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1 Introduction

We study representation of integers in arbitrary number systems. Here \arbit-
rary" means that the digits may be larger than the base and that completeness
is not required, i.e., every integer need not have a representation in the system.
Also the number of digits is arbitrary. These number systems were de�ned and
studied in [Maurer, Salomaa and Wood 83]. The work was continued in [Culik
II and Salomaa 83] and [Honkala 82]. These references discuss the connections
to the theory of L systems and cryptography. Further results on number sys-
tems have been obtained in [Honkala 84, 86, 89, 92]. For closely related work see
[Berstel 86], [Frougny 88, 92], [de Luca and Restivo 86] and [Shallit 94].

The study of number systems is closely connected with the study of sets of
integers recognizable by �nite automata. By de�nition, a set A of nonnegative
integers is k-recognizable if and only if there exists a �nite automaton which
recognizes the representations of the integers of A written at base k. Here k �
2 is a positive integer. Now, if A is represented by a number system N , the
representations of the integers of A can be recognized by an automaton with a
single state if the digit set f0; 1; : : : ; k�1g is replaced by the digit set of N . Thus,
representability by a number system implies simplicity of recognition when the
choice of the base and the digits is optimal.

In this paper we give a decision method for the unambiguity problem of sets
de�ned by number systems. More speci�cally, given a number system N , it is
decidable whether or not there is an unambiguous number system equivalent to
N . This problem was posed in [Culik II and Salomaa 83]. A solution is previously
known only in the case where the base of N is a prime power or the set S(N )
is recognizable, i.e., a �nite union of arithmetic progressions [Honkala 92]. Our
solution is based on automata-theoretic considerations.

2 De�nitions and results

By a number system we mean a (v + 1)-tuple N = (n;m1; : : : ;mv) of positive
integers such that v � 1, n � 2 and 1 � m1 < m2 < : : : < mv. The number n
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is referred to as the base and the numbers mi as the digits of the number system
N . A nonempty word

mikmik�1 : : :mi1mi0 ; 1 � ij � v (1)

over the alphabet fm1; : : : ;mvg is said to represent the integer

mikn
k +mik�1n

k�1 + : : :+mi1n+mi0 : (2)

The word (1) is said to be a representation of the integer (2). The set of all
represented integers is denoted by S(N ). A set A of positive integers is called
representable by a number system, shortly RNS, if there exists a number system
N such that A = S(N ). An integer n is called a base of an RNS set A if there is
a number system with the base n representing A. By de�nition, a number system
is unambiguous if no integer has more than one representation.

Suppose k � 2 and denote k = f0; 1; : : :; k� 1g. De�ne the mapping �k from
k
� to the set N of natural numbers by

�k(a0a1 : : : am) =
mX

i=0

aik
i (ai 2 k):

Note that we use the reversed interpretation; the most signi�cant digit is the right-
most one. The mapping �k is extended in the natural way to concern languages
L � k

�. Hence �k(L) = f�k(x) j x 2 Lg. By de�nition, a set A of nonnegative
integers is k-recognizable if there exists a regular language L � k

� such that
A = �k(L). By de�nition, a set A of nonnegative integers is recognizable if A is a
�nite union of arithmetic progressions. For the basic properties of k-recognizable
sets see [Eilenberg 74] and [Perrin 90]. Culik II and Salomaa showed an important
connection between k-recognizable sets and sets de�ned by number systems: if
N = (n;m1; : : : ;mv) is a number system then S(N ) is n-recognizable. For a
proof see also [Honkala 84]. By Cobham's well known result (see [Cobham 69]
and [Bruyere, Hansel, Michaux and Villemaire 94]) this implies that if N1 and
N2 are number systems such that S(N1) = S(N2) and S(N1) is not recognizable,
then the bases of N1 and N2 are powers of the same integer [Honkala 84].

Suppose A � N. We say that A has arbitrarily long gaps if for every y 2 N

there exists an x 2N such that none of the integers x+1; x+2; : : :; x+y belongs
to A. Below we need the result that if N = (n;m1; : : : ;mv) is a number system
such that S(N ) has arbitrarily long gaps, then S(N ) has no bases other than n
[Honkala 84].

The purpose of this paper is to prove the following result.

Theorem 1 It is decidable, given a number system N , whether or not there
exists an unambiguous number system N1 such that S(N ) = S(N1).

