
Round-o� error propagation in the solution of the heat

equation by �nite di�erences

Fabienne J�ez�equel
(Universit�e Pierre et Marie Curie, France

Fabienne.Jezequel@masi.ibp.fr)

Abstract: The e�ect of round-o� errors on the numerical solution of the heat equation
by �nite di�erences can be theoretically determined by computing the mean error at
each time step. The 
oating point error propagation is then theoretically time linear.
The experimental simulations agree with this result for the towards zero rounding arith-
metic. However the results are not so good for the rounding to the nearest artihmetic.
The theoretical formulas provide an approximation of the experimental round-o� errors.
In these formulas the mean value of the assignment operator is used, and consequently,
their reliability depends on the arithmetic used.
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1 Introduction

In the computational solution of partial di�erential equations, two types of errors
are generated : the method error due to approximations inherent in the numer-
ical method and the round-o� error due to the 
oating point arithmetic of the
computer used. This paper presents an analysis of the round-o� error propaga-
tion in the solution of the heat equation by �nite di�erences. For each point of
the mesh, the solution is approximated by a scalar product with three terms.
Therefore previous studies concerning round-o� errors in arithmetical opera-
tions and in scalar products are presented. This analysis has been carried out
for the towards zero rounding arithmetic and for the rounding to the nearest
arithmetic, these two rounding modes respecting the 754-IEEE standard. Dif-
ferent cases have been considered depending on whether initial data and �nite
di�erence scheme coe�cients are exactly represented or not in the computer. To
conclude, the main results obtained are �nally represented.

2 Previous results concerning round-o� errors

2.1 Assignment error

Let x be a real number and X its 
oating point representation. The relative

assignment error on X is � = (X�x)
X

. Let P be the set of all the possible
relative assignment errors �. The mean value �� and the standard deviation �2

of P can be computed according to the rounding mode, the base and the number
of bits in the mantissa in the 
oating point representation [see Alt 76, Alt 78,
Hamming 70, Knuth 69, La Porte, Vignes, 74a and Vignes 93]. Let b be the base
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(usually b is 2 or 16) and p the number of digits in the mantissa in the standard

oating point representation,

for the towards zero rounding arithmetic :

�� = b�p (1�b)2 log b

�2 = b�2p[ (b
2
�1)

6 log b �
(b�1)2

(2 log b)2 ]

and for the rounding to the nearest arithmetic :

�� = 0

�2 = b�2p (b
2
�1)

24 log b .

2.2 Error due to arithmetical operators

Let +, �, �, = be the exact operators on real numbers and �, 	, 
, � the cor-
responding 
oating point operators (addition, subtraction, multiplication and
division) on F, which is the set of all the values representable in the machine.
The following formulas have been obtained by considering only �rst-order ap-
proximations in b�p :

Let x and y be real numbers, X and Y their representations in F :

X � x(1 + �) and Y � y(1 + �)

X � Y � x+ y + �x+ �y + �(x+ y)

X 	 Y � x� y + �x� �y + �(x� y)

X 
 Y � (x� y)(1 + �+ � + �0)

X � Y � (x=y)(1 + �� � + �0)

with �, �, � , �0 being elements of P.

2.3 Error in the computation of scalar products

Let us consider a scalar product r =
Pn

i=1 xiyi, with xi and yi real numbers. If
it is computed using this cumulative method :

R := 0 ; FOR I = 1 TO N DO R := R�X[I] 
 Y [I],

the absolute error � on the exact scalar product r is de�ned by : � = R� r.

