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Abstract: Opportunistic networks, as representative networks evolved from social networks 
and Ad-hoc networks, have been on cutting edges in recent years. Many research efforts have 
focused on realistic mobility models and cost-effective routing schemes. The concept of 
“community”, as one of the most inherent attributes of opportunistic networks, has been proved 
to be very helpful in simulating mobility traces of human society and selecting suitable 
message forwarders. This paper proposes an interest-driven community-based mobility model 
by considering location preference and time variance in human behavior patterns. Based on this 
enhanced mobility model, a novel two-layer routing algorithm, named InterCom, is presented 
by jointly considering utilities generated by users’ activity degree and social relationships. The 
results, obtained throughout an intensive simulation analysis, show that the proposed routing 
scheme is able to improve delivery ratio while keeping the routing overhead and transmission 
delay within a reasonable range with respect to well-known routing schemes for opportunistic 
networks. 
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1 Introduction  

In the context of Mobile Ad-hoc Networks (MANETs) that in recent years have 
evolved towards a social perspective, there is always an assumption: nodes are well-
connected and capable of organizing themselves arbitrarily most of the time [Han, 
12]. In addition, an end-to-end path between the source and the destination is always 
expected to exist in the network. Despite the fact that MANETs present promising 
results in the network environment with high density (e.g. conference environment), 
their performance are far from satisfactory in sparse settings where an end-to-end 
connected path rarely or never exists [Daly, 07]. For this reason, opportunistic 
networks as an evolutionary version of MANETs, are well researched. Unlike in 
MANETs, in opportunistic networks the operating mechanism of message forwarding 
is to let nodes with messages (to be forwarded) wait for an appropriate forwarding 
opportunity rather than deliver messages through a pre-computed path. To this end, 
mobility is seen as a resource to bridge disconnections, rather than a problem to deal 
with. According to the store-ferry-forward paradigm, nodes opportunistically exploit 
any contact with other peers to exchange messages, if such peers are deemed good 
candidates to bring such messages closer to the appropriate destinations. 

Since opportunistic networking often deals with network of mobile handheld 
devices, it is easy to understand how these networks have many features in common 
with the social activities of human beings [Costa, 08]. Community as one of the most 
inherent and natural social features is also represented clearly in the operating process 
of opportunistic networks. In sociology, community is usually defined as a group of 
interacting people living in a common location (e.g. home, hospital, restaurant, mall, 
sky resort, beach, park, etc.). Community ecologists and sociologists study the 
interactions between species/people in communities at several spatial and temporal 
scales [Rhee, 11]. It has been shown that a member of a given community is more 
likely to interact with another member of the same community than with a randomly 
chosen member of the population [Musolesi, 06]. Therefore, community naturally 
reflects social relations among people. Since social relations and behaviors among 
mobile users are usually long-term characteristics and less volatile than node 
mobility, it is worth observing that the knowledge of the community of mobile users 
allows making better forwarding decisions.  

According to this modern vision, the current research about community-based 
opportunistic networks mainly focuses on two aspects: 1) community-based mobility 
model; 2) community-based routing protocol. 

Regarding the mobility model, even though there already exist many mobility 
models to simulate the human traces, their definition is based on the assumption that 
the users’ mobility is driven by the social relationships among users. Despite the fact 
that social relationships can be conceived as an influential factor to affect the users’ 
behavior, it is not the only factor influencing human mobility behavior. Users also 
could visit communities with less social connection due to their functional demand. 
This is the case, e.g. when citizens want to have dinner outside, it is highly possible 
that they visit communities connected to restaurants even though they do not have 
friends belonging to that community. Based on this simple consideration, we propose 
an interest-driven community-based (InterCom) mobility model. In the proposed 
model, the movement of users is affected by social relationships and by their own 
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interests. The model allows users to have higher probability to visit the communities 
with intimate social ties and maintain a certain level of probability to visit functional 
communities due to their own interest-based demand. Besides that, aiming to make 
the proposed model close enough to the reality, we introduce the time and speed 
variance feature into the model by enhancing existing mobility models. We define 
time periods in which the nodes move differently to introduce periodical behavior and 
associate the moving speed of the users to the current interest-driven behavior they 
perform. To the best of our knowledge, this is the first mobility model that is driven 
by interests and social relationships and also considers patterns of time and speed 
variance. Based on the InterCom mobility model, we present a utility-oriented routing 
protocol named InterCom routing protocol. The idea behind the InterCom routing 
protocol is that each node exploits two different utility functions for intra-community 
and inter-community routing. 

Experimental results show that InterCom can achieve important global 
performances and a significant tradeoff between data delivery ratio and resource 
consumption in opportunistic networks. 

The proposed mobility model and routing scheme have been partially introduced 
in [Fu, 13]. With respect to such preliminary paper, many aspects have been revised 
and extended: (i) the concept of “interest-driven” is introduced into the mobility 
model; (ii) the double-layered routing scheme has been completely re-designed and 
tested throughout intensive simulation campaigns.  

The rest of this paper is structured as follows. We first discuss the related work 
in Section 2, and then we describe a novel mobility model well-suited for 
opportunistic networks in Section 3. In Section 4, we propose the InterCom routing 
protocol whilst its performance evaluation, in terms of the main network performance 
indices, is carried out in Section 5. Section 6 discusses some issues and looks into 
future work. Finally, we conclude the paper with a brief summary of contributions. 

2 Related Work 

2.1 Mobility Models 

Many mobility models have been presented to analyze protocols and algorithms for 
opportunistic networks. A comprehensive review of the most popular mobility models 
can be found in [Mota, 14].  

Mobility models attempt to realistically represent the behaviors of mobile hosts 
without the use of traces. The most widely use of such models is based on random 
individual movement; the simplest one is the RW (Random Walk) mobility model that 
is used to represent pure random movements of the entities of a system [McGuire, 05]. 
A slight enhancement of RW is the RWP (Random Way-Point) mobility model 
[Gowrishankar, 07], in which pauses are introduced between changes in direction or 
speed.  

Mobile devices are commonly carried by humans, so the movement of such 
devices is necessarily based on human decisions and socialization behaviors. 
Community, as a significant characteristic observed from social behavior, has been 
proved much helpful in building a realistic mobility model with wide suitability. 
CMM (Community-based Mobility Model) presented by Musolesi et al. [Musolesi, 06] 
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is one of the first models taking into account community features. In CMM, nodes 
move between the communities based on node attraction features. Afterwards, 
Boldrini et al. [Boldrini, 07] have highlighted the shortcomings of CMM which are 
mainly based on the fact that the nodes belonging to the same community are more 
likely to follow the first node that has decided to leave the community. Aiming at 
solving this issue, HCMM (Home Cell Mobility Model) [Boldrini, 07] is proposed 
which considers both node and location attraction. HCMM maintains the social model 
of CMM but nodes have also location-preference towards some grids on the map. 
Simulation results indicate that the traces generated by HCMM are more close to 
reality than those of CMM.  

