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Abstract: We develop a formal account of digit serial number representations by
describing them as strings from a language. A pre�x of a string represents an interval
approximating a number by enclosure. Standard on-line representations are shown to
be a special case of the general digit serial representations. Matrices are introduced as
representations of intervals and a �nite-state transducer is used for mapping strings into
intervals. Homographic and bi-homographic functions are used for representing basic
arithmetic operations on digit serial numbers, and �nally a digit serial representation
of 
oating point numbers is introduced.
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1 Introduction

A number is usually represented as a string of digits belonging to some digit
set �. The number representation speci�es a function that maps the string to
its value. In the context of this paper a digit serial number representation will
be a representation, that will allow us to gradually calculate the value of a
number, by starting with an empty string and then iteratively calculate better
approximations of the number, from increasingly longer pre�xes of the string. A
pre�x of a string represents an approximation of the number, with an associated
variance. The variance is determined by the possible extensions of the pre�x, and
the pre�x can be thought of as a representation of an interval that includes the
number being approximated. Concatenating the next digit of the string to the
pre�x, yields a more precise representation of the number, and will e�ectively
narrow down the variance interval. When the whole string has been constructed
by successive concatenation (if the string is �nite and terminated), the interval
will have been narrowed down to a degenerate interval of length zero, i.e. the
value of the number. In�nite strings represent computable reals as limits of
contracting intervals. A pre�x of zero length is a pre�x of any number, and has
an associated variance interval, with endpoints determined by the largest and
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smallest representable numbers, this interval will be denoted as the total variance
interval.

In this paper we will take a formal language approach to describing digit
serial operands (e.g. operands are taken to be strings over some alphabet), with
this approach the mapping from strings to intervals can be described by means of
a �nite-state transducer. In [Section 2] we develop a formal account of digit serial
number representations, digit serial computable functions and the relation to the
equivalent on-line de�nitions. In [Section 3] a computational model for a function
of one variable, based on a matrix representation is developed. In [Section 4],
this model is generalized to a cube structure, capable of modelling a function of
two variables. In [Section 5] we introduce a representation of digit serial 
oating
point numbers, thereby expanding the set of representable numbers, and discuss
normalization problems in on-line and digit serial computation.

2 Digit Serial Representations of Numbers

We will now develop a formal account of digit serial number representations.

De�nition1. Digit Serial Number Representation
Let � be a digit set (�nite or in�nite), � a terminal symbol, II the set of in-
tervals with endpoints in IR, and ' : S ! II is a function mapping a string
from S = �� [ �+ � f�g to its associated interval. Then the tuple (�; �; ') is
called a digit serial number representation if it obeys the following axioms:

(Contraction axiom)

8s 2 S : (x < s) ^ (y < s) ^ (kxk < kyk) : '(x) � '(y) � '(s)

(Limit axiom)

8s 2 �� : lim
kxk!1;x<s

�('(x)) = 0

(Extensibility axiom)

If y 2 �� and a 2 '(y) then 9d 2 � : a 2 '(y � d)

(Termination axiom)

8s 2 �+ : �('(s � � )) = 0

Here x < s denotes that x is a pre�x of the string s, � symbolizes the empty
string, '(�) is the total variance interval, kxk denotes the length of the string x,
and the interval norm function � : II! IR is de�ned below.

We will allow intervals of the form [p1; p2] where p1 > p2 speci�es an interval
that include both plus and minus in�nity. If p1 = p2 the interval is a degen-
erate interval representing a point. An ordinary interval will be designated by
the symbol Inormal , and the type that includes plus and minus in�nity by the
symbol I1. In order to treat 1 as any other number, we use the stereographic
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Figure 1: Stereographic representation of IR.

representation of the real line as de�ned in [Vuillemin 90 ] [see Fig. 1]. With this
representation minus and plus in�nity are treated as one point, and the interval
j x j> 1 is the upper part of the circle, and the reciprocal of this interval (e.g.
j x j< 1) is the lower part. We will adopt an alternative de�nition of the width
of an interval [x; y] by taking � : II ! IR to be the length of the cord joining
�(x) and �(y). With this de�nition it is possible for an interval including in�nity
to have �nite length, making the limit axiom attainable in such special cases.
Notice also that with this distance function it is possible to extend the concept
of continuity for functions de�ned on intervals of the form I1.

Many well known number representations can indeed be placed within the
digit serial number representation framework.

Example 1. Redundant Binary Fixed-Point Numbers.
Let � = f�1; 0; 1g, and de�ne ' as:

'(d1 � d2 � � �dk) = [�2�k +
Pk

i=1 di2
�i; 2�k +

Pk

i=1 di2
�i]

'(d1 � d2 � � �dn � � ) = [
Pn

i=1 di2
�i;

Pn

i=1 di2
�i]

'(�) = [�1; 1]

Notice that the termination symbol could alternatively be de�ned as an in�nite
string of zeros.

Example 2. Continued Fractions.
Let � = IN+. The continued fraction pk

qk
= a1 +

1
a2+���

1
ak

can be calculated

by the convergent recurrence de�ned by: p0 = q�1 = 1, p�1 = q0 = 0, pk =
akpk�1+pk�2 and qk = akqk�1+qk�2, where ck =

pk
qk

is the k'th convergent. From
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the theory of continued fractions it is known that odd numbered convergents are
smaller than even numbered convergents, thus we can de�ne ' as:

'(a1 � a2 � � �a2k) =
h
p2k+p2k�1
q2k+q2k�1

; p2k
q2k

h
'(a1 � a2 � � �a2k+1) =

i
p2k+1
q2k+1

;
p2k+1+p2k
q2k+1+q2k

i
'(�) = [1;1[.

