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Abstract: We discuss two closely related interval arithmetic systems: i) the system
of directed (generalized) intervals studied by E. Kaucher, and ii) the system of normal
intervals together with the outer and inner interval operations. A relation between the
two systems becomes feasible due to introduction of special notations and a so-called
normal form of directed intervals. As an application, it has been shown that both
interval systems can be used for the computation of tight inner and outer inclusions
of ranges of functions and consequently for the development of software for automatic
computation of ranges of functions.
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1 Introduction

We briey recall some well-known facts about the interval arithmetic for compact
intervals on the real line R. Given a(�); a(+) 2 R, with a(�) � a(+), a (proper)
interval is de�ned by [a(�); a(+)] = fx j a(�) � x � a(+)g. The set of all intervals
is denoted by I(R). Thus a(s) 2 R with s 2 � = f+;�g is the left or right
endpoint of A 2 I(R) depending on the value of s. In what follows the binary
variable s will be sometimes expressed as a product of two binary variables from
�, de�ned by ++ = �� = +, +� = �+ = �. An interval A = [a(�); a(+)] with
a(�) = a(+) is called degenerate.

Let A = [a(�); a(+)], B = [b(�); b(+)] 2 I(R). Inclusion in I(R) has the well-
known set-theoretic meaning. In terms of the end-points we have

A � B () (b(�) � a(�)) ^ (a(+) � b(+)); A;B 2 I(R):

Denote Z = fA 2 I(R) j a(�) � 0 � a(+)g, Z� = fA 2 I(R) j a(�) < 0 < a(+)g,
I(R)� = I(R) n Z�. The function "sign" � : I(R)� ! � is de�ned for A 2
I(R)� n f0g with �(A) = f+; if a� � 0; �; if a+ � 0g, and for zero argument
by �([0; 0]) = �(0) = +. In particular, � is well de�ned over R. The sign � is
not de�ned for intervals from Z�. Note that the intervals from Z� comprise both
positive and negative numbers.

The operations +;�;�; = are de�ned by

A �B = fa � b j a 2 A; b 2 Bg; � 2 f+;�;�; =g; A;B 2 I(R); (1)

assuming in the case \� = =" that B 2 I(R) n Z [Moore 1966], [Sunaga 1958].
The following expressions hold true for A = [a(�); a(+)], B = [b(�); b(+)]

A+ B = [a(�) + b(�); a(+) + b(+)]; A;B 2 I(R); (2)
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A� B =

8<
:
[a(��(B))b(��(A)); a(�(B))b(�(A))]; A;B 2 I(R)�;
[a(�)b(��); a(�)b(�)]; � = �(A); A 2 I(R)�; B 2 Z�;
[a(��)b(�); a(�)b(�)]; � = �(B); A 2 Z�; B 2 I(R)�;

(3)

A� B = [minfa(�)b(+); a(+)b(�)g; maxfa(�)b(�); a(+)b(+)g]; A;B 2 Z�; (4)

1=B = [1=b(+); 1=b(�)]; B 2 I(R) n Z: (5)

For a degenerate interval A = [a; a] = a 2 R, expression (3) gives a � B =
[ab(��(a)); ab(�(a))]. For a = �1 we obtain the operator negation (�1) � B =
�B = [�b(+);�b(�)]. The operations subtraction and division de�ned by (1) can
be expressed as composite operations by A�B = A+(�B), A=B = A� (1=B).
In terms of end-points we have

A� B = [a(�) � b(+); a(+) � b(�)]; A;B 2 I(R); (6)

A=B =

�
[a(��(B))=b(�(A)); a(�(B))=b(��(A))]; A 2 I(R)�; B 2 I(R) n Z;
[a(��)=b(��); a(�)=b(��)]; � = �(B); A 2 Z�; B 2 I(R) n Z:

(7)

The algebraic properties of (I(R);+;�; =;�) are studied in [Moore 1966],
[Ratschek 1969], [Ratschek 1972], [Sunaga 1958]. The subsystems (I(R);+),
(I(R)�;�) are commutative semigroups. They are not groups, that is no in-
verse elements w. r. t. the operations +, resp. � exist in general. The solutions
of the equations A+X = B, resp. A�X = B (if existing), cannot be expressed
in terms of the interval operations (1). There is no distributivity between + and
�, except for very special cases. The interval operations (1) can be used for outer
inclusions of functional ranges (which can be rough). They are of little use for
the computation of inner inclusions.