Besides community feature, time-variance and location-preference are also 
considered as two influential factors to the reality of mobility model. Time-variance 
indicates that human activity shows various mobility patterns during different time 
period. TVMM (Time-Variant Mobility Model) [Hsu, 07] is one of the first models 
that take into account this important characteristic. In TVMM, nodes move to 
different squares at different day times in a periodic manner and their movements are 
homogeneous, i.e. every node follows the same instructions. Based on TVMM, 
Ekman et al. [Ekman, 08] proposed TDMM (Working Day Movement Model) which 
combines three major human activities, being home, working and evening activities. 
Location-preference indicates that human is more willing to visit some interest sites 
than other places. In fact, since in community-based model, the node has higher 
probability to visit the community with closer relationship, the community-based 
model can be considered as a representative class of location-preference model. 
However, all synthetic movement models do not fully conform to the real human 
mobility because it is quite difficult to assess in which way they can map the reality.  

Our goal in this paper is twofold: from one hand, the design of a mobility model 
more realistic than the existing synthetic mobility models, by addressing 
characteristics observed from human mobility traces; on the other hand, the definition 
of such model should be simple enough to allow in-depth theoretical analysis, and 
flexible enough to have a wider applicability than the currently available models. 

2.2 Routing Protocols 

Many new routing schemes have been proposed for opportunistic networks. However, 
the unpredictable mobility and restricted resource in opportunistic networks 
significantly obstruct us from finding an ideal forwarding mechanism. Lately, the 
consideration of social characteristics provides a new angle of view in the design of 
routing protocols for opportunistic networks. Furthermore, it is worth noting that 
social relations and behaviors among mobile users are usually long-term 
characteristics and less volatile than node mobility. Based on this consideration and 
taking into account the recent advances in social network analysis, several social-
based routing methods have been recently proposed to exploit the various social 
characteristics in opportunistic networks to support the relay selection. 

Hui et al. [Hui, 07] introduced a routing method based on community labels in 
Pocket Switched Networks (PSNs). Label routing takes the advantage of the 
knowledge of social community. It assumes that people from the same community 
tend to meet each other more often than people from different communities, and 
hence they can be good forwarders to relay messages destined to other members in 

1832 Fu X., Li W., Fortino G., Pace P., Aloi G., Russo W.: A Utility ...



the same community (with the same label). In label routing, the message forwarding 
from the source to the destination is purely via the members within the same 
destination community. This may significantly increase the delay or even fail to 
deliver the message. Bubble Rap [Hui, 11] is a social-based protocol using two 
centrality values that are associated to each node based on the node global popularity 
in the whole network and local popularity within its own community or communities. 
The forwarding scheme uses these centrality values so that a message is transferred to 
nodes with higher global centrality values until the carrier node meets a node with the 
same community label of the destination node. A message is forwarded to nodes with 
higher local rankings until successful delivery. The protocol named Habit [Mashhadi, 
09] realizes data dissemination in a selection-based manner by exploiting node 
physical proximity and user social ties. It makes use of both a regularity graph, to 
keep trace of when and how often two nodes come into contact, and an interest graph, 
to build dissemination paths based on node’s interest on the data. In [Ahmed, 11], the 
popularity of a node in opportunistic networks is exploited for message forwarding. In 
the former, popular nodes (called hubs) are connected with most of the other nodes in 
opportunistic networks and are characterized by analyzing the history of encounters. 
In the latter, a destination-unaware message-forwarding strategy that takes into 
consideration both the popularity of a node in opportunistic networks and the contact 
durations is proposed. Looking at the scenario of urban searching and rescuing in 
[Ochoa, 13] and [Santos, 11], the authors introduced a new opportunistic network 
infrastructure named HWSN (Human-centric Wireless Sensor Networks). The basic 
idea of HWSN is to use the movement of rescuers to retrieve the monitoring data 
from wireless sensor networks deployed in various isolated disaster zones and the 
encountering of rescuers to accelerate the speed of data spreading.  

3 Mobility Model Design 

In this section we design a mobility model that is able to capture human mobility 
behavior in real life. The description of the mobility model is organized as follows: 

 Firstly, we describe the design details of the proposed mobility model. We 
are aiming to address the following points: 1) how to select the destination; 
2) how long the node will stop after arriving at the destination; 3) what 
speed the node should follow when moving. 

 Secondly, after proposing the mobility model, we provide simulation-based 
evaluation of the proposed model. 

3.1 Design of the InterCom Mobility Model 

This section describes the design of a novel mobility model named InterCom well- 
suited for the analysis of opportunistic networks. 

3.1.1 Event-based Location preference 

With reference to a generic squared map, we model communities by dividing the map 
into a given number of grids. Each grid represents one community, which is a squared 
geographical area. In order to meet the periodical feature of human mobility traces, 
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we classify the human mobility behavior into two main types (see Figure 1): local 
event and global event. Both kinds of events are processed as follows: 1) select the 
destination community; 2) move to the selected community (i.e., arriving at a random 
point within the selected community); 3) stay at the community for a while.   The 
fundamental difference with respect to previous approaches lies in how to select the 
destination. For local events, the selected destination is constrained within the node 
community, whilst for global events, nodes are allowed to visit any target point on the 
map, which means that they are capable of visiting any communities. In order to 
capture periodical re-appearance at the same location, we establish a specific event 
order which sets that events occur in a cyclic way (see Figure 2). A similar idea of 
modeling periodical features of human mobility traces has also been suggested in 
[Hsu, 07]. After defining the mobility model by introducing local and global events, 
we need to focus on the following issues: 1) how to calculate the selection probability 
of destination communities; 2) how long will the node rest once arrived to the target 
point; 3) what speed will the node follow during the moving stage. It is worthy to note 
that, since in the local event the selected points is always within the node community, 
the probability of visiting each community is only considered when a global event 
occurs. 

 

Figure 1: The distribution of local event and global events in the InterCom model 

 

Figure 2: Schema of a complete event process 

3.1.2 Community selection 

The community selection mechanism is defined as follows. A certain number of nodes 
(zero or more) are associated to each community ܥ at a given time. Each community 
exerts a certain social attraction for a given node. The social attraction of a square 
region is a measure of its importance in terms of the social relationships for the node 
taken into consideration. The social importance is calculated by evaluating the 
strength of the relationships with the nodes that are moving towards that particular 
square (i.e., with the nodes that have a current goal inside that particular community). 
More formally, given ܁  (i.e., the set of the nodes associated to community	ܥ), we 

define the social attraction of community ܥ	towards the node	݅, ܵܣ(݅)	as follows: ܵܣ(݅) = ∑ ܴ ܵ,∈܁߱
 (1) 
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where ߱  is the cardinality of ܁  (i.e., the number of nodes associated to the 

community ܥ) and ܴ ܵ, ∈ {0,1} is the strength of social relationship between nodes ݅ 
and ݆. In other words, the social attraction of a community towards a node	݅ is defined 
as the sum of the degrees of social relationships between 	݅  and the other nodes 
belonging to the community	ܥ, divided by the total number of nodes associated to 
that community. If ߱ = 0  (i.e., the square region is empty), the value of ܵܣ(݅) is 

set to 0. The next step is to determine the probability distribution of nodes moving to 
each community without considering the impact of interests and the related equation 
is shown as follows: ܲܣ = ∑(݅)ܣܵ ೣ(݅)ೣ∈େܣܵ (2) 

where ܲܣ(݅) denotes the probability of node	݅ moving to community ܥ	and ۱ is the 

set of all communities. 
If we only take into account the impact of social attraction of communities, we 

might find that the communities with few members have low probabilities to be 
visited by nodes coming from other communities. However, in people’s daily life 
some “functional” communities (e.g. supermarkets, hospitals), which have very few 
citizens but often receive visits from other communities, exist. Therefore, in order to 
improve the realism of the mobility model, in the following, we describe the visiting 
behavior propelled by functional demands as interest-driven behavior.  