If Xi = xi(1 + �i) and Yi = yi(1 + �i) the error � can be estimated by the
following formula :

� �
Pn

i=1 xiyi(�i + �i + �i)

+�1(x1y1 + x2y2)
+�2(x1y1 + x2y2 + x3y3)
+:::
+�n�1(x1y1 + x2y2 + :::+ xnyn)

with �i, �i, �i, �i being elements of P.
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We assume that the errors �i, �i, �i, �i are independent and have the same
mean value �� and the same standard deviation �2. Under these hypotheses, the
mean values of � and �2 are given by :

�� = ��r (n
2+7n�2)
2n

��2 = (��)2[(3n
3+41n2+134n�72

12n )r2+( (n�2)(n2+3n�6)
12n )s2]+�2[(n+13 )r2+(n

2+19n�6
6n )s2]

with s2 =
Pn

i=1(xiyi)
2 [see Alt 78 and La Porte, Vignes 74b].

3 Error propagation in the solution of the heat equation

3.1 Finite di�erence scheme

The one-dimensional heat equation describes the heat propagation in a linear
bar. Let U (x; t) be the temperature on this bar at point x and time t. The heat
equation in [a; b]� [t0;+1[ is described by the following system :

@U(x;t)
@t

�K @2U(x;t)
@x2

= 0 , with K > 0

8t � t0 , U (a; t) = Ua(t) and U (b; t) = Ub(t)

8x 2 [a; b] , U (x; t0) = U0(x)

The constant K represents the material thermic di�usivity.

The domain is discretized with space step �x and time step �t :

xi = a+ i�x; i = 0; 1; :::n

x0 = a and xn = b

tj = t0 + j�t; j = 0; 1; :::

Let U j
i be the solution at point xi and time tj. The explicit �nite di�erence

method is used :

U
j+1

i
�U

j

i

�t
= K(

U
j

i�1
�2Uj

i
+Uj

i+1

(�x)2 ) for i = 1; :::; n� 1 , j = 0; 1; :::.

then: U j+1
i = K�t

(�x)2U
j
i�1 + (1� 2 K�t

(�x)2 )U
j
i +

K�t
(�x)2U

j
i+1

To ensure the stability of this scheme, the relation K�t
(�x)2 <

1
2 must be satis�ed.

If c1 =
K�t
(�x)2 and c2 = 1� 2c1, the �nite di�erence scheme is :

U j+1
i = c1U

j
i�1 + c2U

j
i + c1U

j
i+1 for i = 1; :::; n� 1 , j = 0; 1; :::.
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3.2 Theoretical round-o� error

3.2.1 Relative round-o� error

To estimate the round-o� error in the computation of U j
i with the �nite di�erence

scheme previously proposed, several notations are necessary. Let U j
i , c1, c2 be

the algebraic values and
~
U j
i , ~c1, ~c2 the computed values.

Then for i = 1; :::; n� 1 , j = 0; 1; :::,

~U j+1
i = (( ~c1 
 ~U j

i�1) � ( ~c2 

~
U j
i )) � ( ~c1 
 ~U j

i+1),

this formula being neither commutative nor associative.

Let �ji be the relative error on U j
i due to the cumulation of assignment errors

and round-o� errors generated in previous iterations :
~
U j
i = U j

i (1 + �ji ).

�0i merely represents the assignment error on U0
i and the mean value ��0 is equal

to the mean value of the assignment operator ��.

Let �1 and �2 be the relative errors on c1 and c2 : ~c1 = c1 (1 + �1) and
~c2 = c2 (1 + �2).

If c1 and c2 are not results of computations or are computed in in�nite precision,
then �1 and �2 are merely assignment errors.

U j+1
i is computed by a scalar product with three terms. Therefore the for-

mula providing the round-o� error in the computation of scalar products can
be applied :

�j+1i = 1
U

j+1

i

�
c1U

j
i�1(�1 + �ji�1 + �1)

+c2U
j
i (�2 + �ji + �2)

+c1U
j
i+1(�1 + �ji+1 + �3)

+�1(c1U
j
i�1 + c2U

j
i )

+�2(c1U
j
i�1 + c2U

j
i + c1U

j
i+1)

�
with �i, �i being elements of P.

