
A Method for Proving Theorems in Di�erential Geometry

and Mechanics

Dongming Wang
(Institut National Polytechnique de Grenoble, France

wang@li�a.imag.fr)

Abstract: A zero decomposition algorithm is presented and used to devise a method
for proving theorems automatically in di�erential geometry and mechanics. The method
has been implemented and its practical e�ciency is demonstrated by several non-trivial
examples including Bertrand's theorem, Schell's theorem and Kepler-Newton's laws.

Key Words: Di�erential geometry, mechanics, polynomial elimination, theorem prov-
ing, triangular system, zero decomposition

Category: I.1.2, I.2.3

1 Introduction

We consider theorems in elementary di�erential geometry and plane mechanics
which can be expressed algebraically in the form

(8x1 � � � 8xn) [H1 = 0 ^ � � � ^Hh = 0 ^D1 6= 0 ^ � � � ^Dd 6= 0 =) C = 0]; (1)

where Hi; Dj and C are di�erential polynomials in the variables x1; : : : ; xn and
any number of their derivatives with respect to (abbr. wrt) a variable t with
coe�cients in K, an ordinary di�erential �eld of characteristic 0 consisting of
functions of t. That the curvature of a circle is constant and that the orbit
described by a particle under a central attractive force is an ellipse if the force
varies directly as the distance are examples of such theorems. This paper presents
a method that decides the validity of any theorem of this type. The decision
problem is solved as determining whether the formula (1) is valid, and if not,
�nding certain subsidiary (non-degeneracy) condition under which it becomes
valid.

Proving theorems in di�erential geometry and mechanics mechanically was
initiated in [Wu 79, Wu 82, Wu 87a], followed up in [Carr�a Ferro and Gallo 90,
Chou and Gao 93a, Li 91]. In particular, several remarkable theorems have been
proved or even \discovered" automatically in [Wu 87b, Wu 87c, Wu 91], and
many more later in [Chou and Gao 91, Chou and Gao 92, Chou and Gao 93b],
using Wu's method with improvements. An approach based on the evaluation
of di�erential dimension (polynomials) has been proposed in [Carr�a Ferro 94,
Carr�a Ferro and Gallo 90]. The method presented in this paper follows similar
algebraic approaches of Wu and others, but employs a di�erent algorithm for the
involved zero decomposition. This new decomposition algorithm is developed by
the author using ideas from Seidenberg's elimination theory [Seidenberg 56]. The
method has been implemented in the Maple system and its practical e�ciency
is demonstrated by several notable examples including theorems named after
Bertrand, Mannheim and Schell, and Kepler-Newton's laws. Experiments with
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these and other theorems indicate that our method is likely to have better perfor-
mance [see Remark 4]. Yet complexity analysis and more comparisons between
this and other relevant methods remain to be carried.

2 Notations

Write the pre�x d- for the modi�er di�erential , pol for polynomial and tri for
triangular . A d-pol is a pol in x1; : : : ; xn and any number of their derivatives wrt
t with coe�cients in K . The set of all such d-pols is denoted by Kfx1; : : : ; xng
or Kfxg for short. Di�erentiation of functions xi will be indicated by means of
a second subscript as

xij =
djxi
dtj

;

with xi0 = xi. Let P 2Kfxg be a d-pol. The jth derivative of P is obtained by
di�erentiating P j times wrt t, regarding x1; : : : ; xn as functions of t. For any
xij, denote the degree of P in xij by deg(P; xij). The greatest j, if exists, such
that deg(P; xij) > 0 is called the order of P wrt xi, denoted by ord(P; xi). If
deg(P; xij) = 0 for any j � 0, then de�ne ord(P; xi) = �1. Let

q = ord(P; xi); d = deg(P; xiq);

the pair hq; di is called the rank of P wrt xi, denoted by rank(P; xi). We place
hq; di � hq0; d0i if q < q0 or q = q0, and d < d0. Fix the variable ordering as

t � x1 � � � � � xn;

and order xij � xik if j < k. The leading variable of P , denoted by lvar(P ), is
de�ned to be xl with l the biggest index such that deg(P; xlj) > 0 for some j if
P 62K, and t otherwise.

Let P be a d-pol with

lvar(P ) = xp � t; rank(P; xp) = hq; di;

written as
P = P0x

d
pq + P1x

d�1
pq + � � �+ Pd; P0 6= 0;

where ord(Pi; xp) < q for each i. We call xpq the lead of P , denoted by lead(P ),
P0 the initial of P , denoted by ini(P ), and P1x

d�1
pq + � � �+ Pd the reductum of

P , denoted by red(P ). The d-pol @P=@xpq is called the separant of P , denoted
by sep(P ).

Pseudo-dividing a d-pol Q by P and its derivatives in xp, one can get a
remainder formula of the form

sep(P )�ini(P )�Q = A1
dk1P

dtk1
+ � � �+ As

dksP

dtks
+ R; (2)

where �; �; kj are non-negative integers and R is a d-pol with rank(R; xp) � hq; di
(cf. [Ritt (50), Wu 89]). We call R the (pseudo-) remainder of Q wrt P and
denote it by prem(Q;P ) (which is not necessarily unique).
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Throughout the paper, ~K denotes an algebraic d-closure of Kfxg, the ele-
ments of an ordered set are enclosed in square brackets, and jSj stands for the
number of elements of a set S.

