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Abstract: We show that it is decidable, given a number system N, whether or not
there is an unambiguous number system equivalent to N.
Category: F.4.3

1 Introduction

We study representation of integers in arbitrary number systems. Here “arbit-
rary” means that the digits may be larger than the base and that completeness
is not required, i.e., every integer need not have a representation in the system.
Also the number of digits is arbitrary. These number systems were defined and
studied in [Maurer, Salomaa and Wood 83]. The work was continued in [Culik
IT and Salomaa 83] and [Honkala 82]. These references discuss the connections
to the theory of L systems and cryptography. Further results on number sys-
tems have been obtained in [Honkala 84, 86, 89, 92]. For closely related work see
[Berstel 86], [Frougny 88, 92], [de Luca and Restivo 86] and [Shallit 94].

The study of number systems is closely connected with the study of sets of
integers recognizable by finite automata. By definition, a set A of nonnegative
integers 1s k-recognizable if and only if there exists a finite automaton which
recognizes the representations of the integers of A written at base k. Here k& >
2 is a positive integer. Now, if A is represented by a number system N, the
representations of the integers of A can be recognized by an automaton with a
single state if the digit set {0, 1, ..., k—1}is replaced by the digit set of N. Thus,
representability by a number system implies simplicity of recognition when the
choice of the base and the digits is optimal.

In this paper we give a decision method for the unambiguity problem of sets
defined by number systems. More specifically, given a number system N, it is
decidable whether or not there is an unambiguous number system equivalent to
N. This problem was posed in [Culik IT and Salomaa 83]. A solution is previously
known only in the case where the base of N is a prime power or the set S(N)
is recognizable, i.e., a finite union of arithmetic progressions [Honkala 92]. Our
solution is based on automata-theoretic considerations.

2 Definitions and results

By a number system we mean a (v + 1)-tuple N = (n,my,...,my) of positive
integers such that v > 1, n > 2 and 1 < m; < ms < ... < my. The number n
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18 referred to as the base and the numbers m; as the digits of the number system
N. A nonempty word

mikmik_l ...milmiu,lg ij §v (1)
over the alphabet {my,... m,} is said to represent the integer
k E—1
mi, "+ mi,_ n T+ my n+my,. (2)

The word (1) is said to be a representation of the integer (2). The set of all
represented integers is denoted by S(N). A set A of positive integers is called
representable by a number system, shortly RNS, if there exists a number system
N such that A = S(N). An integer n is called a base of an RNS set A if there is
a number system with the base n representing A. By definition, a number system
1s unambiguous if no integer has more than one representation.

Suppose k > 2 and denote k = {0, 1,...,k — 1}. Define the mapping v from
k* to the set N of natural numbers by

m

vi(agay . ..am) = Zaiki (a; € k).

i=0

Note that we use the reversed interpretation; the most significant digit is the right-
most one. The mapping vy 1s extended in the natural way to concern languages
L C k*. Hence v (L) = {vi(x) | « € L}. By definition, a set A of nonnegative
integers 18 k-recognizable if there exists a regular language L C k* such that
A = vi(L). By definition, a set A of nonnegative integers is recognizable if A is a
finite union of arithmetic progressions. For the basic properties of k-recognizable
sets see [Eilenberg 74] and [Perrin 90]. Culik IT and Salomaa showed an important
connection between k-recognizable sets and sets defined by number systems: if
N = (n,my,...,my) is a number system then S(N) is n-recognizable. For a
proof see also [Honkala 84]. By Cobham’s well known result (see [Cobham 69]
and [Bruyere, Hansel, Michaux and Villemaire 94]) this implies that if Ny and
N3 are number systems such that S(N;) = S(N3) and S(N7) is not recognizable,
then the bases of Ny and N, are powers of the same integer [Honkala 84].

Suppose A C N. We say that A has arbitrariy long gaps if for every y € N
there exists an € N such that none of the integers x4+ 1, z+2, ..., x4y belongs
to A. Below we need the result that if N = (n,mq,...,my) is a number system
such that S(V) has arbitrarily long gaps, then S(N) has no bases other than n
[Honkala 84].

The purpose of this paper is to prove the following result.

Theorem 1 [t is decidable, given a number system N, whether or not there
erists an unambiguous number system Ny such that S(N) = S(Ny).

