
A Self-stabilizing Algorithm

for Locating the Center

of Maximal Outerplanar Graphs

Micha�l Pańczyk

(Maria Curie-Sk�lodowska University in Lublin, Poland

mjpanczyk@gmail.com)

Halina Bielak

(Maria Curie-Sk�lodowska University in Lublin, Poland

hbiel@hektor.umcs.lublin.pl)

Abstract: Self-stabilizing algorithms model distributed systems, which automatically
recover from transient failures in the state of the system.

The center of a graph comprises a set of vertices with minimum eccentricity. Farley and
Proskurowski showed the linear time algorithm for locating the center of an outerplanar
graph in the classical computing paradigm. The present paper investigates the self-
stabilizing algorithm for finding the center of maximal outerplanar graphs, using a new
approach with dual trees.

Key Words: self-stabilization, outerplanar graph, center of a graph

Category: G.2.2, C.2.4

1 Introduction

Let G = (V,E) be a simple, connected graph with the vertex set V and edge set

E. The eccentricity of the vertex v in the graph G is its distance to the farthest

vertex in the graph G. The set of vertices with minimum eccentricity is called

the center of the graph.

Locating centers of graphs, especially in distributed systems, has profound

significance. It allows to minimize the cost of communicating all the nodes with

one elected node from the center. This is useful when, for example, a control

center is to be placed in a distributed network. There are several known algo-

rithms for locating centers or medians of graphs. Specific topological properties

of graphs can be employed to achieve algorithms with lower complexity or with a

simpler notation. Farley [Farley 1982] gave a linear time algorithm for vertex cen-

ters in trees; also, Hedetniemi et al. [Hedetniemi et al. 1981] gave a linear time

algorithm for center problems in trees; Goldman [Goldman 1972] and Kariv et

al. [Kariv et al. 1979a, Kariv et al. 1979b] devised algorithms solving the center

problem in networks. A lot of research has been realized related to centers of

graphs [Laskar et al. 1983, Rosenthal et al. 1989, Chepoi 2012]. Self-stabilizing

algorithm for centers and medians of trees was developed by [Bruell et al. 1999].

Journal of Universal Computer Science, vol. 20, no. 14 (2014), 1951-1963
submitted: 2/1/14, accepted: 22/11/14, appeared: 1/12/14 © J.UCS

Distributed (but not self-stabilizing) algorithm for centers and medians was de-

veloped by [Korach et al. 1984]. Bielak and Pańczyk constructed a self-stabilizing

algorithm for finding weighted centroid in trees [Bielak and Pańczyk 2012].

In this paper, we propose a self-stabilizing algorithm for locating the cen-

ter of the maximal outerplanar graph. This problem in classical, sequential,

non-distributed computing paradigm was solved by Farley and Proskurowski

[Farley and Proskurowski 1980]. The structure of centers in maximal outerplanar

graphs was researched by [Proskurowski 1980]. To our knowledge, there is no

known self-stabilizing algorithm which employs the topological structure of max-

imal outerplanar graphs to find the center. Whereas a self-stabilizing algorithm

for trees is devised by [Blair and Manne 2003].

The next section contains basic notations and definitions. The section 3 de-

scribes the computational model of self-stabilizing algorithms used in our paper.

The section 4 contains the text of a classical algorithm for locating the center of

maximal outerplanar graphs by [Farley and Proskurowski 1980]. In the section

5, we present our new self-stabilizing adaptation of the classical algorithm, which

uses, to our knowledge, a new method based on the inside dual tree. It also uses

a method of co-working nodes, which simulate a kind of virtual nodes of the

dual tree. Conclusions, including further research problems, are described in the

section 6.

2 Basic Notations and Definitions

Let us define the maximal outerplanar graphs as it was done in the above men-

tioned paper [Farley and Proskurowski 1980].

Definition 1. A maximal outerplanar graph is obtained by a planar triangular-

ization of a plane polygon (see Fig. 1).

According to the definition we used, maximal outerplanar graphs are 2-

connected and the minimal type of-such a graph is a triangle. All the vertices

can be placed on the same face; however, they are usually placed on the exterior

face [Harary 1972].

Definition 2. In the maximal outerplanar graph G = (V,E) every edge p =

{i, j} ∈ E divides the set of all vertices apart from i and j into two distinct sets

inducing connected subgraphs called sides.

One of the sides may be empty. This is the case when the dividing edge is a part

of the exterior face of the graph. In fact, all the edges with one side empty form

the unique Hamilton cycle in the maximal outerplanar graph.