A d-pol set is a �nite set of non-zero d-pols in Kfxg. Let P and Q be two
d-pol sets. Denote, by Zero(P=Q), the set of all common d-zeros (in ~K) of the
d-pols in Pwhich are not d-zero of any d-pol in Q. Namely,

Zero(P=Q) = fx 2 ~K
n
j P (x) = 0; Q(x) 6= 0; 8P 2 P; Q2 Qg:

We write Zero(P=Q) for Zero(fPg=Q) and Zero(P=Q) for Zero(P=fQg), and
write Zero(P) for Zero(P=Q) when Q= ; or Q�K, etc.

By a d-pol system we mean a pair [P;Q] of d-pol sets, with which Zero(P=Q)
is of concern. An element of Zero(P=Q) is also called a d-zero of [P;Q], and

Zero([P;Q]) = Zero(P=Q):

De�nition 1. A �nite non-empty ordered set

T= [T1; T2; : : : ; Tr]

of d-pols is called a d-tri form (or d-tri set) if

t � lvar(T1) � lvar(T2) � � � � � lvar(Tr):

A pair [T;U] is called a d-tri system if T is a d-tri form and U a d-pol set,
possibly empty, such that ini(T ) and sep(T ) do not vanish on Zero(T=U) for all
T 2T.

Let Tbe as above and

prem(Q;T) = prem(� � �prem(Q; Tr); : : : ; T1);

called the (pseudo-) remainder of Q wrt T. A d-tri system [T;U] is said to be
�ne if prem(U;T) 6= 0 for any U 2U.T is said to be �ne if

[T; fini(Ti); sep(Ti)j 1 � i � rg]

is �ne.

For any d-pol set P, d-pol T and d-tri form T, we de�ne

prem(P; T ) = fprem(P; T )j P 2 Pg; prem(P;T) = fprem(P;T)j P 2 Pg:

Moreover, let

P(k) = P\Kfx1; : : : ; xkg; Phki = P(k) nP(k�1); P[k] = PnP(k):

P is said to be of level k, denoted as level(P) = k, if

P[k�1] = Phki 6= ;:
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3 Decomposition Algorithm

Let [P;Q] be a d-pol system. The algorithmDECOM described below decomposes
[P;Q] into �ne d-tri systems. More precisely, it computes a set 	 which is either
empty, that means Zero(P=Q) = ;, or of the form f[T1;U1]; : : : ; [Te;Ue]g such
that

Zero(P=Q) =
e[

i=1

Zero(Ti=Ui); (3)

where each [Ti;Ui] is a �ne d-tri system.
The algorithm employs an elimination top-down from xn to x1 (steps D3{

D5) with splitting (whenever pseudo-division is performed { according as the
initial and separant of the dividing d-pol vanish or not { step D4). For each xi
a single d-pol T with lvar(T ) = xi is produced from Shii when it is non-empty.
This is done recursively among the d-pols in Shii by pseudo-dividing those of
higher rank with one of minimal rank wrt xi.

Algorithm DECOM (Input: P;Q; Output: 	 ).

D1. Set 	 ; and � f[P;Q;;]g. Repeat steps D2{D6 until � = ;.

D2. Let [S;U;T] be an element of � and set

� � n f[S;U;T]g; m level(S):

Do steps D3{D5 for i = m; : : : ; 1.

D3. If S\K 6= ; then go to D2. If jShiij > 0 then repeat step D4.

D4. Select from Shii a T having minimal rank wrt xi. If ini(T ) does not occur inQ
U2UU as factor then set

� � [ f[Sn fTg [ fini(T ); red(T )g;U;T]g; U U[ fini(T )g:

If sep(T ) 6= ini(T ) then set

� � [ f[Sn fTg [ fprem(T; sep(T )); sep(T )g;U;T]g; U U[ fsep(T )g:

If jShiij = 1 then go to D5. Otherwise, compute

S S(i�1) [ fTg [ prem(Shii; T ) n f0g:

D5. Compute U prem(U; T ). If 0 2U then go to D2. Otherwise, set

S Sn fTg; T [T ][T:

D6. Set 	 	 [ f[T;U]g.
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Proof. Termination: As step D4 repeats, rank(T; xi) steadily decreases. Hence,
after �nitely many repetitions all the non-zero remainders of the d-pols in Shii

wrt T will have leading variables � xi. Then jShiij becomes 1 and D4 terminates.
Observe that DECOM computes a multi-branch tree on which associated with

every node is a triplet [S�;U�;T�]. Let P= S1;S2; : : : ;S�; : : : be the �rst com-
ponents of the triplets associated with one branch of the tree. We want to show
that the sequence of d-pol sets S� is �nite. For this purpose, let us assume that
the sequence is in�nite and proceed to derive a contradiction.