In the proof of Theorem 1 we need a decision method for the recognizability of
k-recognizable sets. For two different methods see [Muchnik 91], [Bruyere, Hansel,
Michaux and Villemaire 94] and [Honkala 86]. For the notation concerning finite
automata used below see [Eilenberg 74] and [Salomaa 85].
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3 Proofs

Suppose N 1s a number system with base n” where » > 1 and n € N is not
a nontrivial power. Denote A = S(N) and AY = A U {0}. Define L. C n* by
L =v;(A). By Lemma3.1 in [Honkala 84] the set A is n"-recognizable. Hence A
is n-recognizable and there exists a finite deterministic automaton A = (Q, n, qo)
with state set @, input alphabet n and initial state go € @ such that L = L(A).
By definition, the state ¢ € @ is additive if there exist nonnegative integers m
and cq, ..., ¢y such that

v (L(Ag)) =+ A°U. .. Ue¢y + A° (3)

where the union is disjoint. Here A, = (@, n, ¢) is the automaton obtained from
A by replacing the initial state ¢o by ¢. Denote the set of the additive states of
A by Add(A). If ¢ € Add(A), the nonnegative integers m and ¢1,...,¢n in (3)
are unique.

Denote

UB(A) = {k > 1| for each w € n* of length k, the state gow is additive }.
Now we are ready for the key lemma.

Lemmal. There is an unambiguous number system N1 with base n* such that
S(Ny)y=Aifand only if k e UB(A) (k> 1).

Proof. First, suppose N; is an unambiguous number system with base n*
such that S(N;) = A. Consider a word w € n* of length k. Let v, (w) +
cinf . v (w) +emn® be the digits of Ny which are congruent to v, (w) modulo
nk. (If there are no such digits, v, (L(Agw)) = @ and gow is trivially additive.)
We claim that

v (L(Agw)) =1 + AU Ue, + A°

where the union is disjoint. First, suppose w1 € L(Ag,w) where wy € n*. Because
then
vp (wwy) = vp(w) + nkyn(wl) €A,

there are nonnegative integers a € A° and ¢, 1 < ¢ < m, such that
vn(w) + nkyn(wl) =vp(w) + e;n® + nfa.

Hence vp(w1) = ¢; + a € ¢; + A®. Conversely, if v, (w1) = ¢; + a where wy € n*,
1<i<mandaé€ A° then

Un(wwy) = vp(w) + nkyn(wl) =vp(w) + ein® +nfa e A.

Therefore wy € L(Agyw) and v,(w1) € vp(L(Agw)). Finally, suppose that z =
ci+a=cj+bwhere 1 <4 j<manda,bec A% Then

vn (W) + L vn(w) + ein® 4+ nfa = vn (W) + cjnk + n®b.
Because the representation of v, (w) + n*z according to Nj is unique, we have

i = j and @ = b. Therefore the sets ¢; + A are pairwise disjoint (1 < i < m).
This proves the claim and shows that gow is additive. Consequently k € U B(A).
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Conversely, suppose that k¥ € UB(A). Hence, for each word w € n* of length
k there exist nonnegative integers m(w), c(w)1, . .., ¢(W)m(w) such that

Vn(L(Agw)) = e¢(w)1 + AU, U c(w)m(w) + A°

where the union is disjoint. Define the number system N; as follows. The base
of Ny is n* and the digits are vy, (w) + ¢(w);n* for w € n* and 1 < j < m(w).
Clearly, each digit is positive. Indeed, if w # 0% then v,(w) is positive, and if
w = 0% then ¢(w); # 0 for 1 < j < m(w) because zero does not belong to A. We
claim that N is unambiguous and S(Ny) = A.

We show first that S(N7) C A. Suppose a € A%. Then c(w);+a € vy, (L(Agw))
if w € n* and 1 < i < m(w). Therefore there exists w; € n* such that ¢(w);+a =
vp (w1) and v, (wwy) € A. Tt follows that

vn (W) + c(w)ink +nfac A.

Therefore, if d is a digit of Ny, then d+n* A C A. This implies that S(N;) C A.