Since human interest-driven behavior can be categorized into several activities 
such as having rest at home, going to work, shopping and so on, we can reasonably 
define a finite, non-empty set ۯ = ,ଵܣ} ,ଶܣ … ,  (1ܣ	} as the general interest set, whereܣ ≤ ݅ ≤ ݊) represents one type of interest-driven behavior. The quite general interest 
set ۯ  incorporates all potential interest activities. Since for each node, every 
community can only provide several kinds of services to meet interest demands and 
the service capabilities are also different, here we propose a satisfaction degree ܵܶ 
representing the ability of a community to satisfy a specific interest. For the generic 
node	݅, the ability provided by the community ܥ to meet the interest	ܣ, is defined 
as	ܵ ܶ,ೕ(݅). We set the value of ܵܶ within the range[0,1]. To better understand the 

definition of satisfaction degree, let us assume that the interest activity ܣଵ refers to 
“having rest at home” and nodes  and ݍ live in community ܥଵ and ܥଶ respectively. 
The community	ܥଶ , being the location of	ݍ’s home, has the highest probability to 
receive	ݍ’s visit when ݍ  wants to have a rest at home. So we can reasonably set 	ܵ ܶమ,భ(ݍ) to 1. But for	, since its home is not in community	ܥଶ, 	ܵ ܶమ,భ() can be 
set to 0. As a consequence, we can easily define the node	’s interest matrix	۷()ۻ۷ :()ۻ = [ܵ ܶ,()]× (3) 

where the cardinality of community set ۱	and interest set ۯ	correspond to the row and 
column number of the matrix, respectively. For the node	, 	ܵ ܶ,() represents the 
ability that community ܥ  can provide a service to meet the interest ܣ	 . After 
defining the interest matrix, the satisfaction degree can be easily computed. As 
mentioned before, we use the encounter times of nodes   and ݍ  to evaluate their 
degree of social relationship, similarly we choose the times that the node performs an 
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interest activity in a given community in order to represent the satisfaction degree. 
By assuming a map which is divided into 4 communities	۱ = ,ଵܥ} ,ଶܥ ,ଷܥ  ସ}; allܥ

of these communities are capable of offering “restaurant service ( ଶܣ	 )”. At the 
initialization stage, the node  has equal willing to visit the four communities when it 
would like to have some food. So it is appropriate to set	ܵ ܶభ,మ() = 	ܵ ܶమ,మ() =	ܵ ܶయ,మ() = 	ܵ ܶర,మ() = 0.25. After that, we begin to record the times of visiting 
certain communities when   performs the interest activity ଶܣ . If  visits the 
community	ܥଵby following its interest ଶܣ	 , the satisfaction degree will be updated 
according to the formula (4) as follows, so obtaining the following values 0.625, 
0.125, 0.125, 0.125. ܵ ܶ,మ() = ܵ ܶ,మ() + ݁݊ܿ(݅)2 ݅ ∈ {1,2,3,4} 
                          where           ݁݊ܿ(݅) = ቄ 1 if  visits 0ܥ otherwise  

(4) 

It is obvious that, if a node often visits specific communities when performing 
specific activities, the probability that the node will visit such communities for the 
same purpose will be high. The motivation behind this natural behavior comes from 
the real life; people always demonstrate a stronger desire to visit “old places” rather 
than “new places”. 

As mentioned before, the determination of which community should be entered 
is made by evaluating the mixed effects of social attraction of communities and the 
interests of nodes. When a node has to begin a global event, first it needs to randomly 
select one interest from the general interest set	ۯ. For the sake of simplicity, we set 
the interest that the node ݅ chooses as	ܣ and we define the probability of the node ݅ 
entering into the community as follows: ܲ,ೕ(݅) = (݅)ܣܲߙ + (1 − ܵ(ߙ ܶ,ೕ(݅) (5) 

where ߙ is the weight coefficient to tune the influence of interest and social 
relationships on human mobility. If 1 =ߙ, the human behavior is only affected by its 
social relationships. Conversely, if	ߙ is set to 0, the human conducts moving behavior 
driven by social interest. Thus, the user is required to adjust the weight coefficient ߙ 
to meet its expectation of mobility model. 

3.1.3 Calculation of Pause Time 

When people arrive at one place, they are always required to stop there for a while to 
finish their goal (e.g. meeting friends or having dinner). In most existing mobility 
models (e.g. [Ekman, 08], [Hsu, 07]), the pause time is randomly chosen from a pre-
configured range	[ ୫ܶ୧୬, ୫ܶୟ୶]. But in real life, the pause time is closely related to the 
interest behavior and the strength of social relationships. In this section, aiming to 
connect the pause time with interests and social ties, we divide the pause time into 
two parts: the period ܶ  determined by interest behavior and the period ௦ܶ determined 
by social relationships. 

The calculation of period ܶ  takes into account the differences in time costs 
related to the interest activity and to the activity performer. For example, the time cost 
of having dinner and going shopping is always different. Even for having dinner, 
there is also a significant difference in time cost for various people. 
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Given ۯ = ,ଵܣ} ,ଶܣ … ,  its personal ,ݍ	} the general interest set, for the nodeܣ
interest set is denoted as (ݍ)ۯ	 = ,(ݍ)ଵܣ} ,(ݍ)ଶܣ … , {(ݍ)ܣ . At the initialization 
phase, the default time cost of each interest is also given. Here, we use (ݍ)܂	 ={ ଵܶ(ݍ), ଶܶ(ݍ), … , ܶ(ݍ)}, where ܶ(ݍ)	(1 ≤ ݅ ≤ ݊) is the default time cost the host ݍ 
will spend when performing the interest	ܣ(ݍ). Aiming at being compliant to the 
randomness of human behavior, the actual time cost ݐ	when performing the interest 
activity	ܣ(ݍ) follows the normal distribution as below: ݂(ݐ) = )ߨ2√1 ܶ(ݍ)/݈) ݁ି ௧ି்()ଶ(்()/)మ (6) 

where	݈  is the variance coefficient to tune the deviation degree of ݂(ݐ). 
For the period	 ௦ܶ, which is determined by social relationships, the node is willing 

to stay longer in intimate communities than in stranger communities. Thus, at the 
initialization phase, a standard time interval ௨ܶ௧  is given; then, the default time cost ௦ܶ(ݍ) with (1 ≤ ݏ ≤ ݊), can be calculated by taking into account the social attraction 
of community	ܥ 

towards host	ݍ as in the following: ௦ܶ(ݍ) = ௨ܶ௧ ×  (7) (ݍ)ܣܵ

According to the randomness of human behavior, the actual time cost of stay ݐ௦	once 
arrived to the community	ܥ	follows the normal distribution as below: ݂(ݐ௦) = )ߨ2√1 ௦ܶ(ݍ)/݈௦) ݁ି ௧ೞି ೞ்()ଶ( ೞ்()/ೞ)మ  (8) 

where	݈௦	is the variance coefficient to tune the deviation degree of ݂(ݐ௦). 
As mentioned before, the total pause time ܶ is the sum of two terms: ௌܶ	and	 ܶ . 