Any two d-pols F and F 0 are ordered as F � F 0 if lvar(F ) � lvar(F 0), or
lvar(F ) = lvar(F 0) and rank(F; lvar(F )) � rank(F 0; lvar(F )). If neither F � F 0

nor F 0 � F , we write F � F 0. Then, any �nite set of d-pols can be partially
ordered by \-" and every steadily decreasing sequence of d-pols is �nite.

Let S� contain �� d-pols, ordered as

P�1 % P�2 % � � � % P��� ; �� � 1;

for each �. From the enlargement of � in DECOM, one sees that each S�+1 is
obtained from S� by performing some of the following actions:

1. Replace a d-pol T by ini(T ) and red(T );
2. Replace a d-pol T by sep(T ) and prem(T; sep(T ));
3. Replace a d-pol by its non-zero remainder (wrt another d-pol of lower rank

wrt their common leading variable);
4. Delete a d-pol T (when it has remainder 0 wrt another d-pol of lower rank,

or no other d-pol in the set has lvar(T ) as leading variable).

Clearly, the d-pols used to replace T are all � T . It follows that

P11 % P21 % � � � % P�1 % � � � :

Thus, there exists an integer �1 (> 1) such that P�1 � P�11 for all � � �1.
From the four actions above, it is easy to see that �� � 2 for any � � �1.

Hence, we are allowed to consider the sequence

P12 % P22 % � � � % P�2 % : : : :

there exists a �2 (� �1) such that P�2 � P�22 for all � � �2. Now one has �� � 3
for any � � �2.

Continuing this argument, we know that there exists a ��1 (� ��1�1 � � � � �
�1), renamed �1, such that P�k � P�1k for all � � �1 and k = 1; : : : ; �1.

On the other hand,S�1 is obtained fromS1 by performing some of the actions
1{4 as well. Hence, there exists an integer 1 (1 � 1 < �1) such that

P11 � P�11; : : : ; P11�1 � P�11�1; while P11 � P�11 :

Similarly, there exists an �2 (> �1) such that P�k � P�2k for all � � �2 and
k = 1; : : : ; ��1, and a 2 (1 < 2 < ��1) such that

P�11 � P�21 ; : : : ; P�12�1 � P�22�1; while P�12 � P�22 :

In this way, we shall construct an in�nite sequence of d-pols as follows

P11 � P�11 � � � � � P�kk � � � � :

662



This leads to a contradiction. Therefore, the sequence of d-pol sets S� is �nite,
and thus any branch of the decomposition tree is �nite. According to K�onig's
in�nity lemma, the tree is �nite. This proves that steps D2{D6 only have �nitely
many iterations.

Correctness: Let the state variables be indexed by b and a respectively for
their values before and after the execution of an iteration of D4. We �rst prove
that

Zero(Sb=Ub) = Zero(Sa=Ua) [ Zero(Sb n fTg [ fR;Sg=Ub[ fIg)

[Zero(Sb n fTg [ fI; red(T )g=Ub); (4)

where

Sa =S
(i�1)
b [ fTg [ prem(Shiib ; T ) n f0g; Ua = Ub[ fI; Sg;

R = prem(T; S); I = ini(T ); S = sep(T ); T 2S
hii
b :

Let �x 2 Zero(Sb=Ub); then djT=dtj(�x) = 0 for j � 0 and P (�x) = 0 for
P 2 Sb. So by the remainder formula (2) we have H(�x) = 0 for all H 2 Sa.
Clearly, U (�x) 6= 0 for any U 2Ub. If I(�x) = 0 and thus red(I)(�x) = 0, then

�x 2 Zero(Sb n fTg [ fI; red(T )g=Ub): (5)

If I(�x) 6= 0 and S(�x) 6= 0, then �x 2 Zero(Sa=Ua). Otherwise, I(�x) 6= 0 but
S(�x) = 0. In this case, let xpq = lead(T ) and d = deg(T; xpq); then lead(S) = xpq,
deg(S; xpq) = d� 1 > 0, ini(S)(�x) = dI(�x) 6= 0, and the remainder formula for
R = prem(T; S) corresponding to (2) is specialized with � = 0; s = 1 and k1 = 0.
Hence, T (�x) = 0 if and only if R(�x) = 0. It follows that

�x 2 Zero(Sb n fTg [ fR;Sg=Ub[ fIg): (6)

Therefore, the left-hand side of (4) is contained in the right-hand side. To show
the opposite, we see that if (5) holds then T (�x) = 0 and thus �x 2 Zero(Sb=Ub).
If �x 2 Zero(Sa=Ua), then by the remainder formula we have P (�x) = 0 for all
P 2 Sb, so �x 2 Zero(Sb=Ub) as well. If (6) holds, then S(�x) = 0 and I(�x) 6= 0.
In this case, R(�x) = 0 implies that T (�x) = 0 (as demonstrated above), so
�x 2 Zero(Sb=Ub), too. By now (4) is proved.