The endpoints of the interval are calculated by letting the next digit to be seen
take on its smallest and largest possible value, i.e. one and in�nity. The termi-
nation symbol could be de�ned as an in�nite string of in�nity symbols. Notice
that since only positive terms are allowed, this number system is not redundant,
if negative terms are allowed (� = ZZ) we will have redundant continued frac-
tions, as is easily seen from the following example: The rational number 2

7 can

be expressed as 1
3+ 1

2

or 1
4+ 1

�2

.

Some functions will enable us to compute the value of the function in a digit
serial manner.

De�nition2. Digit Serially Computable Function.
A function f : IR! IR is Digit Serially Computable on the interval I � '(�), for
a digit serial number representation (�; �; ') if

8x 2 I : f(x) � '(�),

and for all in�nite strings x 2 ��, with '(x) � I, there exists an in�nite string
y = y1y2y3 � � � 2 �

� such that

f('(x)) = '(y), and
8p > 0 : 9u : u < x : f('(u)) � '(y1y2 � � � yp)

Notice that with this de�nition, we may have to read an arbitrary number of
input digits between the generation of two output digits, thus the output delay
can be arbitrarily large, that is the output is not synchronized with the input.
It is well known that for special number representations, we can for certain
functions compute the output digits with a constant output delay of one, once
the �rst output digit has been computed, i.e. the output is synchronized with
the input.

De�nition3. On-Line Computable Function.
A function f : IR ! IR is On-Line Computable on the interval I � '(�), for
a digit serial number representation (�; �; ') i� there exists an integer � such
that:

8x 2 I : f(x) � '(�)

and 8x = x1x2x3 � � � 2 �
�, with '(x) 2 I, then for all p � 1 we have:

f('(x1x2 � � �xp+��1)) � '(y1y2 � � � yp�1)

+

9yp 2 � : f('(x1x2 � � �xp+�)) � '(y1y2 � � �yp)

The integer � is de�ned as the On-Line Delay.
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Theorem4. Any function that is Digit Serially Computable on an interval I,
is continuous2 on this interval.

Proof. Let x = '(r) 2 I and y = f(x) = '(s), with r = x1x2 � � � 2 �� and
s = y1y2 � � � 2 ��. Given any � > 0, we can by the limit axiom, chose a p such
that

�('(y1y2 � � �yp)) < �

then by the de�nition of digit serial computability we have

9u < r : f('(u)) � '(y1y2 � � �yp):

Now take v 2 '(u) and since x 2 '(u) we conclude:

�([x; v]) � �('(u)) = �

for some � > 0. Since f(v); f(x) 2 f('(u)) we likewise conclude:

�([f(x); f(v)]) � �(f('(u)) � �('(y1y2 � � �yp) < �:

Thus
8� > 0 : 9� > 0 : �([x; v]) < � ) �([f(x); f(v)]) < �

hence f is continuous on I.

Note that the class of On-Line computable functions is a subclass of the
digit serially computable functions, thus an On-Line computable function is also
continuous, as stated in [Duprat, Herreros and Muller 89 ]. It is straightforward
to generalize the de�nition of digit serial and on-line computability to functions of
two variables. Such functions are of paramount importance, since these functions
include dyadic operations like addition and multiplication. When generalizing
the de�nitions to two variables, we have the choice of requiring synchronization
between the input variables, as is the case with on-line computable functions, or
not to require synchronization. Thus there are three basic classes of MSB-�rst
digit serial algorithms, the most general being the class where no synchronization
is enforced, a less general subclass where the input is synchronized and the third
subclass containing algorithms with both input and output synchronized. The
following theorem proves the converse statement, of that formulated in [Theorem
4], but for a function of two variables.

Theorem5. If the function f : IR2 ! IR is continuous on the domain Ix � Iy,
and if for all x 2 Ix and y 2 Iy we have f(x; y) 2 '(�), then f is digit serially
computable for any Digit Serial Number Representation.

Proof. Let x; y 2 �� be two in�nite strings, with '(x) 2 Ix and '(y) 2 Iy . By
extensibility we conclude that there exists an in�nite string z = z1z2z3 � � � 2 ��

such that f('(x); '(y)) = '(z). Because of the contraction axiom,we must have:

'(z1) � '(z1z2) � � � � � '(z1z2 � � �zp) � � � � � '(z)

and since x < x and y < y we get by the continuity of f :

8p > 0 : 9u < x ^ 9v < y : f('(u); '(v)) � '(z1z2 � � � zp):

Thus f is digit serially computable.

2 Continuity is here de�ned in terms of the stereographic distance measure �.
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The following algorithm describes how to compute the output of a function in a
digit serial manner. The notation: BooleanExpr1 : ExprSeq1[]BooleanExpr2 :
ExprSeq2; means if only one of the boolean expressions are true then execute the
corresponding statement sequence. If both expressions are true, then according
to some rule execute one or both statement sequences. Such a rule might be:
Select one of the sequences nondeterministically, or alternatively: Execute both
in parallel.

Algorithm1. Basic Digit Serial Function Evaluation.