Thus, the actual total pause time ݐ can be calculated by ܶ = ߙ ௌܶ + (1 − (ߙ ܶ (9) 

where ߙ	is the weight coefficient mentioned before to tune the influence of interest 
and social relationships on human mobility (see Section 3.2.2). 

3.1.4 Moving Speed 

In most existing mobility models, the moving speed is always the factor that is over-
simplified. They always assume that the moving speed of a node in the network 
follows a random distribution with range [ ୫ܸ୧୬, ୫ܸୟ୶] and the moving speed is always 
constant before the node reaches the destination. However, the moving speed, just like 
the pause time and the selection of a specific community, is also closely related to the 
user's ongoing interest. Our more realistic assumption is that when people perform 
different interests, their moving speed tends to be different. For urgent situations, 
people tend to move faster than for normal situations (e.g. driving car rather than 
walking). For this reason the node ݍ with personal interest 
set	(ݍ)ۯ = ,(ݍ)ଵܣ} ,(ݍ)ଶܣ … ,  is coupled to a specific default moving speed ,{(ݍ)ܣ
set (ݍ)ۻ = ,(ݍ)ଶܯ,(ݍ)ଵܯ} … {(ݍ)ܯ,  where ܯ(ݍ)	(1 ≤ ݅ ≤ ݊) represents the 
default speed the node ݍ will keep when performing the specific interest	ܣ(ݍ). The 
moving speed of humans also exhibits a certain degree of randomness. Therefore, we 
model the moving speed in a time-variant way by referencing the Gauss-Markov 
mobility model [Meghanathan, 10]. The Gauss-Markov mobility model was designed 
to adapt to different levels of randomness via one tuning parameter. Initially, at each 
node is assigned a current speed and direction; then, at fixed intervals of time, a 
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movement occurs by updating the speed and direction of each node. The most 
obvious advancement of Gauss-Markov model is that, at each time interval, the next 
location is calculated based on the current location, speed and direction of movement. 
So the change curves of moving speed in Gauss-Markov model are smooth, which is 
consistent with the human mobility feature in real life. So in our model, the moving 
speed of node ݍ when performing interest 	ܣ(ݍ) is given as below: (ݍ)ݐܯ = (ݍ)1−ݐܯߚ + (1 − ഥܯ(ߚ (ݍ) +ට൫1 −  (10) (ݍ)1−ݐݔܯ2൯ߚ

where 	ܯ௧(ݍ) is the new speed of the node ݍ at time interval ;ݐ	ߚ, where 0 ≤ ߚ ≤ 1, 
is the tuning parameter used to vary the randomness; ܯഥ(ݍ) is constant representing 
the mean value of speed as ݐ → ∞ . In our model, we set ܯഥ(ݍ)  equal to (ݍ)ܯ	  is a random variable independently chosen by node q from a Gaussian	(ݍ)௫షభܯ .
distribution with mean 0 and standard deviation 1. Initialized speed 	ܯ(ݍ)is equal to 
the default speed. It is worthy to note that, if	ߚ = 0, the moving speed tends to be 
constant; on the contrary, linear motion is obtained by setting	ߚ = 1. 

3.1.5 Social Graph 

Before calculating the social attraction of each community, we need to evaluate the 
social relations among people and extract their social properties to build a social 
graph. A social graph is a global mapping that depicts personal relations of all users 
within different communities. Such a graph is a weight matrix where vertices 
represent individual people and edges describe social ties between them. Here in our 
model, the social ties between two nodes are measured by the times they meet each 
other. We naturally think if two people are more likely to encounter with each other, 
they are in a closer relationship. In [Lindgren, 03], the author presented a classic 
algorithm to assess social graph. As a consequence, by referencing to the research 
work of [Lindgren, 03], we propose our calculation method of social graph as below. 

Each node ݍ in the network will maintain a social relationship strength vector (ݍ)܁܀ where ܴܵ(,  recording the encounter (ݍ)܁܀ ௧element of represents the (ݍ
times between ݍ and	. This value denotes the relationship strength between the two 
nodes. When a pair of nodes is encountered, the metric is updated according to the 
following relation: ܴܵ(, (ݍ = ,)ܴܵ ௗ(ݍ + (1 − ,)ܴܵ (ௗ(ݍ × ܴ ܵ௧  (11) 

where ܴܵ(, ܴ and , has for node	ݍ is the relationship strength that node (ݍ ܵ௧ ∈[0,1] is an initialization constant. This formula ensures that nodes often encountered 
have higher relationship strength. If a pair of nodes does not encounter each other in a 
while, they are less likely to have high relationship strength with each other, thus the 
relationship strength values must age according to the following equation: ܴܵ(, (ݍ = ,)ܴܵ ௗ(ݍ ×   (12)ߛ

where γ ∈ [0,1) is the aging constant, and ݇ is the number of elapsed time units since 
the last time the metric was aged. The time unit used may differ and should be defined 
based on the application and the expected delays in the targeted network.  
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3.2 Evaluation 

In this section, aiming to better understand the model performance, we analyze two 
further properties of the movement patterns: i) the contact duration and ii) the inter-
contact times. We adopt the same definitions used in [Musolesi, 06] in order to 
compare the results. 

 

Figure 3: Layout of communities and interest sites in the simulation scenario 

According to [Musolesi, 06], the contact duration is defined as the time interval 
in which two nodes can communicate being within the same transmission range. The 
number of such contacts and the distribution of contact durations is an important 
factor for determining the capacity of opportunistic networks. Inter-contact duration is 
defined as the time interval between two contacts, which describe the contact rate 
with other nodes in the network. 

We present a simple scenario in a simulation area of 1 Km2 and we divide such 
area into four communities ۱ = ,ଵܥ} ,ଶܥ ,ଷܥ  ସ} as shown in Figure 3. At the initialܥ
stage, the nodes are randomly placed in community ܥଵand	ܥଶ. As mentioned above, 
the node behavior is driven by local events and global events. During a local event, 
the node is required to return to its own community. Hence, it is reasonable to use the 
local event to represent the behavior “having rest at home”. For global events, the 
movement of a node is influenced by social relationships and interests. Here, for 
convenience, we assume that each node share the same interest set ۯ = ଵܣ} =
shopping, ଶܣ = working, ଷܣ = "eating	at	restaurant"}  that is defined by the 
following interest matrix: ۷ۻ(ܲ) =  0 0 0.6 0.40 0.5 0.5 00.5 0.5 0 0 ൩ (13) 

It is worthy to remind that in (ܲ)ۻ۷	 , rows denote the community set ۱ ,ଵܥ}= ,ଶܥ ,ଷܥ 	{ସܥ and columns represent the interest set ۯ	 = ,ଵܣ} ,ଶܣ {ଷܣ . As an 
example, we can note that, by looking at the interest matrix (ܲ)ۻ۷	 , the node 
performing the interest	ܣଵhas the probability of visiting the community ܥଷ	equal to 
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0.6 and has the possibility of entering community ܥସ because the probability of 
visiting this community is equal to 0.4.  