The above mentioned "de�ciencies" of the system (I(R);+) are due to our
incomplete knowledge of the interval arithmetic system. The algebraic manipula-
tions in the set I(R) of (proper) intervals resamble the algebraic manipulations in
the set R+ = fx 2 R; x � 0g of positive numbers. The equality a+x = b possess
no solution in R+ for a > b. Similarly, the equality A+X = B has no solution in
I(R) if the width of A is greater than the width of B. Similarly to the algebraic
completion of the set R+ by negative numbers (or to the completion of the reals
by complex numbers), the set I(R) can be completed by so-called improper in-
tervals, having their left "end-points" greater that the right ones. The algebraic
completion of (I(R);+) leads to a set D of directed (or generalized) intervals,
which is suitable for solving interval algebraic problems. An isomorphic exten-
sion of the interval operations over D produces the system K = (D;+;�), where
the operations " + " and "� " possess group properties [Dimitrova et al. 1991]{
[Kaucher 1980], [Markov 1992]{[Markov 1993], [Shary 1993], [Shary 1995]. How-
ever, we must learn to solve algebraic problems with directed intervals and to
interpret the solutions in case we need realistic solutions, that is, proper inter-
vals, in the same way as mathematicians have learned to solve algebraic problems
using real numbers (positive and negative), or later on using complex numbers.

This paper serves for a further development of the algebraic manipulation
in the set of directed intervals and the interpretation of the obtained results in
the set of proper intervals. We briey introduce the system K using two forms
of presentation for the elements of D { component-wise (already used by other
authors) and normal. It has been demonstrated that the normal form actually
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generates two types of operations between normal intervals { the �rst type are
the usual operations (1), which are also called "outer" interval operations and
the second type are the "inner" (or "nonstandard") interval operations. The set
of normal intervals together with the set of outer and inner operations M =
(I(R);+;+�;�;��) presents an algebraic completion of the familiar interval
arithmetic (I(R);+), which opposite to K makes no use of improper elements
[Markov 1977]{[Markov 1992]. It has been shown that the two systems K and
M are closely related and that the understanding of the relation between them
can greatly increase the scope of applications of interval arithmetic. An e�cient
relation between the two systems becomes feasible due to the introduction of
special (�)-type notations and a so-called normal form of directed intervals. The
new uniform notations make it possible to develop in a consistent way software
implementations of all important interval arithmetic systems and to incorporate
them in a software environment supporting symbolic computations. Such an
uni�cation will be facilitated by the fact that interval algebraic relations become
simple with the new notational approach. Both K and M can be used for the
construction of tight inner and outer inclusions of ranges of functions, which is
one of the most important application of interval arithmetic. This is shown in
the last section of the paper, where several propositions are formulated that can
be directly applied to the development of algorithms for automatic computation
of ranges of functions [Corliss and Rall 1991]. Another vast �eld of applications
of the interval systems K andM is the solution of algebraic problems involving
interval data, where the system K plays an important role in the formal algebraic
manipulations, whereas the system M can be used for the interpretation of the
results in terms of proper intervals (if necessary).

2 Directed intervals and operations over them

We extend the set I(R) up to the set D = f[a; b] j a; b 2 Rg of ordered couples. To
avoid confusion with the normal intervals from I(R), we call the elements of D
directed or generalized intervals and their "endpoints" will be called components.
The �rst component of A 2 D is denoted by a�, and the second by a+, so that
A = [a�; a+]. The absence of brackets around + and � in this notation suggests
that the inequality a� � a+ is not obligatory (as in the case with the endpoints
of the proper intervals: a(�) � a(+)). Every directed interval A = [a�; a+] 2 D
de�nes a binary variable "direction" by

� (A) = �(a+ � a�) =

�
+; if a� � a+;
�; if a� > a+:

The set of all elements of D with positive direction, that is the set of proper
intervals, is equivalent to I(R); the set of directed intervals with negative di-

rection, further called improper intervals, will be denoted by I(R), so that

D = I(R) [ I(R). To every directed interval A = [a�; a+] 2 D we assign a
proper interval pro(A) with

pro(A) =

�
[a�; a+]; if � (A) = +;
[a+; a�]; if � (A) = �:
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We have pro(A) = [a��(A); a�(A)]. Instead of pro(A) we shall also write A, if
no ambiguity occurs. The interval A will be further called the projection of A
on the set of proper intervals or, briey, the proper projection of A.

