D., Jennings, N., Sierra, C.: Persuasive ne-
gotiation for autonomous agents: a rhetorical approach. In IJCAI Workshop on
Computational Models of Natural Arguments, 2003.

[Salehie and Tahvildari 2005] Salehie, M., Tahvildari, L.: Autonomic computing:
emerging trendsand open problems; SIGSOFT Softw. Eng. Notes, 30(4): 17, 2005.

[Sen and al. 2010] Sen, R., Roman, G., D., Gill, Ch.: CiAN: A Workflow Engine for
MANETs; Proceedings of COORDINATION08, 280295, 2008.

[Strassner and al. 2006] Strassner, J., Kephart, J.: Autonomic Systems and Networks:
Theory and Practice, Network Operations and Management Symposium; Proceed-
ings of 10th IEEE/IFIP, Vancouver, BC, 37 April, 2006.

[Strassner and al. 2009] Strassner, J., Leon, M., Donnelly, W., Meer, S.: Autonomic
Orchestration of Future Networks to Realize Prosumer Services, Future Networks;
Proceedings of International Conference on Future Networks, 52156, 2009.

[Valetto and Kaiser 2003] Valetto, G., Kaiser, G.: Using Process Technology to Control
and Coordinate Software Adaptation, Proceedings of 25th International Conference
on Software Engineering, IEEE Computer Society, USA, 262-272, 2003.

[WSO2 2013] Home page for WSO2 products: http://wso2.com/products.

460 Zouari M., Diop C., Exposito E.: Multilevel and Coordinated Self-management ...