Stimulus: f : IR2 ! IR, x; y 2 �� � f�g, n 2 IN.
Response: z 2 �n [�� � f�g.
Method: p 1;

i; j  0;
while p � n and f('(x1 � � �xi); '(y1 � � �yj)) 6= '(z1 � � �zp�1 � � ) do

if 9zp 2 � : f('(x1 � � �xi); '(y1 � � �yj)) � '(z1 � � �zp) then
output zp;
p p+ 1;

else
xi 6= � : i i + 1; xi  input from x

[]
yj 6= � : j  j + 1; yj  input from y

end;
end;
if f('(x1x2 � � �xi); '(y1y2 � � �yj)) = '(z1z2 � � �zp�1 � t) then

output � ;
end;

2

It is well known that a redundant representation is necessary for a function
in general to be on-line computable. The following theorem formalizes the on-
line property for the signed-digit radix two representation, and can easily be
generalized to other redundant radix representations.

Theorem6. If the function f : IR2 ! IR is digit serially computable for the
signed-digit radix two representation with � = f�1; 0; 1g on the domain I =
Ix � Iy, where Ix and Iy are of the interval type Inormal , and if the partial
derivatives of f are bounded on this domain, then there exists a �nite integer
constant: � such that f is on-line computable with on-line delay �.

Proof. Suppose that the p � 1 most signi�cant digits of z = f(x; y) have been
calculated from x1; x2; : : : ; xp�1+� and y1; y2; : : : ; yp�1+� such that

f('(x1x2 � � �xp�1+�); '(y1y2 � � �yp�1+�)) � '(z1z2 � � �zp�1)

De�ne the domain D = [a; b]� [c; d] � I by:

a = 0:x1x2 � � �xp�1+�xp+��1�1�1 : : : = �2
�p�� +

p+�X
i=1

xi2
�i
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b = 0:x1x2 � � �xp�1+�xp+�111 : : := 2�p�� +

p+�X
i=1

xi2
�i

c = 0:y1y2 � � �yp�1+�yp+��1�1�1 : : : = �2
�p�� +

p+�X
i=1

yi2
�i

d = 0:y1y2 � � �yp�1+�yp+�111 : : := 2�p�� +

p+�X
i=1

yi2
�i:

The possible variation of f(x; y) within D is easily estimated by:

jfmax � fminj =

���� max
(x;y)2D

ff(x; y)g � min
(x;y)2D

ff(x; y)g

����
� jb� aj max

(x;y)2I

�����@f(x; y)@x

����
�
+ jd� cj max

(x;y)2I

�����@f(x; y)@y

����
�

= 2�p��+1
�

max
(x;y)2I

�����@f(x; y)@x

����
�
+ max

(x;y)2I

�����@f(x; y)@y

����
��

Take � �
l
log2

�
max(x;y)2I

n���@f@x ���o+max(x;y)2I

n���@f@y ���o�m + C, where C is a

positive integer constant. Since � is an integer we get:

2��C �

�
max
(x;y)2I

�����@f@x
����
�
+ max

(x;y)2I

�����@f@y
����
��

and if C � 1 we get jfmax � fminj � 2�p. Now

f('(x1 � � �xp+�); '(y1 � � �yp+�)) � f('(x1 � � �xp�1+�); '(y1 � � �yp�1+�))

� '(z1 � � �zp�1)

=

"
�2�p+1 +

p�1X
i=1

zi2
�i; 2�p+1 +

p�1X
i=1

zi2
�i

#

Consulting [Fig.2] immediately leads to the conclusion that no matter where
the interval f('(x1 � � �xp+�); '(y1 � � �yp+� )) is placed within '(z1 � � �zp�1) there
exists a zp 2 � such that

f('(x1 � � �xp+�); '(y1 � � �yp+�)) � '(z1 � � �zp):

Since the function is digit serially computable, for p = 1 we have that

f('(x1 � � �xp+�); '(y1 � � �yp+�)) � '(�) = [�1; 1]

=

"
�2�p+1 +

p�1X
i=1

zi2
�i; 2�p+1 +

p�1X
i=1

zi2
�i

#

with a similar argument as the one used above, we may conclude that in the base
case p = 1 we can �nd a z1 such that f('(x1 � � �x�+1); (y1 � � �y�+1) � '(z1). Thus
if �+1 input digits have been consumed from input x and y, an output digit can
be derived in each subsequent iteration, that is f(x; y) is on-line computable.
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Figure 2: The variation of the output (z = f(x;y)).

[Theorem 6] tells us, that for radix two with � = f�1; 0; 1g we can modify
[Algorithm 1] to withhold production of output digits until � + 1 input digits
have been read from inputs x and y, and in the subsequent iterations one output
digit is generated whenever one input digit is consumed from both operands,
this modi�ed algorithm will be an on-line algorithm. This basic algorithm can
intuitively be brought to compute the output of an on-line computable function,
with an on-line delay that is equal to the theoretical lower bound.

3 Homographic Matrix Coding

As discussed, digit serial numbers can e�ectively be described with the aid of
intervals. In this section we will show, that the intervals corresponding to a digit
string can be represented by matrices.

Notation7. Interval-matrix and Matrix-interval Homomorphism.