The errors �1 and �2 are due to additions �, �1, �2 and �3 to multiplications 
.
Assignment errors �i, �i are assumed to be independent and consequently :

��i = ��i = ��

�i2 = �i
2 = (��)2 + �2

�i�k = (��)2 etc ...
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3.2.2 First moment

As assignment errors are assumed to be independent and have the same mean
value ��, the �rst moment is, for j = 0; 1; ::: and i = 1; :::; n� 1 :

�j+1i =
c1U

j
i�1

U j+1
i

(�ji�1+3��+�1)+
c2U

j
i

U j+1
i

(�ji+3��+�2)+
c1U

j
i+1

U j+1
i

(�ji+1+2��+�1):

The space step and the time step are assumed to be low enough to allow the
following approximation :

8j � 0, 8i = 1; :::; n� 1,
U

j

i�1

U
j+1

i

�
U

j

i

U
j+1

i

�
U

j

i+1

U
j+1

i

� 1:

Therefore at a �xed iteration, all relative errors �ji have the same mean value :

8i = 1; :::n� 1; �ji = �j.

then
8j � 0, �j+1 = �j + (3 � c1)��+ 2c1�1 + c2�2

therefore :

8j � 0; �j = �0 + ((3 � c1)��+ 2c1�1 + c2�2)j:

The round-o� error propagation in the solution of the heat equation by �nite
di�erences is theoretically time linear. The general formula above is simpli�ed if
the coe�cients c1 and c2 and the initial data U0

i are exactly represented. For the
rounding to the nearest arithmetic, the mean value of the assignment errors, ��
is theoretically zero. In this case, if the coe�cients c1 and c2 and the initial data
U0
i are exactly represented, �1 = �2 = �0 = 0 , and the �rst moment remains

theoretically zero. Thus it is necessary to estimate the second moment.

3.2.3 Second moment

The estimation of the second moment has been carried out for the rounding to
the nearest arithmetic under the following assumptions :

c1 and c2 are exactly represented : �1 = �2 = 0,

initial data are exactly represented : 8i = 1; :::; n� 1; �0i = 0 .

As for the estimation of the �rst moment, it is assumed that :

8j � 1, 8i = 1; :::; n� 1 ,
U

j�1

i�1

U
j

i

�
U

j�1

i

U
j

i

�
U

j�1

i+1

U
j

i

� 1:

The estimation of (�j+1i )2 induces the emergence of terms 
�ji , 
 being a relative
assignment error.

It is assumed that 
�ji�1 = 
�ji+1 = 
�ji .
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Therefore, (�j+1i )2 = (2c21 + c22) (�
j
i )
2 + (7c21 + 3c2) �2

+2
�
(1� c1)�1�

j
i + �2�

j
i + c1�1�

j
i + c2�2�

j
i + c1�3�

j
i

�
.

As 8i = 1; :::; n� 1, �0i = 0, (�1)2 = (7c21 + 3c2) �
2.


�ji are estimated, 
 being a relative assignment error :

�1�
j
i = (1 � c1)�

2 + �1�
j�1
i

�2�
j
i = �2 + �2�

j�1
i

�1�
j
i = c1�

2 + �1�
j�1
i

�2�
j
i = c2�

2 + �2�
j�1
i

�3�
j
i = c1�

2 + �3�
j�1
i

As 
�0i = 0, �nally :

�1�
j
i = (1 � c1)j�2

�2�
j
i = j�2

�1�
j
i = �3�

j
i = c1j�

2

�2�
j
i = c2j�

2.

Therefore : 8j � 1, (�j+1i )
2
= (2c21 + c22) (�

j
i )

2 + (1 + 2j) (7c21 + 3c2) �2.

Then
(�0)2 = 0

and 8j � 1, (�j)2 = (7c21 + 3c2) �2
Pj�1

k=0 (1 + 2k) (2c21 + c22)
j�k�1.