In the proof of Theorem 1 we need a decision method for the recognizability of
k-recognizable sets. For two di�erent methods see [Muchnik 91], [Bruyere, Hansel,
Michaux and Villemaire 94] and [Honkala 86]. For the notation concerning �nite
automata used below see [Eilenberg 74] and [Salomaa 85].
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3 Proofs

Suppose N is a number system with base nr where r � 1 and n 2 N is not
a nontrivial power. Denote A = S(N ) and A0 = A [ f0g. De�ne L � n

� by
L = ��1n (A). By Lemma3.1 in [Honkala 84] the set A is nr-recognizable. Hence A
is n-recognizable and there exists a �nite deterministic automaton A = (Q;n; q0)
with state set Q, input alphabet n and initial state q0 2 Q such that L = L(A).
By de�nition, the state q 2 Q is additive if there exist nonnegative integers m
and c1; : : : ; cm such that

�n(L(Aq)) = c1 + A0 [ : : :[ cm +A0 (3)

where the union is disjoint. Here Aq = (Q;n; q) is the automaton obtained from
A by replacing the initial state q0 by q. Denote the set of the additive states of
A by Add(A). If q 2 Add(A), the nonnegative integers m and c1; : : : ; cm in (3)
are unique.

Denote

UB(A) = fk � 1 j for each w 2 n
� of length k; the state q0w is additive g:

Now we are ready for the key lemma.

Lemma1. There is an unambiguous number system N1 with base nk such that
S(N1) = A if and only if k 2 UB(A) (k � 1).

Proof. First, suppose N1 is an unambiguous number system with base nk

such that S(N1) = A. Consider a word w 2 n
� of length k. Let �n(w) +

c1n
k; : : : ; �n(w)+cmn

k be the digits of N1 which are congruent to �n(w) modulo
nk. (If there are no such digits, �n(L(Aq0w)) = ; and q0w is trivially additive.)
We claim that

�n(L(Aq0w)) = c1 + A0 [ : : :[ cm +A0

where the union is disjoint. First, suppose w1 2 L(Aq0w) where w1 2 n
�. Because

then
�n(ww1) = �n(w) + nk�n(w1) 2 A;

there are nonnegative integers a 2 A0 and i, 1 � i � m, such that

�n(w) + nk�n(w1) = �n(w) + cin
k + nka:

Hence �n(w1) = ci + a 2 ci +A0. Conversely, if �n(w1) = ci + a where w1 2 n
�,

1 � i � m and a 2 A0, then

�n(ww1) = �n(w) + nk�n(w1) = �n(w) + cin
k + nka 2 A:

Therefore w1 2 L(Aq0w) and �n(w1) 2 �n(L(Aq0w)). Finally, suppose that x =
ci + a = cj + b where 1 � i; j � m and a; b 2 A0. Then

�n(w) + nkx = �n(w) + cin
k + nka = �n(w) + cjn

k + nkb:

Because the representation of �n(w) + nkx according to N1 is unique, we have
i = j and a = b. Therefore the sets ci + A0 are pairwise disjoint (1 � i � m).
This proves the claim and shows that q0w is additive. Consequently k 2 UB(A).
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Conversely, suppose that k 2 UB(A). Hence, for each word w 2 n
� of length

k there exist nonnegative integers m(w); c(w)1; : : : ; c(w)m(w) such that

�n(L(Aq0w)) = c(w)1 +A0 [ : : :[ c(w)m(w) + A0

where the union is disjoint. De�ne the number system N1 as follows. The base
of N1 is nk and the digits are �n(w) + c(w)jnk for w 2 n

k and 1 � j � m(w).
Clearly, each digit is positive. Indeed, if w 6= 0k then �n(w) is positive, and if
w = 0k then c(w)j 6= 0 for 1 � j � m(w) because zero does not belong to A. We
claim that N1 is unambiguous and S(N1) = A.