Denote Z = fA 2 I(R) j a+ � 0 � a�g, Z
�
= fA 2 I(R) j a+ < 0 < a�g,

T = Z [ Z = fA 2 D j 0 2 pro(A)g, T � = Z� [ Z
�
= fA 2 T j (a� < 0 <

a+) _ (a+ < 0 < a�)g. In D� = D n T � we de�ne the function "sign" of a
directed interval � : D� ! �, by �(A) = �(pro(A)) (note that pro(A) 2 I(R)�

for A 2 D�).
The formal substitution of components for end-points and the replacement

of I(R)� and Z� by D� and T �, resp. in (2){(3) extends the de�nitions of the
operations +, � from I(R) up to D:

A +B = [a� + b�; a+ + b+]; A;B 2 D; (8)

A �B =

8<
:
[a��(B)b��(A); a�(B)b�(A)]; A;B 2 D�;
[a�b��; a�b�]; � = �(A); A 2 D�; B 2 T �;
[a��b�; a�b�]; � = �(B); A 2 T �; B 2 D�:

(9)

The product A�B is de�ned for A;B 2 T � by

A �B =

8<
:
[minfa�b+; a+b�g; maxfa�b�; a+b+g]; A;B 2 Z�;

[maxfa�b�; a+b+g; minfa�b+; a+b�g]; A;B 2 Z
�
;

0; (A 2 Z�; B 2 Z
�
) _ (A 2 Z

�
; B 2 Z�):

(10)

It has been shown that the spaces (I(R);+) and (I(R) n Z;�) are isomorphic
embeddments in the spaces (D;+), resp. (DnT ;�) under the operations (8){(10)
[Kaucher 1980]. E. Kaucher gives a table form expression for the multiplication,
which is equivalent to (9){(10).

From (9) for A = [a; a] = a, B 2 D we have a �B = [ab��(a); ab�(a)]. This
implies for the operator negation: neg(B) = �B = (�1) � B = [�b+;�b�].
The composite operation A + (�1) �B = A + (�B) = [a� � b+; a+ � b�], for
A;B 2 D is an extension in D of the subtraction A � B and will be further
denoted A �B as in (6).

The systems (D;+) and (DnT ;�) are groups [Kaucher 1977], [Kaucher 1980].
Denote by �hA the inverse element of A 2 D with respect to "+", and by 1=hA
the inverse element of A 2 D nT with respect to "�". For the inverse elements
we have the component-wise presentations �hA = [�a�;�a+], for A 2 D,
and 1=hA = [1=a�; 1=a+], for A 2 D n T . The element �hA is further
called the opposite of A and the element 1=hA | the inverse of A, symbolically
opp(A) = �hA, inv(A) = 1=hA.

An important operator inD is the operator dual element de�ned by dual(A) =
dual([a�; a+]) = [a+; a�]. The operators negation �A = [�a+;�a�], opposite
element �hA = [�a�;�a+] and dual element dual(A = [a+; a�] are interrelated
by:

dual(A) = �h(�A) = �(�hA); (11)

that is dual(A) = opp(neg(A)) = neg(opp(A)). The equalities (11) suggest that
there might exist an operator rec(A) in DnT , which (by analogy to the operator
�A in (11)) possibly satis�es:

1=h(rec(A)) = rec(1=hA) = dual(A); (12)
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that is dual(A) = inv(rec(A)) = rec(inv(A)). The unique such operator is the
reciprocal operator rec(A) = 1=A = dual (1=hA) = 1=h(dual (A)) = [1=a+;
1=a�], for A 2 D n T . Both the opposite and the negative elements play an
important role in the substructure (D;+), and so do symmetrically the inverse
and the reciprocal elements in the subsystem (DnT ;�). The composition of these
operators with the basic operations (8){(10) generates a rich set of compound
operations.