The evolution of the second moment is thus of degree 2. This result remains
coherent with the linear evolution of the �rst moment.

3.3 Experimental round-o� error

3.4 First moment

The experimental �rst moment �j is computed according to the following for-
mula :

�j =
1

n� 1

n�1X
i=1

 
~
U j
i � U j

i

~
U j
i

!
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where U j
i represents the algebraic value and

~
U j
i the computed value. The number

of signi�cant digits lost in computations does not depend on the precision of the

oating point arithmetic [see Chesneaux 88 and Chesneaux 90]. Therefore U j

i ,
theoretically computed in in�nite precision, can be computed in double precision.

Then ~
U j
i is the result of the same computation carried out in single precision

[see Hull, Swenson 66].

The theoretical expression of the �rst moment has been validated for the to-
wards zero rounding arithmetic and the rounding to the nearest arithmetic, on
a computer using base 2 with p = 24 and respecting the 754-IEEE standard.
Four cases can occur depending on whether the coe�cients c1 et c2 and the
initial data U0

i are exactly represented or not. Each case has been studied for
the rounding to the nearest arithmetic, where the mean value of the assignment
errors �� is zero, and for the towards zero rounding arithmetic, where �� is not
zero. The number of space steps n is set to 100, the number of time steps is set
to 1000.

1st case :

If the coe�cients c1, c2 and the initial data U0
i are both not exactly represented,

the �rst moment is :

8j � 0; �j = �0 + ((3� c1)��+ 2c1�1 + c2�2)j

The experimental moment is time linear as well. However the theoretical mo-
ment is in absolute value slightly greater than the experimental moment. This
di�erence may be due to an overvaluation of the theoretical mean value ��.
Results concerning the following example are presented in the appendix :

c1 =
1
6 , c2 =

2
3

8i = 0; 1; � � � ; n; U0
i = sin( i�

n
) + log2

2nd case :

If the coe�cients c1 and c2 are exactly represented, but the initial data U0
i are

not exactly represented, the �rst moment is :

8j � 0; �j = �0 + (3� c1)��j

In the towards zero rounding arithmetic, the theoretical moment and the experi-
mental one are both linear. The theoretical moment overestimates again slightly
in absolute value the experimental moment.
In the rounding to the nearest arithmetic, as the mean value �� is zero, the �rst
moment remains theoretically equal to the mean error on data �0. In opposition
to the theoretical moment, the experimental moment is not constant. However
its order of magnitude (10�7) is very satisfying for single precision results.
Graphical results for the following example are presented in the appendix :

c1 =
3
16 , c2 =

5
8

8i = 0; 1; � � � ; n; U0
i = sin( i�

n
) + log2
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3rd case :

If the initial data U0
i are exactly represented, but the coe�cients c1 and c2 are

not exactly represented, the �rst moment is :

8j � 0; �j = ((3 � c1)��+ 2c1�1 + c2�2)j

The choice of initial data which are exactly represented is more problematic than
the choice of exactly represented coe�cients. For instance, if initial data are of
the form :

8i = 0; 1; � � �; n; U0
i = i2r,

with r being a relative integer, the scheme does not perform evolutions in time :

8j � 0; U j
i = U0

i .

The following example is presented in the appendix :

c1 =
1
6 , c2 =

2
3

8i = 0; 1; � � � ; n; if i is odd, U0
i = i=16

if i is even,U0
i = i

The theoretical moment is linear and remains greater than the experimental
moment in absolute value. In the towards zero rounding arithmetic, the experi-
mental moment remains linear for all time intervals considered. In the rounding
to the nearest arithmetic, the experimental moment is not perfectly linear (see
graphical results in the appendix).

4th case :

If the initial data U0
i and the coe�cients c1 and c2 are exactly represented, the

�rst moment is :
8j � 0; �j = (3� c1)��j

In this case, the experimental moment is compared with the theoretical moment
only in the towards zero rounding arithmetic, because in the rounding to the
nearest arithmetic the mean value �� is theoretically zero.