Let us note that in a maximal outerplanar graph every two neighbors i and

j have at most two common neighbors, say k and l, each of them belonging to

1952 Panczyk M., Bielak H.: A Self-Stabilizing Algorithm ...

distinct sides of the edge {i, j}. Thus, it is sufficient to represent the side of the

edge {i, j} by the unique vertex (say k or l) belonging to this side and adjacent

to both i and j. We set ∅ as a representation of an empty side.

a b c

e d

Figure 1: Examples of maximal outerplanar graphs with centers of one, two and

three nodes.

Farley and Proskurowski introduced the notion of edge eccentricity.

Definition 3. Let us have the node i, its neighbor j and one of their common

neighbors k (∅ for the nonexistent one if applicable) in a graph G. For these

three values we define e(i, j, k) (the edge eccentricity) in the following manner:

– the absolute value of e(i, j, k) is equal to the eccentricity of the vertex i in

the subgraph of G induced by Sk ∪ {i, j}, where Sk is the side of the edge

{i, j} containing the vertex k,

– the value e(i, j, k) is negative iff all the vertices of Sk ∪ {i, j} at a distance

d = |e(i, j, k)| from i lie at the distance d− 1 from the vertex j.

The classical algorithm of Farley and Proskurowski computes the edge ec-

centricity for every edge recursively using the already computed values of ec-

centricity for an adjacent edge. It starts with outerface edges, for which 2

out of 4 defined edge eccentricities equal −1. We include an essential part of

[Farley and Proskurowski 1980] in the section 4.

3 Computational Model

A notion of self-stabilizing algorithms on distributed systems was introduced by

[Dijkstra 1974]. A survey in the topic can be found in the paper [Schneider 1993],

and further details in the book by [Dolev 2000]. The notions from graph theory

not defined in this paper can be found in the book by [Harary 1972].

A distributed self-stabilizing system consists of a set of processes (computing

nodes) and communication links between them. Every node in the system runs

1953Panczyk M., Bielak H.: A Self-Stabilizing Algorithm ...

the same algorithm and can change the state of local variables. These variables

determine the local state of a node. Nodes can observe the state of variables in

themselves and in their neighbor nodes. The state of all the nodes in the system

determines the global state.

Every self-stabilizing algorithm should have a class of global states defined,

so-called the legitimate state, for which the system is stable and in which no

action can be taken by the algorithm itself. Every other global state is called

illegitimate and for the algorithm to be correct there has to be some possibility

to make a move if the state is illegitimate.

The aim of a self-stabilizing algorithm is to bring the system to the legitimate

(desirable) state, either after some alteration (from outside of the system) of

variables in the nodes has been done or after the system has been started.

The algorithm consists of a set of rules. A rule has the following form:

label

If guard

then assignment instructions

where definitions of objects.

A guard is a predicate which can refer to variables in the node itself and its

neighbors. The where clause is optional. We say that a rule is active if its guard

is evaluated to be true. A node is active if it contains any active rule. If there is

no active node in the graph, then the system is stabilized. We assume that active

rules are triggered in an arbitrary order one by one. Time spent on running a

rule is negligible compared to the time spent on transmitting a message between

processes. Thus, our objective is to minimize the number of transmitted messages

between nodes.

4 The Classical Algorithm

In order for the paper to be self-contained, we quote the algorithm for locating

the center of maximal outerplanar graphs, basic lemmas and the figure (see

Fig. 2) from [Farley and Proskurowski 1980].

Lemma 4. Given an edge p = (u, v) of a maximal outerplanar graph with a

non-empty side S, let e1, e2 and r represent the values of e(b, w, S2), e(b, v, S2)

and the eccentricity of u in the graph S2 ∪{u, v, w}, respectively. Then the value

of r is −(1 + e2) if e2 > 0, and |e2| otherwise.

Lemma 5. Given an edge p = (u, v) with a non-empty side S, let e3 and d1 rep-

resent the values e(a, u, S1) and e(p, u, S), respectively. Let r be the eccentricity

of u in the graph S2 ∪ {u, u, w} as in Lemma 4. Then the value of d1 is |e3| if

|e3| ≥ |r|, and r otherwise.

1954 Panczyk M., Bielak H.: A Self-Stabilizing Algorithm ...

vu

w

a b

p

S1 S2 S

Figure 2: Illustration for lemmas 4, 5 and 6 from [Farley and Proskurowski 1980].