To analyze the proposed mobility model, we set the following simulation 
parameters by referencing the statistics of human mobility in [Trestian, 12]:  

 The default time pause set	()܂, corresponding to the interest set	ۯ, is equal 

to	{ ଵܶ = 4s, ௦ܶ = 8s, ଷܶ = 2s}.  
 The default moving speed set	()ۻ, matching the interest set	ۯ, is equal 

to	{ܯଵ = 5m/s,ܯଶ = 10m/s,ܯଷ = 2m/s}.  
 The tuning parameters ߚ and ߛ are set to 0.75 and 0.98 respectively.  
 The transmission range of the generic node is fixed to 100m.  

Since the weighted coefficient ߙ is the key factor to influence the performance of our 
mobility model, we propose two simulation cases: 

- The first case is composed of 50 nodes in order to evaluate the mobility 
performance by varying	ߙ = {0, 0.25, 0.75, 1}. 

- The second scenario is designed to evaluate the impact of node density by 
fixing	ߙ = {0.5}. 

 

(a) cumulative distribution of inter-contact durations  (b) cumulative distribution of contact 
durations  

Figure 4: Performance of InterCom model with varying ߙ 

Figure 4(a) shows the cumulative distributions of inter-contact durations using 
log-log coordinates. It is easy to observe that, by decreasing ߙ	 , the inter-contact 
durations tend to be longer. For	ߙ = 1, only 24% of inter-contact durations last more 
than 10 seconds. In contrast, more than 74% of inter-contact durations are longer than 
10 seconds when ߙ is equal to 0. This behavior is mostly due to the fact that in the 
case of	ߙ = 0, the movements of hosts are only determined by social relationships. 
Hence, the moving range of nodes is constrained within residential communities ܥଵ 
and	ܥଶ. Nodes are more likely to meet each other and maintain a relatively long inter-
contact duration. Considering the case of ߙ	 = 1 , nodes choose their destinations 
according to their own social interests and interest sites are distributed more widely 
than the residential communities. Hence, the moving scale of the nodes is larger, thus 
leading to decrease hit probability and inter-contact durations. Besides that, our 
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curves show an approximate power law behavior when ߙ is 0.25 or larger. A similar 
pattern can also be observed in UCSD [McNett, 05]. 

Figure 4(b) shows the cumulative distributions of contact durations using log-log 
coordinates. Similar to the inter-contact duration above, the contact duration tends to 
be longer with the decreasing of	ߙ. In the case of	ߙ = 0, less than 55% of contact 
durations can last longer than 10 seconds. On the contrary, by setting	ߙ = 1, almost 
25% of contact duration is able to achieve that result. It is easy to understand that the 
length of contact duration depends on the level of interest similarity of the nodes. 
Obviously, for	ߙ = 0, the nodes can be seen as travelling between two residential 
communities (i.e., ܥଵ  and	ܥଶ); therefore, the traces of nodes are more likely to be 
coincident. However, as far as the case of ߙ = 1	is concerned, the traces of the nodes 
seem to be more scattered, thus leading to the decrease of contact durations. 

To sum up, we have shown that, by considering typical human characteristics 
such as interest-driven and social-based behaviors, our model is more similar to real 
human traces. Moreover, the reality of our model has been further confirmed through 
the evaluation of important performance indexes such as inter-contact duration and 
contact duration. 

4 Design of Routing Protocol 

In this section, we describe the main characteristics of a new routing protocol well-
suited for the proposed InterCom mobility model; thus, we denote the routing scheme 
as InterCom either for the sake of simplicity. InterCom relies on the notion of utility 
for the selection of message carriers in order to enable store-ferry-forward 
communication. The utility of a node represents how good a carrier is for message 
relaying. The utility values are linked to movement patterns and co-location with 
other nodes. For community-based opportunistic networks, a member of a given 
community tends to interact with another member of the same community rather than 
with a randomly chosen member of the population; this makes the network  
heterogeneous from the perspectives of movement pattern and social property. Thus, 
it is reasonable to adopt two different utility measurements for intra-community and 
inter-community respectively. A similar idea of adopting two-layered utilities has 
been proposed in [Hui, 11]. In such work, each node has a global utility across the 
whole network and a local utility within its local community. The utility value relies 
on two social characteristics: community and centrality. Taking advantages of these 
social characteristics, the proposed Bubble Rap Forwarding mechanism, basically 
includes two phases: a bubble-up phase based on global centrality and a bubble-up 
phase based on local centrality. In both phases, the bubble-up forwarding strategy is 
utilized to forward messages to nodes that are more popular than the current node 
(i.e., with higher centrality). Although Bubble Rap, to some extent, is capable of 
accelerating the message forwarding from source to destination by introducing two-
layer utility, it has been proven that such a strategy may fail when the destination 
belongs to the communities whose members are all with low global centrality values. 
Besides that, if the number of communities is too few or the distribution of nodes in 
the network is too sparse, it may be difficult to extract social structures from the 
social graph, thus raising challenges to assess centrality values. Aiming to avoid the 
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drawbacks of the former researches, we adopt a new method to calculate the utilities. 
For intra-community (shown as dash arrow in Figure 5), we use the active degree as 
the utility to decide the potential message carrier. For inter-community (shown as 
solid arrow in Figure 5), we define the probability of visiting destination community 
as the utility to select qualified candidates for message relaying between 
communities. The calculation of utilities is described in detail in the next section. 

 

Figure 5: A schema of message flow according to the InterCom routing protocol 

4.1 Routing within the same Community 

4.1.1 Intra-community Utility 

In a community, some nodes stay at a location for a longer time than other nodes. We 
call them lazy nodes that do not always participate in community’s activities and by 
contacting fewer nodes. On the contrary, some nodes interact with more nodes and are 
more likely to visit other communities, we call them active nodes. By selecting active 
nodes as relay allows enhancing the probability of message flowing from a source 
community to outer communities. Thus, we select the active degree as the intra-
community utility in our routing protocol. 