The operation A� (1=B) for A 2 D, B 2 D n T is further denoted by A=B
(it is an extension in D of the operation A=B, de�ned by (7)); we have

A=B =

�
[a��(B)=b�(A); a�(B)=b��(A)]; A 2 D�;B 2 D n T ;
[a��=b��; a�=b��]; � = �(B); A 2 T �; B 2 D n T :

From (11) and (12)) we have �hA = �dual(A), 1=hA = 1=dual(A). The
elements �hA, 1=hA generate the operations A+(�hB) = A+(�dual(B)) =
A�dual(B), A� (1=hB) = A� (1=dual(B)) = A=dual(B), which are denoted
by A�h B, resp. A=hB:

A�h B = A � dual(B) = [a� � b�; a+ � b+]; A;B 2 D;

A =h B = A=dual(B) =

�
[a��(B)=b��(A); a�(B)=b�(A)]; A;B 2 D n T ;
[a��=b�; a�=b�]; � = �(B); A 2 T ; B 2 D n T :

From the last equality we obtain A=B = A=h(dual(B)) = A=h(�h((�1)�B)),
which shows that division "=" can be expressed by the operations "� ", "�h "
and "=h". Therefore we may not include division in the list of basic operations
of the algebraic system K = (D;+;�) thus obtained, as we should do in the case
with the familiar system (I(R);+;�; =). The system K involves the compound
operations subtraction A � B and division A=B, the operator dual(A), the
operations A � dual(B), A=dual(B), and their dual operations dual(A) � B,
dual(A)=B. Similarly, we can compose A+dual(B), A�dual(B), dual(A)+B,
dual(A) �B, etc.

For the operator dual element we shall further use the notation A� =
dual(A). Assuming A+ = A, we can introduce the notation A� = fA, if � = +;
A�, if � = �g. Using this notation we can formulate a simple distributive rela-
tion in D�, which is more convenient than the one formulated in table form in
[Kaucher 1980].

Proposition1. Conditionally Distributive Law for directed intervals. For A 2
D�;B 2 D�;C 2 D�;A+B 2 D� we have

(A +B) �C�(A+B) = (A �C�(A)) + (B�C�(B)):

Note that in the above expression we take C or dual(C) dependent on the signs
of the intervals A;B and A +B.

3 Directed intervals in normal form

We introduce another form of presentation for the directed intervalsA = [a�; a+]
2 D, which we call normal form. The set D is equivalent to the direct product
I(R)
�, � = f+;�g. Note that the space I(R)
� involves degenerate intervals
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with negative direction, which have not been de�ned yet. We shall stipulate
that such elements coincide with the (same) degenerate intervals with positive
direction. Hence a directed interval A can be presented as a couple consisting of
a normal (proper) interval and a sign showing its direction, that is A = [A;�] =
[a(�); a(+);�] with A = [a(�); a(+)] 2 I(R) and � = � (A) 2 �. For A = a 2 R

we have by de�nition [a;�] = [a;��].
We may use the following formulae for transition from the component-wise

form [a�; a+] to normal form [a(�); a(+);�] and vice verse

� = �(a+ � a�); a(�) = a��; a(+) = a�; a� = a(��); a+ = a(�):

We can write, of course, other equivalent expressions like a(�) = minfa�; a+g,
a(+) = maxfa�; a+g, but such formulae are not suitable for algebraic manipula-
tions. We shall next �nd an expression for the sum C = A +B of two directed
intervals A; B involving normal form presentation. Denoting the length of the
interval by !(A) = a(+) � a(�), we obtain for the direction � (C) of the sum
C = [c�; c+] = [a� + b�; a+ + b+]

� (C) = �(a+ + b+ � a� � b�) = �((a(�) � a(��)) + (b(�) � b(��)))

= � (�!(A) + �!(B))

=

8><
>:
�; � = �;
�; � = ��; !(A) > !(B);
�; � = ��; !(A) < !(B);
+; � = ��; !(A) = !(B):

(13)

In the expression � (�!(A) + �!(B)) the symbols �; � 2 � preceding the real
positive numbers !(A), resp. !(B), should be interpreted as signs of these num-
bers, that is as �; � = �1.