Lemma 6. Given an edge p = (u, v) with a non-empty side S, the eccentricity

d2 = e(p, v, S) is |e(b, v, S2)| if |e(b, v, S2)| ≥ |q|, and q otherwise1, where q is

−(1 + e(a, u, S1)) if e(a, u, S1) > 0, and |e(a, u, S1)| otherwise.

In the paper [Farley and Proskurowski 1980] the correctness of the above

lemmas was proved. Moreover, the authors applied them in their classical (non-

distributed) paradigm algorithm presented below.

Algorithm 1: [Farley and Proskurowski 1980]

Given a maximal outerplanar graph M , calculate the eccentricities of its

edges as follows:

1. For all edges p = (u, v) on the Hamiltonian cycle of M , assign the value

−1 to e(p, x, ∅), where x ∈ {u, v}.

2. For each triangle (u, v, w) such that values e(a, u, S1), e(a, w, S1),

e(b, v, S2), and e(b, w, S2) are defined, assign values of e(p, u, S) and

e(p, v, S) according to the rules specified in Lemmas 4, 5, and 6.

5 The Self-Stabilizing Algorithm

In this section, we shall present a self-stabilizing adaptation of the non-distributed

algorithm for locating the center of maximal outerplanar graphs. We will use the

notion of inside (weak) dual graph [Fleischner et al. 1974] (see Fig. 3). Its ver-

tices correspond to the inner regions of maximal outerplanar graphs, whereas

1 In the original version, there was a small technical defect: was |e(b, v, S2)|, should be
q in this case.

1955Panczyk M., Bielak H.: A Self-Stabilizing Algorithm ...

the edges of an inside dual graph correspond to the inside edges (i.e. edges in-

cident to two inner regions). The information about dual vertices will be stored

in the three nearest base co-working vertices (real computing nodes), which will

cooperate to simulate the existence of the dual vertex.

It is quite easy to show that the inside dual graph of a maximal outerplanar

graph is acyclic and connected; therefore, it is a tree.

Figure 3: An example of a maximal outerplanar graph and its inside dual tree.

Below, we present the notation used in the algorithm. Next, the rules of the

algorithm follow and then the presentation of the idea and intuition connected

with the rules. At the end of this section, we present the proofs of the correctness

of the algorithm.

In the algorithm, we will use the following notation:

N(i) — the set of neighbor nodes of the node i.

n(i) — a variable storing the set of neighbor nodes for the node i. Note that n(i)

is a variable, whose value may be incorrect at the beginning of the algorithm

run, whereas N(i) is a set which is determinable by the node i only, based

on the topology of the network by looking at connections of node i; it can

be computed only by the node i. Thus the n(i) variable is set to allow a

neighbor to determine other neighbors of the node i.

c(i, j) — a variable (stored in the node i) which stores the set of common

neighbors for nodes i and j,

e(i, j, k) — a variable storing (in the node i) the edge eccentricity for the edge

{i, j} and the side containing the common neighbor k (of the nodes i and j;

k = ∅ for an empty side),

1956 Panczyk M., Bielak H.: A Self-Stabilizing Algorithm ...

opp(i, j, k) — a variable storing (in the node i) the representation of the side

opposite to k (against the edge {i, j}),

v(i) — a variable storing (in the node i) the eccentricity of the vertex i; note that

it is not the edge eccentricity, i.e. in a legitimate state: v(i) = maxk |e(i, j, k)|

for any j ∈ N(i),

m(i, j, k) — a pair stored in the node i for inside dual vertex {i, j, k}. After

stabilization, its first element is the eccentricity of the center nodes. The

second element of the pair is the direction that the information about the

eccentricity of the center comes from. If for the dual vertex {i, j, k} the infor-

mation comes from the region incident to the edge {i, j}, then the direction

is equal to opp(i, j, k). If the information about the center eccentricity comes

originally from the dual vertex {i, j, k}, then we set the direction to ∅.

After the notation has been presented, we are ready to demonstrate the

algorithm. The algorithm consists of 6 rules. The node i in every rule is the local

node.