In the appendix, the following example is presented :

c1 =
3
16 , c2 =

5
8

8i = 0; 1; � � � ; n; if i is odd, U0
i = i=16

if i is even,U0
i = i

The experimental moment, as well as the theoretical one, is linear. The theo-
retical moment remains slightly greater than the experimental one in absolute
value because of the overvaluation of the mean value of the assignment errors ��.
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3.4.1 Second moment

The second moment, (�j)
2, can be experimentally computed according to the

following formula :

(�j)2 =
1

n� 1

n�1X
i=1

 ~
U j
i � U j

i

~
U j
i

!2

where U j
i is the algebraic value and ~

U j
i the computed one. As for the �rst mo-

ment, U j
i , theoretically computed in in�nite precision, is computed in double

precision and ~
U j
i is computed in single precision.

The second moment has been computed using the rounding to the nearest arith-
metic, when the initial data U0

i and the coe�cients c1 and c2 are exactly repre-
sented. In the appendix, the evolution of the ratio of the experimental moment

by the theoretical one (�j)2
1
2 exp=(�j)

2 1
2 theo is presented. The example con-

sidered is the same as for the study of the �rst moment, when both initial data
and coe�cients are exactly represented.

4 Conclusion

In the towards zero rounding arithmetic, the round-o� error generated in the
solution of the heat equation is correctly modelled for all �nite di�erence scheme
coe�cients and initial data. The round-o� error propagation is then time linear.
The theoretical error depends strongly on the mean value of the assignment
errors and, while providing the order of magnitude of the experimental error,
overestimates it slightly.

In the rounding to the nearest arithmetic, the round-o� error generated is always
smaller than in the towards zero rounding arithmetic. In the case where neither
the coe�cients nor the initial data are exactly represented, the round-o� error
is linear and is correctly described by the theoretical formula. However if the
�nite di�erence scheme coe�cients or the initial data are exactly represented,
theoretical formulas are not veri�ed by the experimental study. The round-o�
error modelling is rather di�cult in the rounding to the nearest arithmetic,
where the mean value of the assignment error, which is theoretically zero, is
never practically zero.

Theoretical formulas are much more robust in the towards zero rounding arith-
metic than in the rounding to the nearest arithmetic. However from this study
it seems obvious that the round-o� error generated in the solution of the heat
equation is usually linear.
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Appendix : graphical results

1st case : c1 =
1
6 , c2 =

2
3 , n = 100; 8i = 0; 1; � � �; n; U0

i = sin( i�
n
) + log2
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Figure 1: First moment, towards zero rounding arithmetic
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Figure 2: First moment, rounding to the nearest arithmetic

478



2nd case : c1 =
3
16 , c2 =

5
8 , n = 100; 8i = 0; 1; � � � ; n; U0

i = sin( i�
n
)+ log 2
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Figure 3: First moment, towards zero rounding arithmetic
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Figure 4: First moment, rounding to the nearest arithmetic
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3rd case : c1 =
1
6 , c2 =

2
3 , n = 100; 8i = 0; 1; � � �; n; if i is odd, U0

i = i=16
if i is even,U0

i = i
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Figure 5: First moment, towards zero rounding arithmetic
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Figure 6: First moment, rounding to the nearest arithmetic
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4th case : c1 =
3
16 , c2 =

5
8 , n = 100; 8i = 0; 1; � � � ; n; if i is odd, U0

i = i=16
if i is even,U0

i = i
towards zero rounding arithmetic
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Figure 7: First moment
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4th case : c1 =
3
16 , c2 =

5
8 , n = 100; 8i = 0; 1; � � � ; n; if i is odd, U0

i = i=16
if i is even,U0

i = i
rounding to the nearest arithmetic
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Figure 8: Ratio of the experimental 2nd moment by the theoretical 2nd moment
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