Denoting for brevity  = � (C) = � (A + B), as given by (13), we have
c(�) = c� = a� + b� = a(��)+ b(��), c(+) = c = a + b = a(�)+ b(�),
so that

A +B = [a(�); a(+);�] + [b(�); b(+); �]

= [a(��) + b(��); a(�) + b(�); ]: (14)

Expression (14) implies that for � = � (= ) the normal part pro(A+B) =
[a(��)+ b(��); a(�) + b(�)] of the sum A+B is equal to [a(�) + b(�); a(+) +
b(+)] = A+ B = pro(A) + pro(B). For � 6= � the normal part of A+B is

pro(A +B)j� 6=� =

�
[a(�) + b(+); a(+) + b(�)]; if a(�) + b(+) � a(+) + b(�);
[a(+) + b(�); a(�) + b(+)]; if a(�) + b(+) > a(+) + b(�);

=

�
[a(�) + b(+); a(+) + b(�)]; !(A) � !(B);
[a(+) + b(�); a(�) + b(+)]; !(A) < !(B);

(15)

which is the proper interval with end-points a(�) + b(+) and a(+) + b(�). The
interval (15) is called inner (or nonstandard) sum of the proper intervals A;B
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and is denoted by A+�B [Markov 1980]. In contrast, the sumA+B is sometimes
called outer sum of A;B. We have

pro(A +B) =

�
A+ B; � (A) = � (B);
A+� B; � (A) 6= � (B):

We thus see that for the presentation of the proper projection of a sum of two
directed intervals by means of the proper projections of these intervals we need
two types of summation of (proper) intervals: an outer summation (\+") and an
inner summation (\+�"). For A;B 2 I(R) we have A +� B � A + B. We can
characterize the sum A+�B in the case when A;B are nondegenerate, resp. the
four numbers c�� = a(�) + b(�), �; � 2 �, are all di�erent, as follows. Arranging
the numbers c�� in increasing order and renaming them by ci; i = 1; 2; 3; 4, so
that c1 < c2 < c3 < c4, we have A+ B = [c1; c4], A+� B = [c2; c3].

Introducing the notation ++ = +, we can summarize both cases � = �,
� 6= � by writing C = A +�� B, showing that C is either an outer or an inner
sum of A and B. We thus obtain the simple expressions

[A;�] + [B; �] = [A+�� B; � ([A;�] + [B; �])]; A;B 2 I(R); �; � 2 �;

A+B = [A+�(A)�(B) B; � (A +B)]; A;B 2 D; (16)

wherein the direction � (A+B) =  is given by (13).
To present a di�erence C = A � B = A + (�B) = [a� � b+; a+ � b�] in

normal form we �rst compute � (C) = � (A �B) = � (A + (�B)) = �(�!(A) +
�!(�B)) = �(�!(A) + �!(B)) = � (A + B). Note that !(�(B)) = !(B) and
� (B) = � (�B) = �. Further, using the transition formulae, we compute c(�) =
c� = a� � b = a(��)� b(�), c(+) = c = a � b� = a(�)� b(��), so that

A�B = [a(�); a(+);�]� [b(�); b(+); �]

= [a(��) � b(�); a(�) � b(��); � (A�B)]; (17)

where � (A�B) = � (A+B) =  is given by (13).
Expression (17) implies that for � = � (= ) the normal part pro(A�B) of

the di�erence A �B is equal to [a(�) � b(+); a(+) � b(�)] = A � B = pro(A) �
pro(B). For � 6= � the proper projection pro(A�B) is given by

pro(A �B)j�6=� =

�
[a(�) � b(�); a(+) � b(+)]; !(A) � !(B);
[a(+) � b(+); a(�) � b(�)]; !(A) < !(B);

which is the proper interval with end-points a(�) � b(�) and a(+) � b(+). The
latter interval is called inner (or nonstandard) di�erence of A and B and is
denoted by A�� B. We may now write

pro(A �B) =

�
A� B; � (A) = � (B);
A�� B; � (A) 6= � (B):

This shows that for the presentation of the proper projection of the di�erence
of two directed intervals we need two types of subtraction: the familiar (outer)
subtraction (\�") and the inner subtraction (\��"). For A;B 2 I(R) we have
A�� B � A �B.
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In order to obtain an uniform expression for the di�erence of two directed
intervals we introduce the notation �+ = �; we then summarize