1

If n(i) �= N(i)

then n(i) := N(i)

2

If ∃k ∈ N(i) : c(i, k) �= N(i) ∩ n(k)

then c(i, k) := N(i) ∩ n(k)

3a

If ∃j ∈ N(i) : (|c(i, j)| = 1∧ (e(i, j, ∅) �= −1∨opp(i, j, ∅) �= k∨opp(i, j, k) �=

∅))

then e(i, j, ∅) := −1

opp(i, j, ∅) := k

opp(i, j, k) := ∅

where {k} = c(i, j)

3b

If ∃j ∈ N(i) : (|c(i, j)| = 1 ∧ (e(i, j, k) �= d ∨ v(i) �= max(|e(i, j, k)|, 1))

then e(i, j, k) := d

v(i) := max(|e(i, j, k)|, 1)

where

q =

{
−(1 + e(j, k, opp(j, k, i))) if e(j, k, opp(j, k, i)) > 0,

e(j, k, opp(j, k, i)) otherwise

d =

{
|e(i, k, opp(i, k, j))| if |e(i, k, opp(i, k, j))| ≥ |q|,

q otherwise

{k} = c(i, j)

1957Panczyk M., Bielak H.: A Self-Stabilizing Algorithm ...

4

If ∃j ∈ N(i) : (|c(i, j)| = 2 ∧ ∃k ∈ c(i, j) : (e(i, j, k) �= d ∨ opp(i, j, k) �=

l ∨ opp(i, j, l) �= k ∨ v(i) �= max(|e(i, j, k)|, |e(i, j, l)|)))

then e(i, j, k) := d

opp(i, j, k) := l

opp(i, j, l) := k

v(i) := max(|e(i, j, k)|, |e(i, j, l)|)

where

q =

{
−(1 + e(j, k, opp(j, k, i))) if e(j, k, opp(j, k, i)) > 0,

e(j, k, opp(j, k, i)) otherwise

d =

{
|e(i, k, opp(i, k, j))| if |e(i, k, opp(i, k, j))| ≥ |q|,

q otherwise

{k, l} = c(i, j)

5

If ∃j, k ∈ N(i) : (k ∈ c(i, j) ∧m(i, j, k) �= MinEcc(i, j, k))

then m(i, j, k) := MinEcc(i, j, k)

There is an assignment to the variable n(i) in the rule 1 in order to allow

each neighbor of the node i to know every other neighbor of i. Thanks to this,

two adjacent nodes i and j can find out what their common neighbors are, and

store this information in the variables c(i, j) and c(j, i) respectively, which is

done in rule 2. Then the classical algorithm by Farley and Proskurowski can be

adapted as rules 3a, 3b and 4. They calculate the eccentricities of nodes in a

maximal outerplanar graph.

Once the eccentricities are calculated by rules 3a, 3b and 4, the rule 5 prop-

agates the minimum eccentricity through all the graph.

Now the notion of a dual tree is used. The information about minimum

eccentricity is propagated through the dual tree.

Note that in the rule 5 we used the function MinEcc(i, j, k), which returns

the correct value of m(i, j, k). The MinEcc function is defined as follows:

1958 Panczyk M., Bielak H.: A Self-Stabilizing Algorithm ...

i

k

j
1

5

2

3

4

?

Figure 4: The visualization of computation of the function MinEcc(i, j, k). The

numbers stand for the order of checking (and assigning if necessary) values of

m(·, ·, ·). The order above is: 1. (v(i), ∅) (lines 1–2 of the MinEcc function), 2.

m(k, i, j) (lines 3–5), 3. m(j, i, k) (lines 6–8), 4. m(i, j, opp(i, j, k)) (lines 9–12), 5.

m(i, k, opp(i, k, j)) (lines 13–16). The question mark stands for m(i, j, k), which

is the computed value.

Function MinEcc(i,j,k)

1 v := v(i)

2 dir := ∅

3 if fst(m(k, i, j)) < v ∧ snd(m(k, i, j)) ∈ {opp(k, j, i), ∅} then

4 (v, dir) := m(k, i, j)

5 end if

6 if fst(m(j, i, k)) < v ∧ snd(m(j, i, k)) ∈ {opp(j, k, i), ∅ } then

7 (v, dir) := m(j, i, k)

8 end if

9 if fst(m(i, j, opp(i, j, k))) < v ∧ snd(m(i, j, opp(i, j, k))) �= k then

10 v := fst(m(i, j, opp(i, j, k)))

11 dir := opp(i, j, k)

12 end if

13 if fst(m(i, k, opp(i, k, j)) < v ∧ snd(m(i, k, opp(i, k, j))) �= j then

14 v := fst(m(i, k, opp(i, k, j))

15 dir := opp(i, k, j)

16 end if

17 return (v, dir)

Two projection functions are used in the above MinEcc function: fst((a, b))
def
= a and snd((a, b))

def
= b, which take the first and second element of the pair

respectively.