An interval matrix A =

�
p s
q t

�
p; q; r; s 2 ZZ , is a matrix representing an interval:

�(A), with endpoints p

q
and s

t
, where the homomorphism � : IM2�2 ! II is

dependent on the representation. In some cases it is su�cient to de�ne � as

�(A) =

�
p

q
;
s

t

�

Notation8. Digit-set Isomorphism.
Let � : �[f�; �g ! �M [fT;Eg be an isomorphism that maps digits, an empty
string or the termination symbol into 2� 2 matrices. T = �(� ) is denoted as the
termination matrix and E = �(�) as the total variance matrix.

For a speci�c digit serial representation, it is now possible to construct a
matrix product representation of a digit serial number.
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De�nition9. Homographic Matrix-coding.
If (�; �; ') is a digit serial number representation, � a digit-set isomorphism, and
� a matrix-interval homomorphism, then C = (�; �; �) is a homographic matrix
coding if the following is obeyed:

�(E) = '(�) , and
If �(EX1X2 � � �Xp) = '(x1x2 � � �xp) , xi 2 � and Xi = �(xi) for i =
1; 2; : : : ; p, then

�(EX1X2 � � �XpD) = '(x1x2 � � �xpd)

and
�(EX1X2 � � �XpT ) = '(x1x2 � � �xp� )

where d 2 �, D = �(d).

The termination matrix acts in the same way as the termination symbol, in
the sense that it turns some interval matrix into an interval matrix representing
a degenerate interval.

Example 3. Continued Fractions (� = IN+; '(�) = [1;1[)

�
pk + pk�1 pk
qk + qk�1 qk

�
=

�
akpk�1 + pk�2 + pk�1 akpk�1 + pk�2
akqk�1 + qk�2 + qk�1 akqk�1 + qk�2

�

=

�
pk�1 + pk�2 pk�1
qk�1 + qn�2 qk�1

� �
1 1
ak ak � 1

�

=

�
p0 + p�1 p0
q0 + q�1 q0

��
1 1
a1 a1 � 1

�
� � �

�
1 1
ak ak � 1

�

=

�
1 1
1 0

� �
1 1
a1 a1 � 1

�
� � �

�
1 1
ak ak � 1

�
= EA1A2 � � �Ak:

Now taking the termination matrix as: T =

�
0 0
1 1

�
we see that Ccf = (�; �; �) is

a homographic matrix coding, where �(ai) = E�1

�
ai 1
1 1

�
E =

�
1 1
ai ai � 1

�
. The

matrix-interval homomorphism �, is as de�ned previously, but with the end-
points interchanged when k is odd. Note that the convergents can be computed
as: �

pn pn�1
qn qn�1

�
=

�
pn�1 pn�2
qn�1 qn�2

� �
an 1
1 0

�
=

�
a1 1
1 1

� �
a2 1
1 1

�
� � �

�
an 1
1 1

�
:

Example 4. Redundant Binary Fixed-Point Numbers. (� = f�1; 0; 1g; '(�) =
]� 1; 1[)
It is easily veri�ed that choosing � in the following way makes Cfp = (�; �; �)
a homo-graphic matrix coding:

�(�) = E =

�
�1 1
1 1

�
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�(b) = 2E�1

�
1 b
0 2

�
E =

�
�b+ 3 �b+ 1
b+ 1 b+ 3

�
for all b 2 �

�(t) = T =

�
1 1
1 1

�
.

Note that the sum pn
qn

=
Pn

i=1 bi2
�i can be computed as:�

1 pn
0 qn

�
=

�
1 bn + 2pn�1
0 2qn�1

�
=

�
1 pn�1
0 2qn�1

� �
1 bn
0 2

�
=

�
1 b1
0 2

�
� � �

�
1 bn
0 2

�
:

In this paper we have taken a formal language approach, when describing
the behaviour of digit serial arithmetic, it therefore falls natural to implement
the generation of the appropriate transformations as a �nite-state transducer.
The automaton acts as a translator in the sense, that it translates input symbols
into matrices, in such a way that when these matrices are multiplied in the order
they are received, the product will be an interval matrix representing the interval
corresponding to the input string. From the transformations and the knowledge
of how one symbol can proceed another symbol, a state table can be constructed.

Example 5. Finite-state Transducer for Redundant Base 2 Fixed-Point Digit-
Serial Numbers.
A table [see Tab. 1] can be constructed from the previously developed transfor-
mations, based on this table a �nite-state transducer can be devised [see Fig. 3].

State Symbol Next-state (�;�;
; �) Interval Type

Start � Fraction (�1; 1; 1; 1) Inormal

Fraction �1 Fraction (4; 2; 0; 2) Inormal

0 Fraction (3; 1; 1; 3) Inormal

1 Fraction (2; 0; 2; 4) Inormal

� Terminated (1; 1; 1; 1) point

Terminated � Terminated (1; 0; 0; 1) point

Table 1: Transition/output table for redundant base 2 �xed-point digit-serial numbers.

The table describes the translation of an operand in the form of a digit string
into a sequence of matrices. The operand has a state variable, initially assigned
the state labeled start, associated with it. Digits are read one by one from the
operand, upon reading the symbol s, produce the transformation matrix corre-
sponding to the symbol s in the present state. When the matrix multiplication
has been completed move to the state designated by next-state. The column la-
beled interval type conveys information about how the interval matrix generated
by the subsequent matrix multiplications is to be interpreted, Inormal designates
an ordinary interval that does not include both plus and minus in�nity, point
designates a degenerate interval representing a point.
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Figure 3: State machine for radix 2 �xed-point numbers.