[A;�]� [B; �] = [A��� B; � ([A;�]� [B; �])]; A;B 2 I(R); �; � 2 �;

A�B = [A��(A)�(B) B; � (A �B)]; A;B 2 D;

wherein � (A�B) = � (A +B) = �(�!(A) + �!(B)) =  is given by (13).
Similarly we obtain [A;�] � [B; �] = [A ��� B; � ([A;�] � [B; �])] for any

A;B 2 I(R)�, �; � 2 �, or

A�B = [A��(A)�(B) B; � (A �B)]; A;B 2 D�;

� (A�B) = � ([A;�]� [B; �]) = �(��(B) + ��(A)); (18)

where �(A) = a(��(A))=a(�(A)), �+ = �, and the inner multiplication "��" is
de�ned by

A�� B =

�
[a(��(B))b(�(A)); a(�(B))b(��(A))]; �(B) � �(A);
[a(�(B))b(��(A)); a(��(B))b(�(A))]; �(B) < �(A):

In order to present the proper projection of A=B = A � (1=B) we need two
types of interval division for proper intervals | the (outer) division "=" de�ned
by (7) and an "inner" division "=�" de�ned by

A=�B =

�
[a(��(B))=b(��(A)); a(�(B))=b(�(A))]; �(B) � �(A);
[a(�(B))=b(�(A)); a(��(B))=b(��(A))]; �(B) < �(A):

Using the inner and outer divisions for normal intervals we can write

A=B = [A=�(A)�(B)B; � (A�B)]; A;B 2 D�;

� (A=B) = � ([A;�]=[B; �]) = �(��(B) + ��(A)) = � (A �B):

Let us make two remarks with respect to the inner operations. First, for A;B 2
I(R) we have A ��B � A �B for � 2 f+;�;�; =g. Second, we can interpret the
result of any inner operation A��B, � 2 f+;�;�; =g, whenever the four numbers
c�� = a(�)�b(�), �; � 2 �, are di�erent, as follows (for multiplication and division
the case when the intervals contain zero should be excluded). Rearrange these
four numbers in increasing order and rename them by ci; i = 1; 2; 3; 4, so that:
c1 < c2 < c3 < c4. Then we have A �B = [c1; c4], A �� B = [c2; c3].

We can perform all computations in K using normal form presentation. Let
us give some examples. Multiplication by a degenerate interval a is expressed by
a � [B; �] = a � [b(�); b(+); �] = [ab(��(a)); ab(�(a)); �]. If a = �1 then (�1) �
[b(�); b(+); �] = �[b(�); b(+); �] = [�b(+);�b(�); �] = �[B; �] = [�B; �]. The op-
posite of A = [A;�] = [a(�); a(+);�] is the directed interval �A� = [�A;��] =
[�a(+);�a(�);��]. Indeed from (14) we have [a(�); a(+);�]+[�a(+);�a(�);��]
= [0; 0;�] = 0. The inverse to a negative interval is the dual interval [A;�]� =
[A;��]. More generally, for � 2 � we have A� = [A;�]� = [A;��]. Here the
binary variable � is an indicator for a presence/absence of the operator dual
element. Similarly, the inversion of [A;�] = [a(�); a(+);�] is the directed interval
1=A� = [1=A;�]� = [1=A;��] = [1=a(+); 1=a(�);��].
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4 Relations for normal intervals derived from directed

interval arithmetic

We now make the following observation: Every proposition from the di-
rected interval arithmetic can be reformulated in terms of normal
form presentation of the directed intervals involved. It then implies
a corresponding proposition for the proper projections of the par-
ticipating directed intervals, that is a proposition for normal inter-
vals using outer and inner arithmetic operations. For directed intervals
we have simple expressions and relations, due to the fact that the directed in-
tervals form a nice algebraic structure. As we have shown the arithmetic op-
erations between directed intervals generate both outer and inner operations
for normal intervals. The set of (proper) intervals together with the set of
outer and inner operations M = (I(R);+;+�;�;��;�) has been studied in
[Dimitrova 1980]{[Dimitrova et al. 1991], [Markov 1977]{[Markov 1992]. We re-
call that the operations �;��; =; =� can be expressed via the basic operations
+;+�;�;��. The inner interval operations �nd application in the analysis of in-
terval functions [Markov 1979], [Markov 1980], [Schr�oder 1981]. Inner operations
are useful for the computation of inclusions (both inner and outer) of functional
ranges [Bartholomew-Biggs and Zakovich 1994], [Markov 1993], [Nesterov 1993]
(see the last section). We next show how some basic arithmetic relations for
directed intervals generate corresponding relations between proper intervals. We
consequently obtain simple arithmetic relations for the outer and inner opera-
tions.