Each node in the network will maintain an intra-community utility that is 
determined by the probability of node leaving its own community for other outer 
communities. The higher the active degree the node has, the easier the node 
distributes messages to other communities. The calculation method for intra-
community utility (ܷܫ) is performed in a complementary way respect to the willing to 
leave the native community expressed through the so-called outer willingness utility 
(OWU) as follows: 
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                  ܱܹܷ(݅) = ߙ ܴܵ + (1 − (ߙ  ܵܫ
 

						݁ݎℎ݁ݓ
۔ۖەۖ
ۓ ܴܵ = 	∑ ∑ಿೌ()	ஷ		۱	∈	(݅)ܣܵ ܵܫ											۱	∈	ೣ(݅)ೣܣܵ = ∑ ∑ ܵ ܶೣ,ೣ(݅)ೣ∈ۯೣ	∈	۱ೣ ஷ ಿೌ() |ۯ|

 
(14) 

where 	ܥே(݅)	 denotes the native community of node ݅ and ۱ is the community set. ߙ 
is the weight coefficient mentioned before to adjust the influence of interest and social 
relationship on human mobility. The term ܴܵ is the probability of node ݅ leaving its 
native community by only considering the impact of social relationships and the term ܵܫ represents the probability of node ݅ moving to outer communities driven by social 
interests. Therefore, ܱܹܷ(݅), representing the willing to leave the native community, 
is essentially the comprehensive probability of node ݅ selecting the destination outside 
of its native community by considering the weighted impacts of social relationships 
and interests; finally, the intra-community utility ܷܫ(݅)  can be calculated as the 
complement of ܱܹܷ(݅) respect to 1: ܷܫ(݅) = 1 − ܱܹܷ(݅) (15) 

4.1.2 Message Forwarding in intra-community 

In general, the entire process of message forwarding in opportunistic networks mainly 
includes two phases: 1) distribution phase; 2) relaying phase. For distribution phase, 
the source node is required to distribute a certain number of message copies into the 
network. The goal of doing this is to guarantee the success rate of message delivering 
and accelerate the spreading speed of message copies. Since in community-based 
opportunistic networks, the nodes within the same community have higher probability 
to encounter with each other, the spreading of message copies within the source 
community (i.e., the community where the source node locates) guarantees  the 
presence of a suitable number of copies in the network. Especially in the sparse 
network, the advancement of message distribution in source community is far more 
significant. Therefore, the aim of intra-community forwarding strategy is to help the 
message spreading, from low-utility to high-utility, as well as to keep sufficient 
amount of messages copies existing in the network. Therefore, we consider three 
scenarios in our protocol. Note that the message delivering we discuss here is only 
constrained between two nodes whose host community is the same. 

When message-carrying node	 encounters its peer	ݍ, they will exchange their 
intra-community utility value firstly. According to the consequences after the 
exchange, we can get the utility value of the message-carrying node ()ܷܫ and the 
utility value of the encountering node	(ݍ)ܷܫ. 

 If |()ܷܫ − |(ݍ)ܷܫ ≤ ߜ  where ߜ  is the relaying threshold value, we can 
consider the utility value of message-carrying node similar to the encountering node. 
Message-carrying node will duplicate its own message copy to the encountering node 
and retain its own message copy.  
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If	(ݍ)ܷܫ − ()ܷܫ > ߜ , we can consider the utility value of message-carrying 
node much smaller than encountering node. The message-carrying node will duplicate 
the message copy to the encountering node and delete its own message copy. 

If	()ܷܫ − (ݍ)ܷܫ >  we can consider the utility value of the message-carrying ,ߜ
node much larger than encountering node. If it has a message copy, the encountering 
node will delete its own message copy. 

The idea behind the intra-community strategy is easy to be understood. Through 
the copying process between two nodes with similar utility, we can guarantee enough 
message copies circulating in the intra-community. The message delivering from low-
utility to high-utility can ensure the message having higher probability to reach 
destination after each encountering. Although the messages are capable of following 
the most effective way to contact members belonging to the outer communities 
through the two above schemes, the total amount of message copies can increase 
monotonically which will cause excessive consumption of energy and cache. Due to 
this reason, when two message carriers encounter with each other, the one having 
lower utility deletes its message to relieve its cache space. 

4.2 Routing between Communities 

4.2.1 Inter-community Utility 

As mentioned above, the utility function of the distribution phase occurring in an 
intra-community aims at guaranteeing that a sufficient number of message copies can 
flow among the network. When this goal is achieved, the next step consists in an 
effective strategy to select qualified relay nodes towards the target node. As the 
ultimate goal is to send the message or its copies to the target node, delivering such 
messages to the peers of the target node (i.e. those that share the same target node 
community), can be considered as an equivalent successful delivery because of the 
encountering high probability in an intra-community. Therefore, our selection of 
qualified relay in an outer-community is based on either the probability of contacting 
the target or the probability of entering into the target node community. Since in our 
mobility model, the movement of a node is determined by its interests and social 
relationships, the node that share similar interests or have intimate social relationships 
with the target node or with the target node community, has higher success rate to 
deliver the message. Based on this consideration, the calculation method for inter-
community utility ܱܷ(݅) is shown as follows. ܱܷ(݅) = ∑ ܲ,(݅)∈ۯ|ۯ| + ,݅)ܴܲߙ ݀) + (1 − ,݅)ܦܫ(ߙ ݀) (16) 

where ܥௗ represents the target community (i.e., the community where the target node ݀ locates). Hence, ܲ,(݅) denotes the probability of node ݅ to enter into the target 

community when following the interest ܣ	 . Considering the node usually has 

multiple interests, which are defined by the general set	ۯ, the term 
∑ ,ಲ()ಲ∈ಲ|ۯ| 	 is 

the probability of node ݅ to visit the target community taking into account all possible 
interests. RS(݅, ݀)  is the social relationship strength between node ݅  and target 	݀ , 
which also denotes the probability of node	݅ to encounter ݀. ܦܫ(݅, ݀) is the interests 
comparison function between node ݅ and target node ݀ , which reflects the interest 
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difference between ݅ and ݀. As one can note, the more evident the interest difference 
the nodes demonstrate, the smaller the value of ܦܫ(݅, ݀) is: ܦܫ(݅, ݀) = 1 − ∑ ∑ |ܵ ܶ,(݅) − ܵ ܶ,(݀)|∈۱∈ۯ |ۯ|  (17) 

The idea behind the definition of 	ܦܫ(݅, ݀)	is that through the calculation of interest 
similarity of node ݅ and target	݀, we can derive the encountering probability of them 
by only considering the impact of social interests. As mentioned before, the impact of 
social relationships and interests are different, hence we use the weighted coefficient ߙ	proposed in section 3.2.2 to adjust their mutual influence on inter-communities 
message delivery. Actually ܱܷ(݅)  is the sum of the probability of node ݅  visiting 
target community ܥௗ and the probability of node ݅ encountering target	݀, from two 
different perspectives (social relationships and interests). 

4.2.2 Message Forwarding in Outer-community 

As mentioned above, the purpose of message transmission in intra-community is to 
deliver messages to highly active carriers as well as to guarantee a sufficient number 
of message copies. However, for sparse community whose members are few, even 
though each member in the community has successfully received message copies, the 
total amount of copies may not be sufficient to ensure an adequate dissemination. 
Hence, the mechanism of message routing in inter-community is similar to that of 
intra-community, which also includes three behaviors: duplication, delivering and 
deletion. However, with respect to inter-community, the nodes cannot be treated at the 
same way because they come from different host communities. In our routing 
strategy, the nodes in inter-community can be classified into two categories: native 
member and outer member. A native member is the node from the source community, 
while an outer member is the node that does not belong to the source community. 
Since the encountering between native members is the focus of the message 
forwarding strategy for intra-community, the scenarios for inter-community mainly 
include two cases: native members encountering outer members and outer members 
encountering outer members. The forwarding strategy for inter-community is 
discussed in detail as follows. 