The MinEcc function computes the minimum value over eccentricities and

the direction which it comes from for the triangle region specified by three pa-

rameters i, j, k (see Fig. 4). The first step is to consider the node i itself as a

1959Panczyk M., Bielak H.: A Self-Stabilizing Algorithm ...

candidate with the minimum value of the eccentricity available in the neighbor-

hood. In this case, the direction would be ∅ as if it did not come from a different

region. In the second and third step, the node i checks as a candidate for the

minimum value the values of m(k, i, j) and m(j, i, k) from the neighbor nodes k

and j. If the values in the nodes k or j come from regions incident to the edges

{i, k} or {i, j}, they are not trusted. It is to ensure that no wrong value can last

in the region for an infinitely long time (number of moves). And int the last two

steps, the values from two neighbor regions (incident to i) are checked.

Lemma 7. Algorithm consisting of rules 1–4 stabilizes in O(n2) number of moves.

Proof. The stabilization of rule 1 is obvious as the guard does not depend on

the variables in the neighbor nodes. So rule 1 gets inactive in a finite time. Rule

2 depends only on static (after stabilizing rule 1) information computed by rule

1. Hence it stabilizes in a limited (i.e. constant) number of moves per node (as

rule 1 does).

The same applies to rule 3a, as it depends on variable values computed by the

two former rules, because it concerns an outerface edge (i.e. the edge belonging to

the Hamilton cycle), which is the initial case of the recursive classical algorithm.

Once the c(i, j) is properly computed in the node i, it never changes. Thus, if

any of the variables e(i, j, ∅), opp(i, j, ∅) or opp(i, j, k) is in a wrong state, then

all the variables are correctly computed and also never change.

i

e(i,j,k):=d

j

k

l

s
=
op

p(
j,
k,
i)

1

s =
opp(i,k,j)

2
e(

j,
k,
s
)

1

e(i,k,s)2

Figure 5: The visualization of rule 4.

Now all the nodes have got rules 3a and 3b inactive. Then we consider rule 4.

Note that this rule is applicable only for graphs bigger than a triangle. Suppose

there are two adjacent edges lying on an outerface of the graph. There has to

be the third edge, which is also adjacent to them, and the edge eccentricities of

this edge stabilize with rule 4. This is the first layer of correct rule 4 compu-

tation. Each subsequent layer of the correct computation of rule 4 depends on

1960 Panczyk M., Bielak H.: A Self-Stabilizing Algorithm ...

the previous layer. We have a finite graph, so rule 4 stabilizes. As each layer of

computation of rule 4 takes O(n) moves and there are O(n) layers, it all takes

O(n2) moves. The last layer of computation stabilizes by rule 3b, as it reaches

another outerface of the graph. ��

Lemma 8. If the phase 1–4 has stabilized a system, then phase 5 will stabilize

in O(n2) number of moves.

Proof. The worst case would be if every dual vertex had a wrong value for the

variable v(i) (for example, as a result of starting up the system) and there were

also wrong values of m(·, ·, ·) for every dual vertex (region of the graph). Let

us assume that every v(i) is less than the correct minimum eccentricity and

there are no nodes i, j such that v(i) = v(j). Consequently, the worst order of

propagation of the m(·, ·, ·) values would be when the value v(i) spreads first (for

some i), being the biggest among all the other v(k) (for all nodes k except for

i), but still it is lower than the correct minimum eccentricity.

This propagation takes O(n) moves. Now the dual tree is filled with an in-

correct value of some v(i). But there are n − 1 wrong candidates of minimum

eccentricity left to spread. Once again, the pessimistic case would be when the

next value to propagate was the maximal one among all the candidates, and

lower than the one spread in the tree.

Each of these phases takes O(n) moves and there are O(n) phases, so it takes

O(n2) moves. ��

The subsequent theorem results from lemmas 7 and 8, as well as from the

fact that after each move made by the rules 1-4 the whole phase 5 can be run.

Theorem 9. The algorithm takes O(n4) number of moves to stabilize.

Now we state the last property of our algorithm.

Theorem 10. After stabilization of the algorithm the system is in a legitimate

state.

Proof. We shall use a proof by contradiction. Suppose that the system is in

an illegitimate state. This means that the predicate of rule 5 is true. But this

contradicts the fact that the system is stable. ��

6 Conclusion

We have presented a distributed, self-stabilizing algorithm for locating the center

of maximal outerplanar graphs. The algorithm requires O(n4) moves to stabilize

and stores the result of its computation in a distributed manner as a variable

1961Panczyk M., Bielak H.: A Self-Stabilizing Algorithm ...

m(·, ·, ·) (defined on p. 7) in each computing node. The value of the variable is

minimum eccentricity and the direction pointing towards the center.