Let the triplets associated with the nodes of the decomposition tree be
[S�;U�;T�]. Then

Zero(P=Q) =
S
� Zero(S�[T�=U�)

holds at any time according to (4), where the set union runs over all leaves of
the tree. Eventually, the zero decomposition (3) is established.

As the initial and separant of every d-pol T 2 Ti are adjoined in step D4 to
the corresponding U and subsequently replaced by their (non-zero) remainders
wrt other d-pols in Ti, we know that

prem(ini(T );Ti); prem(sep(T );Ti) 2Ui:

By the remainder formula (2), ini(T ) and sep(T ) do not vanish on Zero(Ti=Ui)
for all T 2Ti, so [Ti;Ui] is a d-tri system.
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Since all the d-pols inUi are actually the non-zero remainders of some d-pols
wrt Ti, 0 62 prem(Ui;Ti) for every i. Hence, each [Ti;Ui] is �ne and the proof is
complete. ut

The key step of DECOM is to produce a d-tri system [T;U] from an arbitrary
d-pol system [P;Q] by successively eliminating the variables (from xn down to
x1) for the d-pols in P and meanwhile reducing the d-pols in Q. During the
computation of [T;U], called the principal d-tri system of [P;Q], other d-pol
systems are generated and collected, and to each of them the same procedure is
applied recursively.

Remark 1. DECOM has similarities to Seidenberg's original algorithm, Ritt-Wu's
and others (e.g., [Chou and Gao 93a, Carr�a Ferro 94]). However, it di�ers from
each of them. For any given d-pol system P = [P;Q], Seidenberg's algorithm
can compute d-pol systems involving fewer variables and equivalent to P (wrt
solvability), but it does not compute any zero decomposition for P. In his al-
gorithm, heavy projection is always carried out (see below). Compared with
Ritt-Wu's, the zero decomposition (3) computed by DECOM looks similar, but
in (3) whether prem(P;Ti) = f0g is not veri�ed. DECOM also has di�erent algo-
rithmic structure and steps: in it desired strategies such as top-down elimination
and splitting along with pseudo-division are incorporated; some redundant ver-
i�cation and repeated computation are avoided. In our approach, there is no
concept analogous to the d-characteristic set of a d-pol system.

A d-tri system [T;U] is called perfect if Zero(T=U) 6= ;. The d-tri systems
computed by DECOM are �ne but not necessarily perfect. The perfectness may
be ensured when projection is embedded. In other words, one can compute a
decomposition of the form (3) with all d-tri systems [Ti;Ui] perfect. Moreover,
for any 1 � k < n and �x1; : : : ; �xk 2 ~K, there exist �xk+1; : : : ; �xn 2 ~K such that

(�x1; : : : ; �xn) 2 Zero(P=Q)

if and only if
(�x1; : : : ; �xk) 2 Zero(T(k)

i =U
(k)
i )

for some i (see [Wang 94a] for details). This provides a quanti�er elimination pro-
cedure and thus a decision procedure for the existential theory of algebraically
closed d-�elds. Since the practical e�ciency of projection is not high enough and
the approach based on it is not very appropriate for geometry theorem proving
(GTP) due to the occurrence of non-degeneracy conditions (cf. [Wang 95]), we
decide not to go further in this direction. Instead, we shall consider the irre-
ducibility of d-tri forms.

A d-tri form Tas well as a d-tri system [T;U] is said to be quasi-irreducible
if every d-pol inTis irreducible over K. Using pol factorization overK, one can
replace the computation of prem(U; T ) in step D5 of DECOM by the following
as to compute a zero decomposition of the form (3) with each [Ti;Ui] quasi-
irreducible:

Compute the irreducible factors F1; : : : ; Fs of T over K , set �Q Uand do step
D50 for j = 1; : : : ; s.

D50. Compute �U prem(�Q; Fj). If j = 1 then set U �Uand T Fj. Otherwise, if
0 62 �Uthen set

� � [ f[S; �U; [Fj] [T]g:
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It is easy to see the termination and correctness of the algorithm obtained with
this simple modi�cation.

Let

T= [T1; T2; : : : ; Tr]

be a �ne d-tri form and

Tfig = [T1; T2; : : : ; Ti]; i = 1; : : : ; r:

De�nition 2. Tis said to be irreducible if for every 1 � i � r there do not exist
Di and T 0

i ; T
00
i with

lead(Di) � lead(Ti); lead(T 0
i ) = lead(T 00

i ) = lead(Ti);

0 62 prem(fDi; ini(T
0
i ); ini(T

00
i )g;T

fi�1g)

such that

prem(DiTi � T
0
iT

00
i ;T

fi�1g) = 0:

A �ne d-tri system [T;U] is said to be irreducible if Tis irreducible.