Proposition2. Conditionally-associative laws for proper intervals.
i) For A;B;C 2 I(R), and �; �;  2 � we have

(A +�� B) +�(A+B) C = A+��(B+C) (B +� C);

ii) For A;B;C;D 2 I(R), and �; �; ; � 2 � we have

(A+�� B) + �(A+B)�(C+D)(C +� D)

= (A +� C) +�(A+C)�(B+D) (B +� D);

iii) For A;B;C 2 I(R)� and �; �;  2 � we have

(A��� B) ��(A�B) C = A���(B�C) (B �� C);

iv) For A;B;C;D 2 I(R)�, and �; �; ; � 2 � we have

(A ��� B) ��(A�B)�(C�D) (C � �D)

= (A�� C)��(A�C)�(B�D) (B �� D);

wherein the � -functionals are given by (13), (18).
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Proof of i). Substituting A = [A;�]; B = [B; �]; C = [C; ] in (A + B) +
C = A + (B + C) and using (16), we obtain [A +�� B; � (A + B)] + [C; ] =
[A;�] + [B +� C; � (B+C)]. Comparing the proper projection of both sides of
this equality, we obtain i). 2

Using i) we can change the order of execution of the operations in any ex-
pression involving additions (outer or inner) of normal intervals. The relation ii)
is obtained in a similar way | this relation plays important role in the analysis
for interval functions [Markov 1979], [Schr�oder 1981]. The relations iii), iv) are
obtained in a similar way.

Proposition3. Conditionally-distributive law for proper intervals. For arbi-
trary A;B;C 2 I(R)�, such that A + B 2 I(R)� and for any �; �;  2 � we
have

(A+�� B) � �(A+B)C

= (A���(A)�(A+B) C) +�(A�C)�(B�C) (B ���(B)�(A+B) C):

Proof. SettingA = [A;�]; B = [B; �]; ;C = [C; ] in the conditionally-distributi-
ve law for directed intervals and using (16), we obtain

[A + ��B; � (A+B)]� [C; ]

= [A���(A)�(A+B) C; � (A�C)] + [B ���(B)�(A+B) C; � (B�C)]:

Using again (18) for the left hand-side and (16) for the right hand-side and
comparing the proper projections in both sides we obtain the proof. 2

The generated above basic relations for normal intervals are suitable for
automatic processing, especially in computer algebra systems. The corresponding
relations known by now (see e. g. [Markov 1992]) have rather complex form and
are not convenient for symbolic manipulations.

5 Applications to functional ranges

Let CM (T ) be the set of all continuous and monotone functions f de�ned in
T = [t(�); t(+)] 2 I(R). The image f(T ) = ff(t) j t 2 Tg 2 I(R) of the set T
by the function f is called the range of f (over T ). If f 2 CM (T ), then for the
range of f we have either f(T ) = [f(t(�)); f(t(+))] or f(T ) = [f(t(+)); f(t(�))]
depending on the type of monotonicity. To every f 2 CM (T ) corresponds a
binary variable �f = � (f ;T ) 2 �, which determines the type of monotonicity of
f by

� (f ;T ) =

�
+; f(t�) � f(t+);
�; f(t�) > f(t+):

For f; g 2 CM (T ), the equality �f = �g means that the functions f; g are both
isotone (nondecreasing) or are both antitone (nonincreasing) in T ; �f = ��g
means that one of the functions is antitone and the other is isotone. Let CM (T )�

be the set of all functions fromCM (T ) which do not change sign in T . Obviously,
if f 2 CM (T )�, then jf j 2 CM (T )� as well and the notation �jfj = � (jf j;T )
makes sense. Since the ranges are proper intervals, we may perform interval
arithmetic manipulations over them.
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Proposition4. Let f; g 2 CM (T ). For X � T we have
i) if f + g 2 CM (T ), then (f + g)(X) = f(X) +�f �g g(X),
ii) if f � g 2 CM (T ), then (f � g)(X) = f(X) ���f �g g(X).