We now investigate how to compute the output of a function of the form: f(x) =
ax+b
cx+d in a digit serial manner. The parameters a; b; c; d 2 ZZ are chosen such that

f is digit serially computable. Evaluating the function at a point x = p

q
yields

f(p
q
) =

a
p

q
+b

c
p

q
+d = ap+bq

cp+dq , and equivalently for x = s
t
we get f( s

t
) = as+bt

cs+dt . Now since

the function is monotonic (assumed increasing), when evaluating the function

on the interval [p
q
; s
t
] we get a new interval [ap+bq

cp+dq ;
as+bt
cs+dt ]. This computation can

e�ectively be modeled by matrix multiplication.

De�nition10. Homographic Function Matrix

The matrix F =

�
a b
c d

�
a; b; c; d 2 ZZ, is de�ned as a matrix representation

of the digit serially computable function f(x) = ax+b
cx+d , in the sense that if

�(EX1X2 � � �Xp) = '(x1x2 � � �xp) then �(FEX1X2 � � �Xp) = f('(x1x2 � � �xp))

Notice that F is de�ned in such a way that multiplying from the right with
an interval matrix yields a new interval matrix. That is

FA =

�
a b
c d

� �
p s
q t

�
=

�
ap+ bq as + bt
cp+ dq cs + dt

�
: (1)

Furthermore if F;G are matrices representing the functions f and g, then FG
represents f � g and F�1 represents f�1.

Since the two di�erent ways of representing digit serial numbers are equiv-
alent, it is straightforward to state analogous de�nitions and proofs to those of
[Section 2] in terms of a homographic matrix coding. For instance the condition
f('(x1x2 � � �xi)) � '(y1y2 � � �yp) can be stated as:

�(FEX1X2 � � �Xi) � �(EY1Y2 � � �Yp) (2)

Observation11. Let F be a function matrix representing a function that is
continuous and monotone on an interval represented by the matrix B, then
�(A) � �(B)() �(FA) � �(FB)

537



Assuming 3 that for all Yj 2 �M we have that Y �1
j represents a function

that is continuous and monotone on the interval represented by �(Yj � � �Yp),
and similarly assume that E�1 represents a continuous monotone function on
the interval �(E). From (2) and [Observation 11] we arrive at:

�(Y �1
p�1 � � �Y

�1
2 Y �1

1 E�1FEX1X2 � � �Xi) � �(Yp): (3)

Similarly the termination test: f('(x1x2 � � �xi) = '(y1y2 � � �yp�1�t) can be stated
as:

�(Y �1
p�1 � � �Y

�1
2 Y �1

1 E�1FEX1X2 � � �Xi) = �(T ): (4)

Thus an algorithm for computing f(x) in some point x = '(x1x2 � � �xnt), could
proceed as follows: Let F be the function on matrix form. Transform the function
matrix as: F  E�1FE. Consume input by setting: F  FXi, and when
possible produce output by F  Y �1

p F . Where Xi = �(xi) and Yi = �(yi).
An algorithm based on an automaton could alternatively be used, by assign-

ing a state variable to both the input and output variable. In the case of input,

upon receiving the symbol s do the multiplication F

�
� �

 �

�
with the matrix cor-

responding to the symbol s in the present state, then move to the next state.
When performing output, we �rst need to check if output can be generated. This
is done by checking if for any of the symbols in the present state we have:�

�



;
�

�

�
� �(F ):

If this holds for some symbol then the symbol is output, and the multiplication�
� ��
�
 �

�
F

is performed. The range of the function evaluated on the interval corresponding
to the pre�x of the operand that has been seen so far (speci�ed by �(F )), can
be computed by knowing the interval type of the operand, and by the knowl-
edge of whether the function is monotonically increasing or decreasing, which is
computable from the sign of the determinant of F .

4 The Cube

In this section we consider how to evaluate a function of two variables. The
collective variance associated with two variables is a Cartesian product of two
intervals. The variance of the function amounting from evaluating the function in
all points of the domain will be characterized by a surface in IR3. In the following
we will consider a generalization of the homographic function f(x) = ax+b

cx+d to a

similar function of two variables (a bi-homographic function):

f(x2; x1) =
a111x2x1 + a101x2 + a011x1 + a001
a110x2x1 + a100x2 + a010x1 + a000

, ai 2 ZZ (5)

3 This is indeed not an unrealistic assumption, as readily veri�ed from the previous
examples.
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With an appropriate choice of coe�cients in (5), the function can compute the
standard arithmetic operations x+ y, x� y, x � y and x=y.

A matrix representation will not su�ce for a function of two variables, but
as we will show, such a function can be represented by a cube [see Fig. 4].
This type of computational unit, has been examined for non-redundant as well
as redundant continued fraction representations in [Kornerup and Matula 85,
Kornerup and Matula 88, Kornerup and Matula 89, Kornerup and Matula 90],
based on an algorithm developed by Gosper in [Gosper 72].

R

-

6

a000

a010

a100

a110

a001

a011

a101

a111

Figure 4: Cube modelling a function of two variables.