In fact, T is irreducible when it is so, considered as a pol tri form (cf.
[Ritt (50), p. 107] and [Wu 89]). If T is reducible, then there exist a k and
d-pols Dk and G1; : : : ; Gs with

lead(Dk) � lead(Tk); lead(G1) = � � � = lead(Gs) = lead(Tk);

0 62 prem(fDk; ini(G1); : : : ; ini(Gs)g;Tfi�1g)

such that Tfk�1g and

Tfk�1g [ [Gj]; j = 1; : : : ; s;

are all irreducible and

prem(DkTk � G1 � � �Gs;T
fk�1g) = 0:

Here the irreducibility and the d-pols G1; : : : ; Gs can be determined with usual
pol factorization (of Tk over the successive algebraic extension �eld de�ned by
T1; T2; : : : ; Tk�1 { see [Wang 94b]).

Using the factorization of Tk into G1; : : : ; Gs, one can further decompose T
into d-tri forms, and �nally into irreducible ones. We omit the involved details
of the decomposition procedure and state the result in the form of the following
theorem.

Theorem 1. There is an algorithm which computes, for any given d-pol system
[P;Q], a set which either is empty, that means Zero(P=Q) = ;, or consists of
�nitely many irreducible d-tri systems [T1;U1]; : : : ; [Te;Ue] such that the zero
decomposition (3) holds.

The proof of this theorem will be given in the sequel of [Wang 94a].
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4 Decision Algorithm

On the basis of the zero decomposition method described in the preceding sec-
tion, we can devise several algorithms for proving theorems and deriving un-
known relations automatically in elementary di�erential geometry and mechan-
ics, which can be formulated in terms of d-pol equations and inequations. In this
section we present one of the algorithms for automated theorem proving. Let us
�rst prove two fundamental theorems.

Theorem 2. Let [T;U] be a d-tri system and G a d-pol. If prem(G;T) = 0,
then Zero(T=U) � Zero(G). If Zero(T=U) � Zero(G) and T is irreducible, then
prem(G;T) = 0.

Proof. According to the de�nition of d-tri systems and the remainder formula
(2), the �rst half of the theorem is obvious. To prove the second half, let


 = fP 2Kfxgj prem(P;T) = 0g:

Since T is irreducible, 
 is a non-trivial prime ideal (cf. [Ritt (50), p. 107]).
Clearly,

U\
 = ;; Zero(
) � Zero(T):

Let � be a generic zero of 
; then U (�) 6= 0 for any U 2 U (cf. [Ritt (50), pp.
25{27] and [Wu 89]). It follows that

� 2 Zero(T=U)� Zero(G):

That is, G(�) = 0, so G 2 
. Hence, prem(G;T) = 0 and the theorem is proved.
ut

Theorem 3. Let a d-pol system [P;Q] have zero decomposition of the form (3)
with each [Ti;Ui] irreducible. Then

Zero(P=Q) =
e[

i=1

Zero(Ti=Ii[Q); (7)

where Ii = fini(T ); sep(T )j T 2 Tig for each i.

Proof. As
Zero(Ti=Ui) � Zero(P=Q);

by Theorem 2 we have

prem(P;Ti) = f0g; 0 62 prem(Q;Ti)

for every i. Thus, according to (2), the right-hand side of (7) is contained in the
left-hand side. On the contrary, let �x 2 Zero(P=Q). By (3) there is an i such that
�x 2 Zero(Ti=Ui). Since [Ti;Ui] is a d-tri system, �x is not a zero of any d-pol in
I. Hence,

�x 2 Zero(Ti=Ii[Q)

and thus is contained in the right-hand side of (7). ut
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Return to (1) and observe that many theorems in di�erential geometry (space
curve theory) and mechanics (cf. [Chou and Gao 91]) can be algebraically for-
mulated in that form. Let

H = fH1; : : : ;Hhg; D = fD1; : : : ; Ddg:

A theorem of the form (1) will be denoted by T(H; D ; C). We call

Vh
i=1Hi = 0 ^

Vd
j=1Dj 6= 0

the hypothesis and C = 0 the conclusion of the theorem.

Algorithm PROVE. Given a theorem

T = T(H; D ; C);

this algorithm decides whether T is universally true, and if not, determines a
subsidiary condition under which it is true.

P1. Compute 	 DECOM(H; D ). If 	 = ;, then the hypothesis of the theorem T
is self-contradictory and the algorithm terminates.

P2. Compute
Ri prem(C;Ti) for [Ti;Ui] 2 	:

If Ri = 0 for all i, then T is universally true and the algorithm terminates.
P3. Let � be the set of all i for which Ri 6= 0. Decompose [Ti;Ui] into a �nite

set 	i of irreducible d-tri systems for each i 2 �.
P4. Compute

Rij prem(C;Tij) for [Tij;Uij] 2 	i; i 2 �:

If Rij = 0 for all j and i, then T is universally true and the algorithm
terminates. Otherwise, T is not universally true. It is conditionally true,
with the subsidiary condition determined in step P5.

P5. For each i 2 �, let �i be the set of all j for which Rij 6= 0. Set

D 
V
j2�i;i2�

(
W
T2Tij

T 6= 0 _
W
U2Uij

U = 0):

Then D is the subsidiary condition under which T is true. If D can be
identi�ed either geometrically or algebraically as non-degeneracy conditions,
then T is generically true.