Let f; g 2 CM (T )�. For X � T :
iii) if fg 2 CM (T ); then (fg)(X) = f(X) ��jfj�jgj g(X),
iv) if f=g 2 CM (T ); g(x) 6= 0; 8x 2 T; then (f=g)(X) = f(X)=��jfj�jgjg(X).

If f is continuous in X 2 I(R), then minx2Xf(x), maxx2Xf(x) do exist.
Assuming further that the interval X is �xed, we shall shortly write minf , resp.
maxf . Let f; g be continuous in X. We have:
i) minf +ming � min(f + g), max(f + g) � maxf +maxg;
ii) min(f + g) � minf + maxg � max(f + g), min(f + g) � maxf + ming �
max(f + g).

This implies that the interval (f + g)(X) = [min(f + g);max(f + g)]:
i) is contained in the interval with endpoints minf +ming, maxf +maxg, that
is in the interval f(X) + g(X);
ii) contains the interval with endpoints minf +maxg, maxf +ming, that is the
interval f(X) +� g(X).

Symbolically, we obtain f(X) +� g(X) � (f + g)(X) � f(X) + g(X). Using
similar arguments for the rest of operations we obtain:

Proposition5. Let the functions f; g be continuous in T 2 I(R). For � 2
f+;�;�; =g and for every X � T;X 2 I(R) we have f(X) �� g(X) � (f �
g)(X) � f(X) � g(X). (For "/" we additionally assume that g does not vanish
in T .)

The above proposition shows that the outer operations are convenient for
the computation of outer inclusions, whereas the inner interval operations may
serve for the computation of inner inclusions. Examples for the use of inner
interval operations can be found in [Bartholomew-Biggs and Zakovich 1994],
[Dimitrova and Markov 1994], [Markov 1979], [Markov 1980], [Markov 1993],
[Nesterov 1993], [Schr�oder 1981], [Stetter 1990].

We shall now formulate an analogue of Proposition 4 for directed intervals.
We �rst de�ne directed range by admitting improper intervals as arguments:

De�nition. Let T 2 I(R), f 2 CM (T ). Let X = [x�; x+] 2 D, pro(X) � T .
The directed range of f over X is the directed interval f(X) = [f(x�); f(x+)].

Proposition6. Let f; g 2 CM (T ). For X 2 D, pro(X) � T , we have
i) if f + g 2 CM (T ), then (f + g)(X) = f(X) + g(X);
ii) if f � g 2 CM (T ), then (f � g)(X) = f(X) � g(X)�.

Let f; g 2 CM (T )�. For X 2 D, pro(X) � T
iii) if fg 2 CM (T ), then (fg)(X) = f(X)�(g(X)) � g(X)�(f(X)) ;
iv) if f=g 2 CM (T ); 0 62 g(X), then (f=g)(X) = f(X)�(g(X))=g(X)��(f(X)) .

In the last two expressions �(f(X)) means the sign of the interval f(X) 2
I(R)� (we can equally well write either �(f(X)) or �(f(X)). For example, we
have g(X)�(f(X)) = fg(X), if f � 0; (g(X))�, if f � 0g.

Proposition 6 gives the direction of the resulting intervals, and therefore sup-
plies additional information (compared to Proposition 4) for the type of mono-
tonicity (isotonicity or antitonicity) of the result f � g; � 2 f+;�;�; =g.
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The propositions in this section can be incorporated in algorithms for auto-
matic computation of inner and outer inclusions of ranges of functions and their
derivatives. Such algorithms should use a suitable environment supporting the
interval arithmetic system K, resp. its subsystem M.

6 Conclusion

We have shown that the set I(R) 
 f+;�g of directed intervals can be used to
establish a practical relation between the interval arithmetic I(R) and its alge-
braic completionD, considered by E. Kaucher. Moreover, this relation generates
the inner arithmetic operations in the set of proper intervals I(R), which have
proved to be useful for the computation of functional ranges and for the inter-
pretation of algebraic results obtained in D by means of proper intervals, which
are proper projections of directed intervals.
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