If we evaluate f(x2; x1) on the endpoints of an interval de�ned by x1 2
[p1;1
q1;1

;
p1;0
q1;0

] (respectively x2 2 [
p2;1
q2;1

;
p2;0
q2;0

]) we get:

f(x2; x1 =
p1;b1
q1;b1

) =
(a111p1;b1 + a101q1;b1)x2 + (a011p1;b1 + a001q1;b1)

(a110p1;b1 + a100q1;b1)x2 + (a010p1;b1 + a000q1;b1)
, b1 2 IB

(6)
respectively

f(x2 =
p2;b2
q2;b2

; x1) =
(a111p2;b2 + a011q2;b2)x1 + (a101p2;b2 + a001q2;b2)

(a110p2;b2 + a010q2;b2)x1 + (a100p2;b2 + a000q2;b2)
, b2 2 IB:

(7)
The updating taking place in equations (6) (respectively (7)) can be described
by the following matrix multiplications:

F1xxX1 =

�
a111 a101
a110 a100

� �
p1;1 p1;0
q1;1 q1;0

�
=

�
a0111 a

0
101

a0110 a
0
100

�
= F 0

1xx: (8)

F0xxX1 =

�
a011 a001
a010 a000

� �
p1;1 p1;0
q1;1 q1;0

�
=

�
a0011 a

0
001

a0010 a
0
000

�
= F 0

0xx (9)
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respectively:

Fx1xX2 =

�
a111 a011
a110 a010

� �
p2;1 p2;0
q2;1 q2;0

�
=

�
a0111 a

0
011

a0110 a
0
010

�
= F 0

x1x (10)

Fx0xX2 =

�
a101 a001
a100 a000

� �
p2;1 p2;0
q2;1 q2;0

�
=

�
a0101 a

0
001

a0100 a
0
000

�
= F 0

x0x (11)

The matrices F1xx and F0xx (respectively Fx1x and Fx0x) can be found as
faces of the cube [see Fig. 5]. With this computation model it is now straight
forward to expand the interval matrices X1 (respectively X2) in terms of the
homographicmatrix coding developed in [Section 3]. For instance we can expand
X1 as EX1;1X2;1 � � �Xn;1, with Xi;1 2 �M . Thus the process of consuming
input from an operand, corresponds to performing two matrix multiplications in
parallel.

a000

a010

a100

a110

a001

a011

a101

a111

a000

a010

a100

a110

a001

a011

a101

a111

(a) (b)

Figure 5: Input transformation. (a) Input from variable x1. By decomposing the cube
we get 2 matrices F1xx and F0xx. (b) Input from variable x2. Decomposition yields the
matrices Fx1x and Fx0x

Observation12. If the function f(x2; x1), modeled by the cube F , is evaluated
on the domain: ]p1;1

q1;1
;
p1;0
q1;0

[�]p2;1
q2;1

;
p2;0
q2;0

[, then the value of the function evaluated

on a corner of the domain, can be found from F as:

f(x2 =
p2;b2
q2;b2

; x1 =
p1;b1
q1;b1

) =
ab2b11
ab2b10

, b1; b2 2 IB

In the process of transforming the cube during input, we perform two matrix
multiplications, and we are thus faced with a notational problemwhen we want to
state a matrix equivalent output equation. To overcome this problem we will use
the symbols 
1 (respectively 
2) to denote the in�x operator that performs two

540



matrix multiplications: F1xxX1 and F0xxX1 (respectively Fx1xX2 and Fx0xX2),
when consuming input from x1 (respectively x2). We will use a braced notation
to denote input transformation from both variables according to some order.
In order to compare the cube, evaluated on a domain, against an interval, we
introduce a function �C : cube! II that maps a cube into an interval, as de�ned
by:

�C

�
F

�

1EX1X2 � � �Xi


2EY1Y2 � � �Yj

��
= f('(x1x2 � � �xi); '(y1y2 � � �yj)): (12)

Thus the condition f('(x1x2 � � �xi); '(y1y2 � � �yj)) � '(z1z2 � � �zp) can be
stated as:

�C

�
F

�

1EX1X2 � � �Xi


2EY1Y2 � � �Yj

��
� �(EZ1Z2 � � �ZP ): (13)

In [Section 3], output generation for the one-dimensional case was established
as multiplyingwith the inverse of a matrix from�M . This process was equivalent
to function composition, as it will be in the case of two variables. Let F be a

cube modeling the function f : IR2 ! IR, and let G =

�
� �

 �

�
be a matrix that

represents a function g : IR! IR. The composition g � f : IR2 ! IR is:

(g � f)(x2; x1)

=
�f(x2; x1) + �


f(x2; x1) + �

=
(�a111 + �a110)x2x1 + (�a101 + �a100)x2 + (�a011 + �a010)x1 + (�a001 + �a000)

(
a111 + �a110)x2x1 + (
a101 + �a100)x2 + (
a011 + �a010)x1 + (
a001 + �a000)

=
a0111x2x1 + a0101x2 + a0011x1 + a0001
a0110x2x1 + a0100x2 + a0010x1 + a0000

:

The transformation is clearly equivalent to the matrix multiplications GF1xx
and GF0xx or GFx1x and GFx0x, thus in the case of output we have a choice
between two possible ways of expressing the output transformation.

Assuming as in [Section 3], that X�1
l , Y �1

m and E�1 represents continuous
monotone functions, we may transform (13) into:

�C

�
Z�1p�1 � � �Z

�1
2 Z�11 E�1 
1 F

�

1EX1X2 � � �Xi


2EY1Y2 � � �Yj

��
� �(ZP ): (14)

Similarly by replacing Zp with T , and inclusion by equality in (14) we get the
cube equivalent equation of the termination test: f('(x1x2 � � �xi); '(y1y2 � � �yj) =
'(z1z2 � � �zp�1� ).