Next, we show that A C S(Ny). Assume on the contrary that this is not true
and denote by @ the smallest element in A— S(Ny). Choose the word w € n* such
that x is congruent to v,(w) modulo n* and choose a word w; € n* such that
& = vp(wwq). Because x € A, we have wy € L(Agw). Hence v, (w1) = e(w); +a
for some 1 < i < m(w), a € A°. By the choice of z, the integer a, if nonzero,
belongs to S(Ny). Consequently

= vp(wwy) = vp(w) + nkyn(wl) =vp(w) + c(w)ink +nfac S(Ny).

This contradiction shows that indeed A C S(Ny). Therefore A = S(Ny).
Finally, suppose that

b+ binf + .. +bn" =g+ enf + ..+ en®t

where s,¢t > 0 and bg, ..., bs, co,. .., ¢ are digits of Ny such that by # ¢g. Choose
the word w € n* such that v, (w) is congruent to by (and ¢5) modulo n*. Then
there exist i # j, 1 < i,j < m(w) such that by = v, (w) + c(w);n* and ¢y =
vn (W) + c(w)jnk. Hence

c(w); +b1 + bon® .. b0t = c(w); +e1+ con® 4+ . 4 enflD

€ c(w); + AN c(w); + AL,
This contradiction shows that Ny is unambiguous. O

In the next two lemmas we show that the set U B(.A) can be computed effect-
ively if A does not have arbitrarily long gaps.

Lemma 2. Suppose A does not have arbitrarily long gaps. Given a state ¢ € @
it 1s decidable whether or not q s additive. If q is additive one can effectively

find the numbers ¢y, ..., ¢, € N such that
vp(L(Ag)) =1 +A%U. . Uepy, + A°
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Proof. Denote y = d(n” — 1)~! where d is the greatest digit of the given number
system N. By Lemma 4.6 in [Honkala 84], for any positive integer 2 > d, the set

A contains at least one of the integers « + 1,2+ 2,...,z 4+ y. Hence
liminft ' N (A, t) > y~*
t—r00

where N(A,t) is the number of the elements of A less than or equal to ¢. This
implies that for any nonnegative integers ¢y, ..., cy41, the sets ¢; + AV 1<i<
y + 1, are not pairwise disjoint.

Now, find the smallest element ¢; of v,(L(A,)) and check whether or not
c1+A° C v, (L(Ay)). This decision is possible because ¢;+A° is n-recognizable. If
the inclusion does not hold, ¢ is not additive. If the inclusion holds, check whether
vn(L(Ag)) = e1+ A% If not, find the smallest element ¢ in vy, (L(Ay)) — (1 + A°)
and check whether ¢5 + A° and ¢; + AY are disjoint and whether ¢y + A® C
vn(L(Ag)). If not, ¢ is not additive. Otherwise, check whether v,(L(Ay)) =
c1+A%Uea+ A If not, find the smallest element in v, (L(Ag))— (e1+A%Ucy+ A?)
and proceed similarly.

By the first paragraph of the proof, the procedure stops after at most y steps.
This proves the lemma. O

Lemma 3. Suppose A does not have arbitrarily long gaps. Then the set U B(A)
can be computed effectively.

Proof. Denote @; = gon’ for j > 1. Because the sequence (Q;) is effectively
ultimately periodic, the claim follows by Lemma 2. O

If S(N) is recognizable, it is possible that S(NV) has bases which are not
powers of n (see [Culik and Salomaa 83]). Therefore, Lemma 1 is not enough to

find out the unambiguous bases of S(N). However, the following result has been
proved in [Honkala 92].

Lemmad4. Suppose S(N) is recognizable. Then it is decidable whether or not
there exists an unambiguous number system Ny such that S(N) = S(Ny).

Proof of Theorem 1. First, decide whether or not S(N) is recognizable. If it
is, Theorem 1 follows from Lemma 4. Suppose it is not. Then every base of N
is a power of n.

Next, decide whether or not S(N) has arbitrarily long gaps. If it has, n
is the only base of S(N), and it suffices to decide whether or not there is an
unambiguous number system Ny with base n such that S(N) = S(Ny). This
decision is possible by Theorem 6.3 in [Culik and Salomaa 83]. Finally, if S(V)
does not have arbitrarily long gaps, Theorem 1 follows by Lemmas 1 and 3. O
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