We show �rst that S(N1) � A. Suppose a 2 A0. Then c(w)i+a 2 �n(L(Aq0w))
ifw 2 n

k and 1 � i � m(w). Therefore there exists w1 2 n
� such that c(w)i+a =

�n(w1) and �n(ww1) 2 A. It follows that

�n(w) + c(w)in
k + nka 2 A:

Therefore, if d is a digit of N1, then d+nkA0 � A. This implies that S(N1) � A.
Next, we show that A � S(N1). Assume on the contrary that this is not true

and denote by x the smallest element in A�S(N1). Choose the word w 2 n
k such

that x is congruent to �n(w) modulo nk and choose a word w1 2 n
� such that

x = �n(ww1). Because x 2 A, we have w1 2 L(Aq0w). Hence �n(w1) = c(w)i + a

for some 1 � i � m(w), a 2 A0. By the choice of x, the integer a, if nonzero,
belongs to S(N1). Consequently

x = �n(ww1) = �n(w) + nk�n(w1) = �n(w) + c(w)in
k + nka 2 S(N1):

This contradiction shows that indeed A � S(N1). Therefore A = S(N1).
Finally, suppose that

b0 + b1n
k + : : :+ bsn

ks = c0 + c1n
k + :::+ ctn

kt

where s; t � 0 and b0; : : : ; bs; c0; : : : ; ct are digits of N1 such that b0 6= c0. Choose
the word w 2 n

k such that �n(w) is congruent to b0 (and c0) modulo nk. Then
there exist i 6= j, 1 � i; j � m(w) such that b0 = �n(w) + c(w)ink and c0 =
�n(w) + c(w)jnk. Hence

c(w)i + b1 + b2n
k + : : :+ bsn

k(s�1) = c(w)j + c1 + c2n
k + :::+ ctn

k(t�1)

2 c(w)i +A0 \ c(w)j +A0:

This contradiction shows that N1 is unambiguous. 2

In the next two lemmas we show that the set UB(A) can be computed e�ect-
ively if A does not have arbitrarily long gaps.

Lemma2. Suppose A does not have arbitrarily long gaps. Given a state q 2 Q
it is decidable whether or not q is additive. If q is additive one can e�ectively
�nd the numbers c1; : : : ; cm 2N such that

�n(L(Aq)) = c1 +A0 [ : : :[ cm + A0:
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Proof. Denote y = d(nr�1)�1 where d is the greatest digit of the given number
system N . By Lemma 4.6 in [Honkala 84], for any positive integer x > d, the set
A contains at least one of the integers x+ 1; x+ 2; : : : ; x+ y. Hence

lim inf
t!1

t�1N (A; t) � y�1

where N (A; t) is the number of the elements of A less than or equal to t. This
implies that for any nonnegative integers c1; : : : ; cy+1, the sets ci + A0, 1 � i �
y + 1, are not pairwise disjoint.

Now, �nd the smallest element c1 of �n(L(Aq)) and check whether or not
c1+A

0 � �n(L(Aq)). This decision is possible because c1+A
0 is n-recognizable. If

the inclusion does not hold, q is not additive. If the inclusion holds, check whether
�n(L(Aq)) = c1+A0. If not, �nd the smallest element c2 in �n(L(Aq))�(c1+A0)
and check whether c2 + A0 and c1 + A0 are disjoint and whether c2 + A0 �
�n(L(Aq)). If not, q is not additive. Otherwise, check whether �n(L(Aq)) =
c1+A0[c2+A0. If not, �nd the smallest element in �n(L(Aq))�(c1+A0[c2+A0)
and proceed similarly.

By the �rst paragraph of the proof, the procedure stops after at most y steps.
This proves the lemma. 2

Lemma3. Suppose A does not have arbitrarily long gaps. Then the set UB(A)
can be computed e�ectively.

Proof. Denote Qj = q0n
j for j � 1. Because the sequence (Qj) is e�ectively

ultimately periodic, the claim follows by Lemma 2. 2

If S(N ) is recognizable, it is possible that S(N ) has bases which are not
powers of n (see [Culik and Salomaa 83]). Therefore, Lemma 1 is not enough to
�nd out the unambiguous bases of S(N ). However, the following result has been
proved in [Honkala 92].

Lemma4. Suppose S(N ) is recognizable. Then it is decidable whether or not
there exists an unambiguous number system N1 such that S(N ) = S(N1).

Proof of Theorem 1. First, decide whether or not S(N ) is recognizable. If it
is, Theorem 1 follows from Lemma 4. Suppose it is not. Then every base of N
is a power of n.

Next, decide whether or not S(N ) has arbitrarily long gaps. If it has, n
is the only base of S(N ), and it su�ces to decide whether or not there is an
unambiguous number system N1 with base n such that S(N ) = S(N1). This
decision is possible by Theorem 6.3 in [Culik and Salomaa 83]. Finally, if S(N )
does not have arbitrarily long gaps, Theorem 1 follows by Lemmas 1 and 3. 2
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