Thus an algorithm for computing f(x; y) at some point ('(x1x2 � � �xn� );
'(y1y2 � � �ym� )), could proceed as follows: Let F be the cube representation of
the function f . Transform the function matrix as: F  E�1 
1 F , F  F 
1 E
and �nally F  F 
2 E . Consume input from x by setting: F  F 
1 Xi,
similarly from y by F  F 
2 Yj . When possible produce output by F  
Z�1p 
1 F .
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As described in [Section 3], an algorithm based on a �nite-state transducer
can be devised, with the di�erence that we will have to perform cube transfor-
mations rather that simple matrix multiplications, and that we now have two
input variables instead of one, each having an associated state variable. In the
case of input consumption from variable i, the table is to be interpreted as: Upon
receiving a symbol s, perform the cube transformation

F 
i

�
� �

 �

�

with the matrix corresponding to the symbol s in the present state, when the
transformation has been completed move to the state designated by next-state.
When performing output, we �rst need to check if output can be generated. This
is done by checking if for any of the symbols in the present state we have:�

�



;
�

�

�
� �C(F )

if this holds for some symbol then the symbol is send to the output, and the
cube transformation �

� ��
�
 �

�

1 F

is performed. The range of the function on some domain (speci�ed by �C(F )),
can be found by examination of the function evaluated on the boundary of the
domain if the function is monotone with respect to each variable on this domain.
The domain has 4 edges that can be treated independently. The function values
at the endpoints of these 4 intervals can be found in the cube, and the interval
type can be resolved by knowing the interval type of the operand that is not
constant along the edge under consideration, and by examining whether or not a
sign change in the denominator occurs along the edge, this is again computable
from the cube.

5 Digit Serial Floating Point Operands

If the operand of some function has a �xed point format, the set of repre-
sentable number will be very limited, if a larger set is needed we can tag in-
formation about the position of the radix point onto the operands. In tradi-
tional on-line algorithms this is done by coupling exponent information to the
�rst digit of the mantissa part, where the mantissa part is to be kept quasi-
normalized, in the sense that the two �rst digits should have the same sign,
and the �rst digit can not take on the value zero [Watanuki and Ercegovac 81,
Watanuki and Ercegovac 83, Owens 83]. A problem with this type of normaliza-
tion is that in certain computations cancellation might occur (e.g. if two almost
equal numbers are subtracted), requiring extensive normalisation. If this com-
putation is feeding another computation unit, the other units delivering input
to the same computation unit will have to delay their output, in order to keep
the input to the unit synchronized [see Fig. 6]. Thus the set of representable
numbers have been enlarged, at the expense of a variable output delay, due to
possible normalization requirements.
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Figure 6: Computation requiring bu�ering.

We will now show how a 
oating point can be introduced in the redundant
binary �xed point number representation considered in [Section 3] and [Section
4]. We will require normalization of the form:

b0b1 � 0 ^ b0 6= 0; (15)

such that the mantissa part can represent any number in the intervals de�ned
by:

'(1) = [1:0�1�1�1 : : : ; 1:1111 : : :] = [
1

2
; 2] (16)

'(�1) = [�1:�1�1�1 : : : ; �1:0111 : : :] = [�2;�
1

2
]

We introduce two new symbols l and u in order to specify negative, respectively
positive valued exponents. If the mantissa part is preceded by n symbols of
the u type respectively the l type, then the value of the whole string is to be
interpreted as 2n respectively 2�n times the mantissa part. The strings are given
the following interpretation:

'(u) = [1;�1] '(l) = [�1; 1] (17)

'(un) = [2n�1;�2n�1] '(ln) = [�2�n+1; 2�n+1] , n � 1 (18)

'(unb0 � � �b�k) = [(�2�k +
kX

i=0

b�i2
�i)2n; (2�k +

kX
i=0

b�i2
�i)2n]; k > 0 (19)

'(lnb0 � � �b�k) = [(�2�k +
kX

i=0

b�i2
�i)2�n; (2�k +

kX
i=0

b�i2
�i)2�n]; k > 0: (20)

In the case k = 0 in (19) respectively (20) we get one of the intervals (17)
multiplied by 2n respectively 2�n. We take '(l+� ) = [0; 0] to represent zero, and
'(u+� ) = [+1;�1] to represent in�nity 1. With this coding it is possible to
represent any number in the interval ]�1;+1[ as well as1. As seen from [Fig.
7] the �rst symbol of a digit string corresponds to a wide interval, with the four
intervals collectively covering IR[f1g. Furthermore the intervals are overlapping
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Figure 7: Intervals corresponding to the possible �rst symbols of a string.

indicating that there is redundancy in the exponent notation, which in turn will
speed up the processing of output digits. It is easily seen that this representation
satis�es [De�nition 1] of a Digit Serial Number Representation. The state table
[Tab. 2] describes a transducer that translates symbols into matrices, that when
multiplied together will result in an interval matrix representing the interval
corresponding to the input string. Notice that the automaton automatically
enforces normalization of the mantissa part. The interpretation of the state table
is equivalent to that of the state machine in [Section 3]. Notice that in any state
there are at most four possible symbols, making a two bit encoding of the symbols
feasible.