This algorithm terminates obviously. As formula (1) is valid if and only if

Zero(H=D ) � Zero(C);

the correctness follows from Theorem 2. Possible variants of the algorithm and
its modi�cation for formula derivation are left out. Some other important is-
sues are also omitted. One of them is to simplify the formula D algebraically
(which is not an easy task) and to identify D to non-degeneracy conditions. In
fact, no de�nition for \non-degeneracy" and \generically true" is given here.
The concepts are due to Wu and may be de�ned when the variables are sepa-
rated into parameters and geometric dependents and the notions of dimension
and order are introduced. The interested reader is referred to [Carr�a Ferro 94,
Chou and Gao 93a, Wu 79, Wu 82, Wu 87a] for details.
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Remark 2. Step P3 requires algebraic pol factorization which is expensive in
general. Nonetheless, the author has implemented rather e�cient factoring rou-
tines, which work well for pols from GTP, as demonstrated in [Wang 94b]. The
factoring times for the pols we have encountered in GTP so far are in the matter
of seconds.

5 Examples

To illustrate the method explained in the previous sections and its performance,
we now present two examples, using a draft implementation of the algorithms
in Maple. The timings mentioned below were obtained from Maple V run-
ning on a SUN SparcServer 690/51 and are given in CPU seconds. The ex-
amples were studied in detail �rst in [Wu 87b, Wu 87c, Wu 91] and then in
[Chou and Gao 92, Chou and Gao 93a, Chou and Gao 93b] and are among the
interesting and di�cult ones in di�erential geometry and mechanics considered
so far. Experiments on these and other examples show that our method based
on d-tri systems is computationally e�cient. Systematic comparisons for the
examples will be made later when our implementation of the other methods is
completed.

Example 1 (Bertrand curves [Chou and Gao 93b, Wu 87b, Wu 91]). Let C and
�C be a Bertrand pair of curves in one-to-one correspondence with arc lengths s; �s
as parameters in the ordinary metric space. Attach the trihedrals (X; e1; e2; e3)
and ( �X; �e1; �e2; �e3) to C and �C at the corresponding points X and �X, and denote
the curvature and torsion of C and �C by �; � and by ��; �� respectively. We have
the following theorems.

Schell's Theorem. The product of � and �� is a constant.

Bertrand's Theorem. There exists a linear relation between � and � with
constant coe�cients.

Mannheim's Theorem. The cross-ratio of X; �X and the centers of �; �� is a
constant.

To prove the theorems, let

�X = X + a1e1 + a2e2 + a3e3;

�ei =
P3

j=1 uijej ; i = 1; 2; 3:

From the Frenet formulae of C and �C, one can easily deduce a set of 12 d-pols
(see [Wu 91]). In the classical Bertrand case, �e2 = �e2. Let us take the positive
sign, and similarly for the orthogonality relations between the uij's, so that we
have

a1 = 0; a3 = 0; u12 = u21 = u23 = u32 = 0;

u22 = 1; u11 = u33; u13 = �u31; u211 + u213 = 1:

Combining these relations with the 12 d-pols, one obtains the following set of 14
d-pols (the primes denoting the derivatives wrt s)
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H1 = �s0u11 + a2�� 1; H2 = �a02;

H3 = �s0u13 � a2�; H4 = �u011;

H5 = �s0��� �u12 + �u13; H6 = �u013;

H7 = �s0��u11 � �s0��u31 � �; H8 = �s0��u13 � �s0��u33 + �;

H9 = �u031; H10 = ��s0�� � �u31 + �u33;

H11 = �u033; H12 = u11 � u33;

H13 = u13 + u31; H14 = u211 + u213 � 1:

With respect to the ordering

�s � a1 � a2 � a3 � u11 � u12 � u13 � u21 � u22 � u23 � u31 � u32 � u33

� � � � � �� � ��;

P= fH1; : : : ;H14g can be decomposed (in 91.4 seconds) into 10 irreducible d-tri
systems, with the corresponding d-tri forms given as

T1 = [a02; u
0
11; u12 � u11; u

2
13 + u211 � 1; u31 + u13; u33 � u11; a2�+ �s0u11 � 1;

a2� � �s0u13; �s0��+ u13� � u11�; �s0�� � u11� � u13�];

T2 = [�s00; a02; �s
0u11 � 1; �s02u213 � �s02 + 1; u31 + u13; u33 � u11; �; a2� � �s0u13;

�s0�� + u13�; �s0�� � u11� ];

T3 = [a02; u11 � 1; u12� 1; u13; u31; u33 � 1; a2�+ �s0 � 1; �; �s0��� �; �� ];

T4 = [a02; u11 + 1; u12+ 1; u13; u31; u33 + 1; a2�� �s0 � 1; �; �s0��+ �; �� ];

T5 = [�s0 + 1; a02; u11 + 1; u13; u31; u33+ 1; �; �; ��; �� ];

T6 = [�s0 � 1; a02; u11 � 1; u13; u31; u33� 1; �; �; ��; �� ];