When message-carrying native member  encounters an outer member	ݍ, they 
will first exchange their inter-community utility value. After this exchange, we can 
compute the utility value of the message-carrying node ܱܷ() and the utility value of 
the encountering node	ܱܷ(ݍ). 

If ()ܷܱ|	 − |(ݍ)ܷܱ ≤ ߮ , where ߮  is the relaying threshold value, we can 
consider the utility value of message-carrying node similar to the encountering node. 
Message-carrying node will duplicate its own message copy to the encountering node 
and retain its own message copy. 

If ()ܷܱ	 − (ݍ)ܷܱ > ߮ , we can consider the utility value of the message-
carrying node much larger than that of the encountering node. If it has a message 
copy, the encountering node will delete its own message copy. 

If (ݍ)ܷܱ	 − ()ܷܱ > ߮ , we can consider the utility value of the message-
carrying node much smaller than that of the encountering node. The message-carrying 
node will transfer a message copy to the encountering node and delete its own 
message copy. 
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When message-carrying outer member  encounters an outer member	ݍ , they 
will exchange their inter-utility value firstly. After the exchange, we can compute the 
utility value of the message-carrying node ܱܷ()  and the utility value of the 
encountering node	ܱܷ(ݍ). 

If	ܱܷ() >  the utility value of the message-carrying node is larger than ,(ݍ)ܷܱ
that of encountering node, the encountering node will delete its own message copy (if 
any). 

If	ܱܷ() <  the utility value of message-carrying node is smaller than ,(ݍ)ܷܱ
that of the encountering node, the message-carrying node will transfer a message copy 
to the encountering node and delete its own message copy. 

The most evident difference between the two cases (i.e., native members vs. 
outer members and outer members vs. outer members) is that forwarding behavior 
between native members and outer members includes message duplication which is 
not performed when outer members encounters outer members. The goal of exploiting 
the message duplication process is to spread messages to the outer community space 
in order to enhance the success rate of message delivery and to reduce transmission 
delay especially in sparse networks. Since in most cases, the outer members are the 
overwhelming majority of the network, the message duplication carried out by the 
members will result in a sharp rise of message copies amount turning into an 
expensive occupation of network resources. Due to this reason, the operation of 
message copying is only constrained between native members and outer members. 
For message forwarding between outer members, the only purpose is to find the most 
cost-effective relaying path to destination. Notice that, since in our mobility model the 
nodes coming from the same community have highest probability to encounter each 
other, it is reasonable that the target node or its peers, which are from the same 
community, will set the utility value to the maximum value. 

4.3 Buffer Management 

In opportunistic networks, the storage space consumes fast due to their intrinsic delay-
tolerant characteristics, leading to a more urgent demand for efficient cache 
management respect to common networks. Thus, how to manage the cache efficiently 
is one of the most important and challenging issues to improve the performance of the 
routing algorithm. In order to control the number of the message copies circulating in 
the network and thus reducing the resource consumption of the network, a cache 
management strategy is proposed as follows: 
a) Every message will include a TTL (Time to Live) value upon creation. The TTL 

will decrease over time. The node will examine whether the TTL is expired (e.g. 
decrease to zero) or not. If TTL decreases to zero, the message will be deleted 
from the cache. 

b)  When a new message is inserted into the buffer, it will be en-queued at the end 
of the buffer. When the message carrier encounters appropriate message-relaying 
opportunity, the message at the head of the buffer will be transmitted first. The 
buffer message processing is FIFO-based. 

c) When a message reaches its destination, other copies of this message should be 
discarded as their existence would waste precious resources in terms of buffer 
and energy. Therefore, the destination node will adopt an epidemic strategy with 
a given TTL to send a small ACK message to other nodes nearby to inform them 
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of discarding the redundant copies. 

5 Routing Evaluation 

In this section, we conduct extensive simulations using a Matlab based simulation 
framework to evaluate the proposed InterCom routing protocol and compare it with 
existing community-based routing schemes. All the simulations are based on our 
InterCom model. 

5.1 Reference Algorithms 

By looking at the literature of the last few years, it is possible to find a lot of research 
works on forwarding strategies for opportunistic networks; however, since our goal is 
to provide a cost-effective social-based routing protocol, we have chosen the 
following well-known and widely-diffused routing protocols (Bubble Rap, Simbet 
and PRoPHET) as benchmarks. To run Bubble Rap, we are required to configure 
three main parameters: C-Window duration, C-Window windows and K-Clique; thus, 
according to [Hui, 11] we set those parameters to 1000s, 5 and 5 respectively. In 
Simbet, we only need to configure the tuning parameter	ߙ	which is set to 0.5 in our 
simulation according to the recommendation suggested by [Daly, 07]. In [Lindgren, 
03], it has been proven that PRoPHET is able to have a promising routing 
performance when initialized probability	 ܲ௧  , coefficient of indirect visits  and	ߚ	
aging constant ߛ	are set to 0.75, 0.25 and 0.98 respectively. Thus, in our evaluation 
we use the same simulation settings. 

5.2 Metrics 

We define the following metrics to evaluate the different routing protocols in 
opportunistic networks:  
 Delivery Ratio: the percentage of messages delivered successfully out of the 

number of total messages generated. It is always considered as the most 
fundamental criterion to analyze the performance of a routing protocol. 

 Delivery Delay: the duration between the message generation time and the 
message delivery time. Delivery delay is an important concern in routing design. 

 Overhead: the total number of messages transmitted during the simulation across 
all nodes. This value could be used to estimate the energy efficiency of a routing 
protocol. 

 Caching time: the average time of cache being occupied during the simulation 
across all nodes. Long caching time means messages last in the buffer for longer, 
and consequently a low caching time is desirable. 

5.3 Simulation Setup 

For convenience, we still use the simulation scenario proposed in section 3.2 to 
evaluate the performance of InterCom routing protocol. The default settings of the 
network and our routing protocol are listed in Table 1. 
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Parameter Value 
Simulation time 2000s 

Queue model FIFO 
Wireless protocol IEEE 802.11g 

Message size 128KB 
Buffer size 8MB 

Message generation rate 1 msg/5s 
Utility threshold value  0.1 ߜ
Utility threshold value ߮ 0.1 

Table 1: Simulation parameters for network model 

5.4 Simulation Results 

In this section, we present and discuss the results obtained after performing the 
simulations. In particular, we first evaluate the performance of the selected 
forwarding protocols with different numbers of nodes and, then, analyze the 
performances by varying the TTL. 

5.4.1 Evaluation by varying the number of nodes 

Regarding the Delivery Ratio, in Figure 6(a), the performance of all four routing 
protocols are improved significantly by increasing the number of nodes and the 
delivery ratio of PRoPHET achieves more than 75% when the number of nodes 
exceeds 100. The performance of InterCom is only less than 10% with respect to 
PRoPHET, whilst Bubble Rap and Simbet performances are hardly satisfactory, i.e., 
lower than 50%. The highest performance of PRoPHET is due to its flooding routing 
scheme that injects a large amount of message copies into the network. As a 
consequence, we observe that the overhead and caching time of PRoPHET are much 
higher than the other routing protocols. Compared with the Bubble Rap and Simbet, 
the selection of relay nodes in InterCom is based on both the social intimacy and 
interests similarity with the target node. Since the movements of the nodes in the 
mobility model are also driven by social interests and social attraction, a higher 
delivery ratio of InterCom can be obtained.  