A 
oating point unit operating on such a digit serial representation, will ac-
cept asynchronous operands, thus bu�ering due to normalization problems is no
longer an issue. Moreover since the exponent bits have been given an interval rep-
resentation much like the mantissa bits, the exponent bits can be consumed and
generated in a digit serial manner, making the unit fully data driven. Another
advantage is that the length of the exponent is unlimited, enabling representa-
tion of arbitrarily large or small numbers. However, since the encoding of the
exponent is unary the representation is most useful if operands are scaled into
a range with small absolute values of exponents.

6 Conclusion

Traditional on-line algorithms are based on a recursive formulation of a resid-
ual. The residual can to some extent be thought of as a scaled approximation
of the midpoint of the interval corresponding to the variation of the function
evaluated on some domain, i.e. f('(x1x2 � � �xp+�); '(y1y2 � � �yp+�)). Fixing the
on-line delay � to some constant, gives an upper bound on the approximation
error and hence the width of the interval. If the on-line delay is chosen su�-
ciently large, the output digits can be found by a round to nearest operation
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State Symbol Next-state (�;�;
; �) Interval Type

Start u Upper (1;�1; 1; 1) I1

l Lower (�1; 1; 1; 1) Inormal

�1 Negative (�2;�1; 1; 2) Inormal

1 Positive (1; 2; 2; 1) Inormal

Upper u Upper (3;�1;�1; 3) I1
�1 Negative (�3; 0; 5; 4) Inormal

1 Positive (4; 5; 0;�3) Inormal

� Terminated (1;�1;�1; 1) infinity

Lower l Lower (3; 1; 1; 3) Inormal

�1 Negative (4; 5; 0; 3) Inormal

1 Positive (3; 0; 5; 4) Inormal

� Terminated (1; 1; 1; 1) zero

Positive 0 Mantissa (3; 1; 0; 4) Inormal

1 Mantissa (1; 0; 1; 3) Inormal

� Terminated (1; 1; 1; 1) point

Negative �1 Mantissa (3; 1; 0; 1) Inormal

0 Mantissa (4; 0; 1; 3) Inormal

� Terminated (1; 1; 1; 1) point

Mantissa �1 Mantissa (4; 2; 0; 2) Inormal

0 Mantissa (3; 1; 1; 3) Inormal

1 Mantissa (2; 0; 2; 4) Inormal

� Terminated (1; 1; 1; 1) point

Terminated � Terminated (1; 0; 0; 1) previous

Table 2: Transition/output table for �nite state transducer, translating abstract sym-
bols into intervals.

performed on the residual. Thus an on-line algorithm implicitly keeps a center-
radius representation of an interval that includes the actual variation interval of
the function.

The Cube F can be thought of as a residual as well, but in contrast to
ordinary on-line algorithms the interval f('(x1x2 � � �xp+�); '(y1y2 � � �yp+�)) is
represented by its actual endpoints, thus all information needed when determin-
ing output digits is represented as explicit variables in the model. This in turn
gives a more powerful algorithm, since we can perform actual interval inclusion
tests. An on-line algorithm with optimal on-line delay can easily be devised,
where the digit selection function could be implemented as a test for interval
inclusion, or since the actual midpoint of the function variation interval can
be computed, a round to nearest could be performed as in traditional on-line
algorithms. The optimal on-line delay for certain functions has been examined
in [Duprat, Herreros and Muller 89 ]. A less obvious consequence of the explicit
representation, is that we no longer need to keep input and output synchronous,
thus by imposing synchronization restrictions on the cube algorithm for radix
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number systems , we can realize algorithms in the three di�erent synchronization
classes as depicted in �gure [Fig. 8].

Input and Output

Synchronized

Radix Based

Unsynchronized

Radix Cube

Continued Fraction Cube

Restricted Radix Cube

On-line Radix Cube

On-line

Input Synchronized

Figure 8: Topological classi�cation of MSB-�rst digit serial algorithms.

A cube algorithm with no synchronization for continued fractions has been
examined in [Gosper 72, Kornerup and Matula 88, Kornerup and Matula 89,
Kornerup and Matula 90], it is an open problem whether synchronized algo-
rithms exists for this number system. The continued fractions prove to be
an elegant way of representing real valued operands with arbitrary precision,
one problem with this number representation is, however, that the individual
terms of a continued fractions can be any natural number, or integer num-
ber if negative numbers are allowed. This problem can be solved by expand-
ing each term into simpler terms as demonstrated in [Kornerup and Matula 88,
Kornerup and Matula 89, Kornerup and Matula 90]. One advantage of this rep-
resentation is that the range of representable numbers is inherently unbounded.
The 
oating point, digit serial representations introduced in the previous section
provides the same unbounded range for radix representations. Digit serial compu-
tation on such operands can be performed using homographic or bi-homographic
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functions as described, however the state information in the matrix - and cube-
representations is in simple cases (like addition) inherently large. It will be in-
teresting to see if simpler, digit serial algorithms can be derived in special cases.

A combined way of handling in�nite and �nite precision arithmetic, can be
constructed from the examples shown in this paper. By introducing an extra
termination symbol, which signals that an operand was merely terminated due to
its length exceeding some bound, operands can be kept as intervals, representing
an imprecise operand. Operands terminated in the ordinary way can be taken
to represent exact numbers.
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