T7 = [�s0 � 1; a2; u11 � 1; u13; u31; u33� 1; �; ��; �� � � ];

T8 = [�s0 + 1; a2; u11 + 1; u13; u31; u33+ 1; �; ��; �� � � ];

T9 = [�s0 � 1; a2; u11 � 1; u12� 1; u13; u31; u33� 1; ��� �; �� � � ];

T10 = [�s0 + 1; a2; u11+ 1; u12+ 1; u13; u31; u33 + 1; ��� �; �� � � ]

such that

Zero(P) =
S2
i=1 Zero(Ti=�s

0a2u13) [
S4
i=3 Zero(Ti=�s

0a2) [
S10
i=5 Zero(Ti):

The conclusions of Schell, Bertrand, and Mannheim's theorems to be proved are

CS = (� �� )0 = 0;

CB = �0� 00 � �00� 0 = 0;

CM = [(1 + a2��)(1� a2�)]0 = 0

respectively. It is easy to verify that

prem(CS ;Ti)

�
= 0; i = 1; : : : ; 6;
6= 0; i = 7; : : : ; 10;

prem(CB ;Ti)

�
= 0; i = 1; : : : ; 8;
6= 0; i = 9; 10;

prem(CM ;Ti) = 0; i = 1; : : : ; 10:
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Therefore, the algebraic form of Schell's theorem and of Bertrand's are both con-
ditionally true and of Mannheim's is universally true. The subsidiary conditions
for the former may be provided as �s0 6= 0 and a2 6= 0 (i.e., C 6= �C). The total
times of computing the pseudo-remainders for the three theorems are 1.4, 1.7
and 1.9 seconds, respectively.

Note that Bertrand's theorem is also true when a2 = 0 and � = �� = 0 (i.e.,
C = �C is a straight line). Mannheim's theorem is considered usually under the
condition ��� 6= 0. However, the algebraic form of the theorem is true as well in
the degenerate case � = �� = 0.

Remark 3. A relatively large amount of the decomposition time indicated above
was spent for veri�cation so that two redundant d-tri systems are removed. The
removal of redundancy here is merely to make the list of d-tri systems short. It
is not necessary for proving the theorem because the pseudo-remainders of the
conclusion d-pols wrt the removed d-tri forms are very easy to compute. This is
also true for the following example. Without the veri�cation, the decomposition
time can be reduced to 25.7 seconds. The total time needed for proving the three
theorems is 31 seconds only.

Example 2 (Kepler-Newton's Laws [Chou and Gao 93a, Wu 87c, Wu 91]). New-
ton's gravitational laws and Kepler's observational laws play an important role
in celestial mechanics. The �rst two of them may be stated as follows.

K1. Each planet describes an ellipse with the sun at one focus.
K2. The radius vector drawn from the sun to a planet sweeps out equal areas in

equal times.
N1. The acceleration of any planet is inversely proportional to the square of the

distance from the sun to the planet.
N2. The acceleration vector of any planet is directed to the sun.

SUN

PLANET (x(t), y(t))

(0, 0)

r
a

There are inference relations between the two groups of laws. For example,
K2 is equivalent to N2. We consider two non-trivial relations as illustration for
our method: (i) N1 and N2 imply K1 and (ii) K1 and K2 imply N1.

Let the coordinates of the planet be (x; y), depending on the time variable
t. Assume that the sun is located at the origin (0; 0). Then the d-pol equations
for Newton's two laws are

N1 = (r2a)0 = 0; N2 = xy00 � x00y = 0

respectively, where a is the acceleration of the planet and r the length of the
radius vector from the sun to the planet. Clearly, we have

H1 = r2 � x2 � y2 = 0; H2 = a2 � x002� y002 = 0:
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We assume a 6= 0; the problem becomes trivial when a = 0. Then,

P = [fN1; N2;H1;H2g; fag]

constitutes the hypothesis d-pol system. Kepler's �rst law to be proved is equiv-
alent to (cf. [Chou and Gao 93a, part II])

K1 = r000(x0y00 � x00y0) � r00(x0y000 � x000y0) + r0(x00y000 � x000y00) = 0:

With the ordering x � y � r � a, P can be decomposed (in 17.5 CPU seconds)
into 6 quasi-irreducible d-tri systems with the corresponding Ti;Ui shown below

T1 = [T1; T2;H1;H2]; T2 = [xx000+ 2x0x00; xy0 � x0y;H1;H2];

T3 = [x; yy000 + 2y0y00; r � y; a � y00]; T4 = [x; yy000 + 2y0y00; r � y; a+ y00];

T5 = [x; yy000 + 2y0y00; r + y; a � y00]; T6 = [x; yy000 + 2y0y00; r + y; a+ y00];

U1 = fx00; xx000+ 2x0x00; y; r; a; S2;

3x2x00x0000 � 5x2x0002 � 2xx0x00x000 + 6xx003� 2x02x002g;

U2 = fx00; r; ag; U3 = � � � = U6 = fy00g;