Figure 6(b) shows the overhead of all the protocols; in particular, the overhead of 
InterCom is the lowest, equals to only one third of that of PRoPHET. In fact, in 
InterCom, when both nodes carrying messages encounter each other, the node with 
lower utility will delete its own copy after exchanging the message so being able to 
reduce excessive overhead caused by message copying.  On the other side, we would 
like to remark that the very good performance of PRoPHET on the delivery ratio is 
actually obtained at the expense of a significant overhead. 

Regarding the delivery delay shown in Figure 6(c), the performance trend of the 
routing protocols is quite similar to that of Figure 6(a). In particular, PRoPHET still 
exhibits the lowest delivery delay, which is less than InterCom, Bubble Rap and 
Simbet by 24%, 40% and 45% respectively. The reason is that PRoPHET duplicates 
more messages than the other algorithms, thus speeding up the message delivery with 
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respect to the other protocols. Although Simbet and Bubble Rap transmit more 
messages than InterCom, their latency is considerably higher than InterCom. 

Finally, InterCom performs best in terms of caching time (see Figure 6(d)) while 
the caching time of Simbet and Bubble Rap are almost the same. Due to the excessive 
message copies that give rise to long occupation of buffer space, the caching time of 
PRoPHET is much higher than the other protocols. 

 
(a) delivery ratio                                     (b) overhead 

 
(c) delivery delay                                  (d) caching time 

Figure 6: Routing performance with varying number of nodes 

5.4.2 Evaluation by varying the TTL 

Delivery ratio, overhead, delivery delay and caching time by varying TTL are shown 
in Figure 7 by keeping constant the number of nodes to 50. By analyzing the delivery 
ratio (see Figure 7(a)), we can observe that all algorithms deliver more messages to 
the target node when the TTL increases. However, as the TTL becomes high the 
increment in the delivery ratio is reduced because the capacity of the network to 
forward messages becomes the performance bottleneck. PRoPHET outperforms all 
the other protocols with the highest delivery ratio by achieving 69% of message 
delivery. With respect to InterCom, although the performance difference with 
PRoPHET is evident for low TTLs, the performance gap tends to be small by 
increasing the TTL. When the TTL is set to 200, the delivery ratio of InterCom is only 
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8% lower than that of PRoPHET. 
In terms of overhead (see Figure 7(b)), PRoPHET costs much more than the 

other protocols. On the contrary, InterCom shows the lowest overhead. As far as 
Bubble Rap and Simbet are concerned, the Simbet outperforms Bubble Rap both in 
terms of delivery ratio and overhead. By considering the delivery delay (see Figure 
7(c)), for low TTLs (i.e., lower than 50 seconds), all protocols show similar 
performances. As TTL is increased, PRoPHET is able to deliver messages faster than 
the other protocols as it duplicates more messages than the other algorithms. As one 
can note from caching time shown in Figure 7(d), among all protocols Simbet 
performs the best as well as InterCom by choosing TTL values lower than 120seconds. 
By increasing the TTL values over 120 seconds, the performances of InterCom are 
significantly better than those of Simbet. It is worth noting that the caching time of 
PRoPHET is usually much higher than that of the other three routing protocols. When 
TTL is set to 200, the caching time of PRoPHET is almost the sum of those of the 
three reference algorithms. 

 

 
(a) delivery ratio                                     (b) overhead 

 
(c) delivery delay                                      (d) cache time 

Figure 7: Routing performance by varying TTL 

According to these results we can argue that InterCom performs the best from 
the perspective of comprehensive routing performance. Although PRoPHET has 
relatively better results than InterCom in terms of delivery ratio and latency, the 
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advantage is obtained at the expense of overhead and caching time. In contrast, 
InterCom is able to forward messages with a good delivery ratio and latency while 
maintaining the lowest overhead and caching time. The performances of Bubble Rap 
and Simbet are almost always worse than those of InterCom. 

6 Discussion and Future Works 

The main contributions of this paper consist into the design of an interest-driven 
social-based community mobility model coupled with a two-layer routing protocol 
well-suited for opportunistic networks. To the best of our knowledge, we are the first 
to introduce the concept of “interests” within the context of the opportunistic 
networks. Through comparison with existing mobility models, the proposed model is 
more in line with the characteristics of real human traces.  

Some of the issues to address in the near future are outlined as follows: 
a) Although we have introduced the concept of “interests” into the InterCom model, 

the description of “interests” is still too simple. In our model, for simplicity, the 
interest is selected randomly from the general interest set at the beginning of a 
global event. But in real life, there might exist correlation between two 
consecutive interests. For example, people are more likely to return home to 
have a rest rather than go to workplace after visiting hospital. Based on this 
consideration, it would be necessary to define a correlation function among 
interests. 

b) Like most of the current research on opportunistic networks, the main objective 
of our study consists into the proposal of a mobility model to be applied in a 
neighborhood scenario by using an opportunistic routing to achieve efficient 
message exchange between various members and communities. Hence, in our 
mobility model, the community division is based on geographical information 
(i.e., belonging to the same community means home locations in the same grid). 
However, in few particular contexts (e.g. urban searching and rescuing 
[Aldunate, 06], [Ochoa, 13]), communities are divided according to the tasks 
assignment or intimacy of social relationship; therefore, our model seems to be 
not suitable for such scenarios and how to make it more flexible is still an 
interesting and challenging open issue. 

c) One interesting research line that has not been discussed herein consists into the 
analysis of human features (e.g. gender, age, culture, religion, etc.) impact on 
community behavior. In this work, we only assume that the personal interests are 
driven by daily needs (e.g. eating, sleeping, working, entertaining, etc.). 
However, besides daily needs, the community behavior of human beings is 
strongly affected by their personal features. For example, considering the 
entertainments related to the gender, females are more likely to visit the 
community where a big mall is located while males prefer communities where 
there are bars. Hence, it would be interesting to take into account, as future 
works, the human features that could affect the community behavioral. 
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7 Conclusions 

In this paper, we proposed the InterCom model that better takes into account the 
social features of human behavior pattern (i.e. interests-motivated, geographical 
priority and time-variance) with respect to pure community-based models. 
Furthermore, based on this model, we presented a two-layer routing algorithm, named 
InterCom routing protocol, whose intra-community and inter-community utilities are 
respectively determined by the activity level of the node and by the probability of 
contacting the target node. A performance comparison between the InterCom routing 
protocol and other well-known routing approaches for opportunistic networks (i.e. 
PRoPHET, Simbet and Bubble Rap) has been carried out in terms of delivery ratio, 
transmission delay, overhead and caching time. The simulation results show that, by 
considering interests and social information, messages can be delivered with high 
probability while keeping overhead and transmission delay low, so providing the best 
trade-off performances among the analyzed routing protocols. 
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