There is a question if the method used in [Turau 2012] would endow a self-

stabilizing algorithm for locating the center of a maximal outerplanar graph with

a lower complexity.

Acknowledgments

The authors would like to thank anonymous reviewers for constructive sugges-

tions and comments. We are most grateful to one of the reviewers for referring

us to the paper [Turau 2012].

References

[Bielak and Pańczyk 2012] Bielak, H., M. Pańczyk, M.: “A self-stabilizing algorithm
for finding weighted centroid in trees”; Annales UMCS Informatica, AI XII, 2
(2012), 27–37.

[Blair and Manne 2003] Blair, J. R. S., Manne, F.: “Efficient self-stabilizing algorithms
for tree networks”; Proceedings of the 23rd International Conference on Distributed
Computing Systems, (2003), 20–27.

[Bruell et al. 1999] Bruell, S. C., Ghosh, S., Karaata, M. H., Pemmaraju, V.: “Self-
stabilizing algorithms for finding centers and medians of trees”; SIAM Journal on
Computing, 29 (1999), 600–614.

[Chepoi 2012] Chepoi, V., Fevat, T., Godard, E.,Vaxès, Y.: “A self-stabilizing algo-
rithm for the median problem in partial rectangular grids and their relatives”;
Algorithmica, 62 (2012), 146–168.

[Dijkstra 1974] Dijkstra, E. W.: “Self-stabilizing in spite of distributed control”; Com-
munications of the ACM, 17 (1974), 643–644.

[Dolev 2000] Dolev, S.: “Self-stabilization”; The MIT Press (2000).
[Farley 1982] Farley, A. M.: “Vertex centers of trees”; Transportation Science, 16

(1982), 265–280.
[Farley and Proskurowski 1980] Farley, A. M., Proskurowski, A.: “Computation of the

center and diameter of outerplanar graphs”; Discrete Applied Mathematics, 2
(1980), 185–191.

[Fleischner et al. 1974] Fleischner, H. J. , Geller, D. P., Harary, F.: “Outerplanar
graphs and weak duals”; Journal of the Indian Mathematical Society, 38 (1974),
215–219.

[Goldman 1972] Goldman, A. J.: “Minimax location of a facility in a network”; Trans-
portation Science, 6 (1972), 407–418.

[Harary 1972] Harary, F.: “Graph Theory”; Addison-Wesley, 1972.
[Hedetniemi et al. 1981] Hedetniemi, S. M., Cockayne, E. J., Hedetniemi, S. T.: “Lin-

ear algorithms for finding the jordan center and path center of a tree”; Transporta-
tion Science, 15 (1981), 98–114.

[Kariv et al. 1979a] Kariv, O., Hakimi, S. L.: “An algorithmic approach to network
location problems. I: The p-centers”; SIAM J. Applied Mathematics, 37 (1979),
513–538.

[Kariv et al. 1979b] Kariv, O., Hakimi, S. L.: “An algorithmic approach to network
location problems. II: The p-medians”; SIAM J. Applied Mathematics, 37 (1979),
539–560.

1962 Panczyk M., Bielak H.: A Self-Stabilizing Algorithm ...

[Korach et al. 1984] Korach, E., Rotem, D., Santoro, N.: “Distributed algorithms for
finding centers and medians in networks”; ACM Transactions on Programming
Languages and Systems, 6 (1984), 380–401.

[Laskar et al. 1983] Laskar, R., Shier, D.: “On powers and centers of chordal graphs”;
Discrete Applied Mathematics, 6 (1983), 139–147.

[Proskurowski 1980] Proskurowski, A.: “Centers of maximal outerplanar graphs”;
Journal of Graph Theory, 4 (1980), 75–79.

[Rosenthal et al. 1989] Rosenthal, A., Pino, J.: “A generalized algorithm for centrality
problems on trees”; JACM, 36 (1989), 349–361.

[Schneider 1993] Schneider, M.: “Self-stabilization”; ACM Computing Surveys, 25, 1,
(1993).

[Turau 2012] Turau, V.: “Efficient transformation of distance-2 self-stabilizing algo-
rithms”; Journal of Parallel and Distributed Computing, 72 (2012), 603–612.

1963Panczyk M., Bielak H.: A Self-Stabilizing Algorithm ...