T1 = 9x3x002x00000� 45x3x00x000x0000+ 18x2x0x002x0000 + 40x3x0003� 30x2x0x00x0002

�6xx02x002x000 + 18xx0x004 � 4x03x003;

T2 = 3x2x00x0000y2 � 4x2x0002y2 + 2xx0x00x000y2 + 6xx003y2 + 2x02x002y2 + x4x0002

+4x3x0x00x000+ 4x2x02x002;

S2 = sep(T2)=y = 3x2x00x0000� 4x2x0002+ 2xx0x00x000 + 6xx003+ 2x02x002:

It can be veri�ed (in 95.4 seconds) that prem(K1;Ti) = 0 for i = 1; : : : ; 6, so
that Kepler's �rst law follows from Newton's two laws. The total proving time
is 106.5 CPU seconds [see Remark 3].

In fact, the d-tri forms T1 and T2 are both reducible. Using our factoring
methods (cf. [Wang 94b]), it is easy to verify that [T1; T2;H1] is irreducible and
H2 in both T1 and T2 can be factorized algebraically as

H2
:
= (xa+ x00r)(xa� x00r)=x2: (8)

Therefore, T1 can be further decomposed into two irreducible d-tri forms

T11 = [T1; T2;H1; xa+ x00r]; T12 = [T1; T2;H1; xa� x00r];

and T2 into
T21 = [xx000+ 2x0x00; xy0 � x0y;H1; xa+ x00r];

T22 = [xx000+ 2x0x00; xy0 � x0y;H1; xa� x00r]

such that

Zero(P) =
S2
j=1 Zero(T1j=x00yrS2) [ Zero(T2j=x00r) [

S6
i=3 Zero(Ti=y00):

The algebraic factorization (8) can be explained as follows. From H1 = 0 and
H2 = 0, one knows that the ratio of the length of the radius vector compared
with that of the acceleration vector is r=a. Hence, when N2 = 0 is assumed, the
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ratio of the corresponding vector components may di�er from r=a only by sign,
i.e.,

x=x00 = y=y00 = �r=a:

This relation is just reected by (8).
For (ii), consider

P� = [fK1;K2;H1;H2g; fag]

as the hypothesis d-pol system, where K2 = H2. We found that P� can also be
decomposed (in 28.5 seconds) into 6 quasi-irreducible d-tri systems [T�

i ;U
�
i ] with

T�
1 = T1; T�

2 = [xy0 � x0y;H1;H2];

T�
3 = [x; r� y; a � y00]; T�

4 = [x; r� y; a + y00];

T�
5 = [x; r+ y; a � y00]; T�

6 = [x; r+ y; a + y00];

U�
i =Ui; i = 1; : : : ; 6

(under the same ordering above). The pseudo-remainder ofN1 wrtT
�
i (computed

in 118.7 seconds) is 0 for i = 1 and non-zero for i = 2; : : : ; 6. Hence, the theorem
is conditionally true with the subsidiary condition provided as

x(xy0 � x0y) 6= 0:

Therefore, Kepler's two laws imply Newton's �rst law under the condition that
the ellipse does not degenerate to two lines or points.

If the major axis of the ellipse is taken as the x-axis, then K1 is simpli�ed to

�K1 = x0r00 � x00r0:

It is somewhat easier to compute a zero decomposition for [f �K1;K2;H1;H2g; fag],
which is the same as that for P�, excepting that T1 and T2 are replaced by two
simpler d-pols { let the �rst d-tri form so obtained be �T1. Then, verifying the
0 remainder of N1 wrt �T1 takes much less time (3.6 seconds). It is also easy to
check that the following d-pol

N3 = [x0(xy0 � x0y)2]2 � [r2a(xr0 � x0r)]2

has 0 remainder wrt �T1. N3 = 0 corresponds to the relation

r2a = �h2=p

given in [Wu 91]. Thus, one can conclude that, under the assumption of K1 and
K2, the third law K3 of Kepler and N3 of Newton are equivalent.

Remark 4. The computing times for this example may demonstrate one aspect
about the e�ciency of our zero decomposition algorithm in comparison with
Ritt-Wu's [Chou and Gao 93a, Ritt (50), Wu 89, Wu 91]. Ritt-Wu's algorithm
computes a zero decomposition of the form (7) with prem(P;Ti) = f0g veri�ed
for each i. The veri�cation is very time-consuming in most cases. T1 above is
actually a (quasi-) d-characteristic set ofP, and verifying prem(N1;T1) = 0 takes
110.1 seconds, which are more than six times the total decomposition time (and
eleven times when redundant d-tri systems are not removed) for our algorithm.
In the case (ii), the veri�cation of prem(K1;T1) = 0 takes 90.3 CPU seconds.

Using the same method, one can investigate other relations among Kepler's
and Newton's laws. As shown by Wu, Chou and Gao that some of the laws can be
derived or discovered automatically from the others, our method with modi�ca-
tion may be used to formula derivation as well, following a general device intro-
duced in [Wu 87c, Wu 91] and the techniques developed in [Chou and Gao 92].
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